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Abstract— Multi-sensor fusion of multi-modal measurements
from commodity inertial, visual and LiDAR sensors to pro-
vide robust and accurate 6DOF pose estimation holds great
potential in robotics and beyond. In this paper, building
upon our prior work (i.e., LIC-Fusion), we develop a sliding-
window filter based LiDAR-Inertial-Camera odometry with
online spatiotemporal calibration (i.e., LIC-Fusion 2.0), which
introduces a novel sliding-window plane-feature tracking for
efficiently processing 3D LiDAR point clouds. In particular,
after motion compensation for LiDAR points by leveraging IMU
data, low-curvature planar points are extracted and tracked
across the sliding window. A novel outlier rejection criteria is
proposed in the plane-feature tracking for high quality data
association. Only the tracked planar points belonging to the
same plane will be used for plane initialization, which makes
the plane extraction efficient and robust. Moreover, we perform
the observability analysis for the LIDAR-IMU subsystem and
report the degenerate cases for spatiotemporal calibration using
plane features. While the estimation consistency and identified
degenerate motions are validated in Monte-Carlo simulations,
different real-world experiments are also conducted to show
that the proposed LIC-Fusion 2.0 outperforms its predecessor
and other state-of-the-art methods.

I. INTRODUCTION AND RELATED WORK

Accurate and robust 3D localization is essential for au-
tonomous robots to perform high-level tasks such as au-
tonomous driving, inspection, and delivery. LiDAR, camera,
and Inertial Measurements Unit (IMU) are among the most
popular sensor choices for 3D pose estimation [1-5]. Since
each sensor modality has its virtues and inherent short-
comings, a proper multi-sensor fusion algorithm aiming at
leveraging the “best” of each sensor modality is expected to
have a substantial performance gain in both estimation ac-
curacy and robustness. For this reason, Zhang and Singh [1]
proposed a graph optimization based laser-visual-inertial
localization and mapping method following a multilayer
processing pipeline, in which the IMU data for prediction,
a visual-inertial coupled estimator for motion estimation,
and LiDAR based scan matching is integrated to further
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Fig. 1: The proposed LIC-Fusion 2.0 with sliding-window plane-
feature tracking. The stably tracked SLAM plane landmarks from
the LiDAR and SLAM point landmarks from the camera are colored
in red. High curvature LiDAR points in blue, accumulated from a
series of LiDAR scans, are shown to visualize the surroundings
only. Magenta points are extracted planar points from the latest
LiDAR scan. The estimated trajectory is marked in green.

improve the motion estimation and reconstruct the map. In
contrast to [1], our prior LIC-Fusion [5] follows a lightweight
filtering pipeline, which also enables spatial and temporal
calibrations between the un-synchronized sensors. In [2], a
depth association algorithm for visual features from LiDAR
measurements is developed, which is particularly suitable for
autonomous driving scenarios. Shao et al. [4] fused stereo
visual-inertial odometry and LiDAR scan matching within a
graph optimization framework, in which, after detecting loop
closures from images, iterative closet point (ICP) of LiDAR
data is performed to find the loop closure constraints.
Substantial research efforts have been devoted on pro-
cessing 3D LiDAR measurements to find the relative pose
between two LiDAR scans. To achieve this, ICP [6] is among
the most widely used algorithms to compute the relative
motion from two point clouds. However, traditional ICP can
easily get poor results when applied on registering two 3D
LiDAR scans, which have vertical sparsity and ring structure.
To cope with the sparsity in LiDAR scans, in [7], raw LiDAR
points are converted into line segments, and the closest points
from two line segments are minimized iteratively. Similarly,
in the well-known LOAM algorithm [8], the registration of
LiDAR scans leverage the implicit geometrical constraints
(point-to-plane and point-to-line distance) to perform “fea-
ture” based ICP. This algorithm is more robust and efficient
since only a few selected points with high/low curvatures
are processed. However, both ICP and LOAM provide con-



straints only between two consecutive scans, and it is hard to
accurately model the relative pose uncertainty. An alternative
approach is to directly extract features (e.g., planes) and
construct a feature-based SLAM problem [9]. However, not
only is large-scale plane extraction often computationally
intensive, but also plane-feature data association (e.g., based
on Mahalanobis distance test) needs ad-hoc parameter tuning
in cluttered environments.

To address these issues, building upon our prior work of
LIC-fusion 1.0, we propose a novel plane-feature tracking
algorithm to efficiently process the LiDAR measurements
and then optimally integrated it into a sliding-window filter-
based multi-sensor fusion framework (see the overview of the
system in Fig. 1). In particular, after removing the motion
distortion for LiDAR points, during the current sliding win-
dow, we only extract and track planar points associated with
certain planes. Only tracked planar points will be used for
plane feature initialization, which makes the plane extraction
more efficient and robust. While abundant of works exist on
observability analysis of visual-inertial systems with point
features [10, 11], we perform observability analysis for the
proposed lidar-inertial-visual system and identify degenerate
cases for online calibration with plane features. The main
contributions of this work can be summarized as follows:

« We develop a novel sliding-window plane-feature track-
ing algorithm that allows for tracking 3D environmental
plane features across multiple LiDAR scans within a
sliding-window. This tracking algorithm is optimally
integrated into our prior tightly-coupled fusion frame-
work: LIC-Fusion [5]. For the proposed plane tracking,
a novel outlier rejection criterion is advocated, which
allows for robust matching by taking into account the
transformation uncertainty between LiDAR frames. The
system can model the uncertainties of LIDAR measure-
ments reasonably, which eliminates the inconsistent-
prone ICP for LiDAR scan matching.

o We perform an in-depth observability analysis of the
LiDAR-inertial-camera system with plane features and
identify the degenerate cases that cause the system to
have additional unobservable directions.

« We conduct extensive experiments of the proposed LIC-
Fusion 2.0 on a series of Monte-Carlo simulations and
real-world datasets, which verifies both the consistency
and accuracy of the proposed system.

II. LIC-FUSION 2.0 PROBLEM FORMULATION

A. State Vector

In addition to LIC-Fusion’s [S5] original state contain-
ing IMU state x;, camera clones x¢, LiDAR clones xj,
and spatial-temporal calibration of IMU-CAM X415 and
LiDAR-IMU X.4;5.1,, We store environmental visual fo
and LiDAR landmarks “x. These features are “long lived”
and through frequent matching can limit estimation drift. The
state vector is:
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In the above, {I} is the local IMU frame at time instant ¢.
¢ @ is a unit quaternion in JPL format [12], which represents
3D rotation ng from {G} to {I}. “vr,, “ps, denote
the velocity and position of IMU in {G}. Moreover, b,
and b, are the gyro and accelerator biases that corrupt
the IMU measurements respectively. The system error state
for x is defined as © = x — & where 2 is the current
estimate!. For details on the calibration parameters please
see the original LIC-Fusion paper [5]. Additionally, we
include environmental visual features, Gp t, represented in
the global frame of reference, and store environmental plane
features represented in an anchored frame {A}. The plane
is represented by the closest point [9, 13], and the anchored
representation can avoid the singularity when the norm of
Gp, approaches zero. These long-lived planar features will
be tracked in incoming LiDAR scans using the proposed
tracking algorithm until they are lost.

B. Point-to-Plane Measurement Model

Considering a LiDAR planar point measurement, “p ¢, that
is sampled on the plane “p,. We can define the point-to-
plane distance measurement model:

Lp7Tr (L
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where ny ~ N (0, J?Ig). With a slight abuse of notation, by
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defining “d =||*p,|| and “n = Lp,/|“p«||. a plane “p
can be transformed into the local frame by:
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C. LiDAR Plane Feature Update

Analogous to point features [14], we divide all the tracked
plane features from the LiDAR point clouds into “MSCKF”
and “SLAM?” based on the track length. Note that the sliding-
window-based plane tracking will be explained in detail in
Section III-B. Given a series of LiDAR point measurements
collected over the whole sliding window of the plane feature

1Z holds for velocity, position, bias, except for the quaternion, which fol-
lows: § ~ [%éﬂT I}T ®{, where ® denotes quaternion multiplication [12],
and 6 is the corresponding error state.



p7r , we can linearize the measurement z(] ) in Eq. (9) at
current estimates of Apﬁ and the states x as
(') ~HYx + HYp,

1D
H&j ), HSTJ ) and
Hgf ) are the stacked Jacobians with respect to pose states,
the plane landmark and the measurement noise, respectively.
Analytical forms of Hgf ), HY ), Hgf ) can be found out in our
companion technical report [15].

If “p,, is a MSCKF plane landmark, the nullspace
operation [16] is performed to remove the dependency on
Apﬂj by projection onto the left nullspace N:

where ngcj ) denotes the stacked noise vector.

Nt = NTHYx + NTHO4p, + NTHYnY  (12)
= 1% = HUx + ny) (13
Due to the special structure that H( )H(J T = = 1,, the mea-

surement covariance is still 1sotr0Flc and thus the nullspace
operation is valid (i.e. aQNTH IHYTN = o31,). By
stacking the residuals and Jacobians of all MSCKF plane
landmarks, we obtain:

ry, = Hyyx+n, (14)

This stacked system can then update the state and covariance
using the standard EKF update equations.

If Apﬂj is a SLAM plane landmark that already exists in
the state, we can directly update its estimate and the state
using Eq. (11). To determine whether a plane feature with
a long track length should be initialized into the state as
a SLAM feature, we note that planes constrain the current
state estimate based on their normals. In the case that three
planes that are not parallel to each other are observed,
then the current state estimate can be well constrained
[17]. Thus, we opt to insert “informative” planes whose
normal directions are significantly different from the planes
currently being estimated (in our implementation, we only
insert planes whose normal directions have greater than ten
degrees difference). After augmenting a plane feature into
the state vector, future LiDAR scans can also match to it.

III. SLIDING-WINDOW LIDAR PLANE TRACKING

A. Motion Compensation for Raw LiDAR Points

Since the raw LiDAR points are deteriorated by motion
distortion, we can remove the distortion by utilizing the high-
frequency IMU pose estimation. When propagating IMU
state, we save the propagated IMU poses at each timestep
into a buffer, which can then be used to remove the distortion.
Since LiDAR points occur at a higher frequency than IMU,
we perform linear interpolate between each of these buffered
poses to the corresponding time of each LiDAR ray. For
orientation, we perform SO(3) interpolation similar to [18],
while linear interpolate between the two positions. Using this
pose, we transform all 3D points into the pose at the sweep
start time, eliminating the motion distortion.
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Fig. 2: A plane landmark tracked across multiple LiDAR frames
{Lo, L1, L2, L3, - - - } within a sliding window. A planar point in
the last LiIDAR scan is associated with a triangle consisting of three
planar points in its subsequent LiDAR scan. All the tracked planar
points are assumed to be sampled from the same plane landmark.

B. Planar Landmark Tracking

We now explain how we perform temporal planar feature
tracking across sequential undistorted LiDAR scans. We
first extract planar points from each LiDAR scan using the
method proposed in [8], where low-curvature points are
classified as being on some environmental planar surface.
A planar point indexed by ¢ in LiDAR frame {L,} will be
tracked in the latest LIDAR frame {L;} by finding its nearest
neighbour point j after projection into {L;}. We then find
another two points (indexed by k,!), which are the nearest
points to j on the same scan ring and the adjacent scan rings,
respectively. These three points (j, k,l) are guaranteed to
be non-collinear and form a planar patch corresponding to
planar point ¢. If the distance between the projected ¢ and j or
distances between any two points € {j, k, [} are larger than a
given threshold, we will reject to associate i to (7, k, 1), and
thus lose track of this planar LiDAR feature. An overview
of this approach is shown in Algorithm 1 and an additional
outlier rejection scheme is presented in the following section.
To prevent the reuse of information, we employ a simple
strategy that a planar point can only be matched to a single
common plane feature.

Algorithm 1 LiDAR Plane Tracking Procedure

Extract planar points from {L;}
Project prior planar points from {L,} into {L;}, find the
nearest corresponding point to each in {L}.
for all (p;, p;) € projected plane points do
Find two closest points pg, p; in {Lp}
Ensure pj scan ring is the same
Ensure p; scan rings is the adjacent
Ensure that selected points are not already used
if |pr, — Pm| <d Y(n,m) € (i,4,k,1) then
Compute plane normal °ny transformed into {L,}
Compute measurement covariance matrix P,
if x*(2z,,H,P,,) == Pass then
Pj, Pk, P; are measurements of p;’s plane
Pj, Pk, P Will be tracked into the next scan
end if
end if
end for




C. Normal-based Plane Data Association

We now discuss our novel plane normal-based data associ-
ation method, which rejects invalid plane associations based
on the calculated plane normal. Consider the case that we
have extracted a plane on the floor next to a vertical wall.
If the tracking algorithm discussed in the previous section
is used, then points that are near the bottom of the wall
would be classified as being on the same plane as floor points
due to purely relying on 3D distance. This can have huge
implications on the estimation accuracy due to incorrectly
saying that the wall and floor are the same plane even though
their normal directions should be perpendicular to each other.

To handle this, we propose leveraging the current state
uncertainty and the uncertainty of the planar points to per-
form a Mahalanobis distance test between the normal vectors
of the candidate match. Specifically, we have a possible
planar match of the points, (“*p m, “*psn, “*py,) in frame
{L.}, and (“*pysy, “opyp, opy;) in frame {L,}. We define
a synthetic measurement z, reflecting the “parallelarity”
between the two normal vectors of each of these planes as:

z, = |"n; | [*R"n, (15)
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We can define two simplified stacked “states” as:
T
Pn1 = [L“p}m Lepf, Lap}o] (18)
T
Pn2 = {LbP;g LbP;h pr}i} (19)

The corresponding covariances of p,; and p,2 can be
computed from LiDAR points noises and denoted as P,,; =
P,o = JJ%Ipnl. The Mahalanobis distance d, of z,, can be
computed as:

d, =z P lz, (20a)
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where P,,; is the known covariance of relative rotation fz R
based on the current EKF covariance and the Jacobians:
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Based on the Mahalanobis distance test, we can reject
incorrect temporal planar tracks. Note that this check can
only be performed once we have more than two sequential
LiDAR frames, see Fig. 2 for illustrating the measurements
on the same plane while across multiple LiDAR frames.

D. Planar Landmark Initialization

If a plane landmark Lapﬂj can be tracked across several
LiDAR frames, we will initialize this plane landmark in the
oldest LiDAR frame {L,} with all its valid planar point

observations, denoted as set Py, within the sliding window.
A planar point observation = pg%i = Lo pgcz )+ ngcz ) is the
145, measurement in Py, with ngcj ) is the measurement noise.

We compute the distance between = p;{ ) and La Pr; as:
. LanT
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By stacking Eq. (22) and constructing a linear system,

we can compute the initial guess for plane normal vector

Lap /l|“*Px,|| and plane distance scalar |[*<p, ||. The

initial guess of the plane landmark can be further refined

by minimizing following cost function:
n
i=

(22)
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i=1
where n is the amount of observations in Py;. The entire
proposed LIC-Fusion 2.0 LiDAR processing pipeline can be
seen in Algorithm 2.

IV. OBSERVABILITY ANALYSIS

The observability analysis of IMU-CAM navigation sys-
tem with online calibration has been studied extensively in
literature [10, 11, 19], however, the analysis for LiDAR-
IMU navigation with online calibration using plane features
is still missing. In addition, since the calibration between
IMU-CAM and LiDAR-IMU calibration are relatively inde-
pendent, previously identified degenerate motions for VINS
calibration cannot be directly applied to LiDAR-IMU cases
with plane features. Hence, in this paper, we focus on the
subsystem of LIC-Fusion 2.0 with LiDAR-IMU only and
study specifically the degenerate cases for online spatial-
temporal LiDAR-IMU calibration using plane features. In
particular, the observability matrix M (x) is given by:

M(x) = |:<Hx,lq)(1,l))T . (Hx,kq’(k"l»T]T

where Hy ;, represents the measurement Jacobians at time-
step k. The right null space of M(x), denoted by N, indi-
cates the unobservable directions of the underlying system.

(24)

A. State Vector and State Transition Matrix

As in our previous work [11], we have already studied
the observability for IMU-CAM subsystem with online cal-
ibration and point features, this analysis will only focus
on LiDAR-IMU system with online calibration and plane
features. Hence, with closest point representation for plane
feature, the state vector with a plane feature and LiDAR-IMU
calibration can be written as:

x = [x] XLy OP7 25)
The state transition matrix can be written as:
®;  Oi5x7 Oi5x3
D.1) = |O7x15 Peatin. O7x3 (26)
O3x15 O3x7 P,

Where ®; denotes the IMU state transition matrix [10].
D v, = Iy and ®, = I3. Note that without loss of
generality, we represent the plane feature in the global frame
{G}. We only consider one plane in our state vector, for the
more planes cases please refer to our technical report [15].



Algorithm 2 LIC-Fusion 2.0 LiDAR Processing Pipeline
Propagation:

« Propagate the state forward in time by IMU measure-
ments

« Buffer propagated poses for LiDAR scan motion
compensation

Update: Given an incoming LiDAR Scan,

o Clone the corresponding IMU pose.

« Remove motion distortion for the scan as Sec. III-A

o Extract and track planar points as Sec. III-B.

o For SLAM plane landmarks, use the tracked planar
points to compute the residuals & measurement Jaco-
bians, and perform EKF update [Eq. (11)].

« For planar points that tracked across the sliding win-
dow or lost track in the current scan:

— Query its associated observations over the sliding
window.

— Check the association validity by Mahalanobis gat-
ing test as Sec. III-C.

— Construct the residual vectors and the Jacobians in
Eq. (22) with all the verified observations.

— Determine whether the plane landmark should be
a SLAM landmark by checking the track length
and the normal vector “parallelity” to the existing
SLAM plane landmarks.

— If it should be a SLAM plane, add it to the state
vector and augment the state covariance matrix.
Otherwise, treat it as a MSCKEF feature.

« Stack the residuals and Jacobians of all MSCKF plane

landmarks, and perform EKF update [Eq. (14)]
Management of States:

e SLAM plane landmarks that have lost track are
marginalized out.

e SLAM plane landmarks anchored in the frame that
needs to be marginalized are moved to the newest
frame.

o Marginalize the cloned pose corresponding to the
oldest LiDAR frame in the sliding window state.

B. Measurement Jacobians and Observability Matrix

Following the observability methodology in [10], we con-
struct the k-th block of the observability matrix as:

O3 1
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where I'z;;,4 € {1,2},7 € {1...9} can be found in [15].

For LiDAR aided INS, if the state vector contains IMU
state, spatial/temporal LiDAR-IMU calibration and a plane
feature, the system will have at least 7 unobservable direc-
tions as N (™),

N = [N NG NG NG| @7)

SRGg 03  O3x1 0341 IGIRGﬁn
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where “R,, = [Gnll Gnt n|. The N{™ relates to the

global yaw around the gravity direction, Nél) relate to the
aided INS sensor platform, Nf.ffﬁ) relates to the velocity
parallel to the plane and N;" relates to the rotation around
the plane normal direction.

Given 3D random motions, I' 16, I'z18, I'zro6, I'zo7 and
T',25 tend to have full column rank and make both the spatial
and temporal calibration between LiDAR-IMU observable.

C. Degenerate Cases Analysis for LiIDAR-IMU Calibration

Given the LiDAR-IMU navigation system with plane fea-
tures, the online calibration will suffer from degenerate cases
that make the calibration parameters to be unobservable.
These degenerate cases can be affected by (1) plane structure
and (2) system motion. In this section, we will use one-plane
case with several degenerate motions to illustrate our findings
(see Table. I). Two-plane or three-plane cases will be also
included in our companion technique report. Note that the
one-plane case refers to the cases when there is only one
plane or all planes in the state vector are parallel. We have
identified the following degenerate motions for the LiDAR-
IMU calibration:

o If the system undergoes pure translation, the rigid
transformation (including orientation and translation)
between LiDAR-IMU will be unobservable with unob-
servable subspace as:

O15%1 O15%3
) IRZR®n 03
s
N1 = 031 fRGROR, (28)
0 0
0341 e;,rGTl

o If rotating with the fixed axis as Lk, the translation be-
tween LiDAR-IMU is not observable along the rotation
axis with unobservable directions as Ngg). Note that if
the rotation axis is perpendicular to the plane direction,
we will have an extra unobservable direction Ngg).

O3x1  O3x1

(ﬂ-) (I’J}RiRLk 03><1
Nisis = O12x1 O12x1 29)

Lk Lk

Osx1 O4x1

¢ Similar to IMU-CAM calibration, if the system under-
goes motions with constant ‘w and v or constant fw
and ©a, the LIDAR-IMU temporal calibration will also
be unobservable with unobservable directions as Nﬁ)
and N(lg), respectively. In addition, for one-plane case,
we have an extra degenerate motion (“w | “n and



Gn 1 Gv;) for time offset as N{7.
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It can be seen that many of these degenerate motions
for LiDAR-IMU coincide with the results of IMU-CAM
calibration a few with additional directions. Pure translation
will cause both the orientation and translation of LiDAR-
IMU extrinsic calibration unobservable, whereas for IMU-
CAM calibration just the translation is unobservable. In ad-
dition, one-plane case will also introduce extra unobservable
directions, such as ¢4z, if “w || “n and “n 1 “v. Note that
any combination shown in Table I would also be degenerate.

TABLE I: Summary of degenerate motions for LiDAR-IMU cali-
bration with one-plane feature.

One Plane / Parallel Planes Unobservable
Pure Translation IR, Ip;
1-axis Rotation Lpr along rotation axis
Constant ‘1w and v tar. “pr
Constant Yw and Ca tar, “Pr
Gw||%nand “n L Cv tar

V. SIMULATION RESULTS

We first verify our proposed system and observability
analysis in simulation. A virtual room with structural planes
(Fig. 3) is simulated [20, 21]. IMU measurements, LiDAR
points, sparse image features, perturbation to the initial
states, and noises to measurements are generated according
to configuration shown in Table II. We first evaluate the pro-
posed system with and without online LiDAR-IMU calibra-
tion by 12 Monte-Carlo runs, where absolute trajectory error
(ATE) and Normalized Estimation Error Squared (NEES) are
used to quantify accuracy and consistency, respectively.

The results are shown in Table III, where the “true”
denotes the system starts with ground truth calibration pa-
rameters, while the “bad” indicates the system is initialized
with perturbed calibration. The results suggest that the pro-
posed system with online calibration can achieve consistent

TABLE II: Simulation setup parameters.

Parameter Value Parameter Value
Cam Freq. (hz) 10 IMU Freq. (hz) 200
LiDAR Freq. (hz) 7 LiDAR Point Noise (m) 0.03
Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3
Pixel Proj. (px) 1 Timeoff (s) 0.01
Rot. Ltol (rad) 0.001 Pos. TinL (m) 0.01
Max Num. SLAM Point 12 Max Num. SLAM Plane 8
Num. Clones Image 11 Num. Clones LiDAR 8

TABLE III: Averaged ATE and NEES over 12 simulation runs
with and without online calibration. Note that “true” means ground
truth calibration while “bad” means the perturbed calibration and
IC refers to IMU-camera subsystem only.

IMU Model ATE (deg) ATE (m) Ori. NEES Pos. NEES
true w/ calib 0.118 0.020 2.210 0.185
bad w/ calib 0.129 0.021 2.216 0.221
bad w/o calib 0.148 0.024 2.677 0.246
true w/o calib 0.122 0.021 2.233 0.208
IC true w/o calib 0.159 0.027 2.237 0.314

TABLE IV: Parameters used in our real world experiments.

Parameter Value Parameter Value
Cam Freq. (hz) 20 IMU Freq. (hz) 400
LiDAR Freq. (hz) 10 Image Res. (px) 1920 1200
Num. Clones Image 11 Num. Clones LiDAR 8
Max Num. SLAM Point 20 Max Num. SLAM Plane 8

and accurate pose estimation. In comparison, the system
will output inconsistent pose estimation (much larger ATE
and NEES) if it starts from perturbed initial states and
runs without online calibration. Furthermore, LIC-Fusion
2.0 also outperforms its IMU-CAM (IC) subsystem (which
only fuses IMU and camera measurements). During the
simulation, 14.61 MSCKF plane landmarks and 1.60 SLAM
plane landmarks are used for update on average every scan.
We further examine a degenerate motion (1-axis rotation
motion) identified for online LiDAR-IMU calibration. With
the same trajectory shown in Fig. 3, we remove orientation
roll and pitch changes allowing only the yaw to change.
The spatial-temporal calibration between LiDAR-IMU over
6 runs with online calibration are shown in Fig. 3. All cali-
bration parameters except the z component of “p; converge
nicely with shrunken uncertainty bounds. Because the sensor
is rotating around z-axis (yaw only orientation), hence, the
z-component of LpI is observable. Therefore, the results
support our degenerate motion analysis, see Table L.

VI. REAL-WORLD EXPERIMENTAL RESULTS

We further validate the proposed LIC-Fusion 2.0. using
our multi-sensor platform that consists of a Velodyne VLP-
16, an Xsens IMU, and a global-shutter monocular camera
(see Fig. 4). All sensors publish asynchronously, with all time
offsets estimated online with the zero as the initial guesses.
The image processing pipeline is based on our prior work
OpenVINS [21], while the LiDAR processing pipeline is
proposed in this work. Note that IMU is necessary as the
base sensor while, by design, the LiDAR and camera can
be turned on/off without affecting performance. Videos are
recorded when generating experimental results?.

A. Teaching Building Sequences

The proposed system is first evaluated on data (Fig. 4 and
Table IV) collected within a teaching building at Zhejiang
University. Since we started and ended in the same position
when collecting data, the start-to-end drift (supposed to be
zero) is used for system performance evaluation (see Fig. 5).
The averaged start and end errors of 5 runs tested on 7
sequences are shown in Table V. In the experiments, we com-
pare the proposed plane landmarks enhanced LiDAR-IMU-
CAM odometry (LIC-Fusion 2.0) with its subsystems (IMU-
CAM system: OpenVINS, LiDAR-IMU system: Proposed-
LI) and the other state-of-the-art algorithms, such as the
LiDAR odometry, (LOAM [8]), the tightly-coupled LiDAR-
Inertial odometry and mapping method (LIO-MAP [22]), and
our prior work (LIC-Fusion [5]). Due to aggressive motion,
degraded structures, lighting changes, some algorithms fail

2 https://www.youtube.com/watch?v=waE5nepxD-Q
https://drive.google.com/open?id=1cLczzQVpsgtRQhuCX
AHOO563gFJSzckX



Calib. IMU-LIDAR Ori. Error

\“ 60 0
datase i (5

Calib. IMU-LIDAR Pos. Error LIDAR IMU Time Offset Error

8 100 20 h 5 10 5

5
dataset time (s) dataset time (5]

Fig. 3: Left: the simulated room with structure planes (blue), 16-beam LiDAR points (yellow), SLAM point landmarks (red dot), SLAM
plane landmarks (red patch), estimated (green) and ground truth (cyan) trajectories. Middle and right: calibration errors and 3 sigma bounds
for 6 typical runs with different initial state perturbations for 1-axis rotation motion (yaw only). z-component of “p; is not observable

and does not converge at all.

LS

Fig. 4: Left: Sensor suite with a Velodyne VPL-16, Xsens IMU, and a monocular camera. Middle: Snapshots of Teaching Building

sequences. Right: Snapshots of Vicon Room sequences.

to work on certain sequences. In the Table V, we omit severe
failures marked by “-” when the norm of final drift is larger
than 30 meters. In Seq 1, the camera-based OpenVINS fails
to track visual features due to huge camera exposure changes
when we go upstairs under poor lighting conditions. The
proposed-LI subsystem has a larger drift on Seq 3 and Seq
6, in which the sensor suite traversed long corridors with
only parallel planes observed. LIO-MAP also fails on Seq
3 with long corridors even with a maintained global map.
In general, compared to other algorithms, the proposed LIC-
Fusion 2.0 is more robust and can achieve higher accuracy
on most sequences. Note that in a typical indoor scenario
of Seq 5, there are 18.81 MSCKF planes and 2.09 SLAM
planes used for the update on average.

B. Vicon Room Sequences

Data sequences collected within a VICON are also used
for system evaluation. Clutters in the environment (shown
in Fig. 4) pose challenges for data associations of Li-
DAR points. The averaged ATE [23] are computed with
the provided ground truth to compare the LIC-Fusion 2.0,
OpenVINS-IC, Proposed-LI, LOAM, LIO-MAP, and LIC-
Fusion. The results are shown in Table. VI and Fig. 5, the
cases with transitional errors more than 20 meters are marked
with “-”. The proposed LIC-Fusion 2.0 with reliable data
associations over the sliding window outperforms the other
algorithms. We appreciate the help from the authors of LIO-
MAP [22] for parameters tuning to achieve better accuracy.
However, LIO-MAP still fails on some sequences due to
error-prone data association in clutter environment and lack
of time synchronization between LiDAR and IMU.

The results demonstrate that LIC-Fusion 2.0 with the
novel temporal plane tracking and online spatial/temporal
calibration can achieve better accuracy than existing LiDAR-
IMU-CAM fusion algorithms. We further examine the com-
putational cost (shown in Fig. 6) of the main stages when

running it on Seq 6 on a desktop computer with Intel i7-
8086k CPU@4.0GHz. The averaged processing time for its
IMU-CAM subsystem is 0.0168 seconds, and for its LiIDAR-
IMU subsystem is 0.0402 seconds. Thus LIC-Fusion 2.0 is
suitable for real-time applications in this indoor scenario.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a robust and efficient
sliding-window plane-feature tracking algorithm to process
3D LiDAR point cloud measurements. We integrated this
tracking algorithm into our prior LIC-Fusion estimator re-
sulting in LIC-Fusion 2.0 with improved performance. In
particular, during the proposed plane-feature tracking, we
have advocated a new outlier rejection criteria to improve
feature matching quality by taking to account the uncertainty
of the LiDAR frame transformations. Additionally, we have
investigated the observability properties of the linearized LIC
system model in-depth and identified the degenerate cases for
spatial-temporal LIDAR-IMU calibration with plane features.
The proposed approach has been validated in both simu-
lated and real-world datasets and shown to achieve better
accuracy than the state-of-the-art algorithms. In the future,
sliding-window edge-feature tracking in LiDAR scans will
be investigated.

REFERENCES

[1] J. Zhang and S. Singh. “Laser — visual — inertial odometry and
mapping with high robustness and low drift”. In: Journal of Field
Robotics 35.8 (2018), pp. 1242-1264.

[2] J. Graeter, A. Wilczynski, and M. Lauer. “LIMO: Lidar-Monocular
Visual Odometry”. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2018, pp. 7872-7879.

[3] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song.
“Robust and precise vehicle localization based on multi-sensor fu-
sion in diverse city scenes”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2018, pp. 4670-4677.

[4] W. Shao, S. Vijayarangan, C. Li, and G. Kantor. “Stereo visual
inertial lidar simultaneous localization and mapping”. In: arXiv
preprint arXiv:1902.10741 (2019).



Fig. 5: Left Two: Estimated trajectories with LIC-Fusion 2.0 on Teaching Bulding Seq 1 and 2. Right Two: Estimated trajectories with
LIC-Fusion 2.0 on Vicon Room Seq 2 overlaid with ground truth.

TABLE V: Averaged Start-to-End drift Error of 5 runs on Teaching Building Sequences (unit meters). The lengths for Seql - Seq 7 are
around 108, 124, 237, 195, 85, 140, 83 meters, respectively. Note that estimated trajectories on Seq 1 and 2 are shown in Fig. 5.

Methods

Seq 1 Seq 2 Seq 3

Seq 4

Seq 5 Seq 6 seq7

LIC-Fusion 2.0
OpenVINS-IC - -
Proposed-LI

0.213, 0.074, 0.338 0.136, -0.107, -0.140  0.689, -0.404, -0.172
-1.765.-1.149,-0.836 3.917, 3.552, -0.475

0.401, -0.195, 0.655 0.203, 0.503, 0.037 -

LOAM 0.831, -5.145, -0.607  -0.059, -0.065, 0.073
LIO-MAP -0.104, 0.057, 0.092  -0.019, -0.423, 0.223 o -
LIC-Fusion -0.740, 0.0401, 0.222  0.293, 0.984, -0.656 1.216, 1.831, -0.465

0.456, 0.122, -0.322
3.181, -0.595, -1.372
S 0.164,22.251,0.502
-3.418, 3.938, -21.364  -0.933, -8.395, 0.098
0471, -0.215, -1.37
-1.117, 0.607, 0.529

1.911, 0.226, -0.166
-2.312, 1.562, 0.247
1.242, -0.462, -0.530
1.612, 0.000, -2.867
0.019, -0.039, -0.142
-0.912, -0.847, 0.377

0.054, -0.168, -0.027  0.025, -0.654, 0.199
-1.093.-0.083,-0.362 -0.085,-3.223,-0.143
1.542, -2.110, 0.342 - -
-9.014, 1.084, -0.300  -0.130, 0.461, 2.960
0.147, 0.017, -0.232 0.206, 0.125, 1.530
-0.382, -2.248, -0.905  -3.295, -1.934, 0.585

TABLE VI: Averaged ATE of 5 runs on Vicon Room Sequences (units degrees/meters). The lengths for Seq 1 - Seq 6 are 42.62, 84.16,
33.92, 53.14, 49.74, 87.87 meters, respectively. Note that estimated trajectory on Seq 2 is shown in Fig. 5

Wall Time (sec)

[5]

[6]

[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

Methods Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Average
LIC-Fusion 2.0 ~ 2.537 /0.097  1.870/ 0.145 1.940 / 0.101  2.081/0.116 2.710 / 0.104  3.320/ 0.113  2.410 / 0.113
OpenVINS-IC ~ 2.625/0.094 1.741/0.177  3.131/0.273 240470115 2962/0.129  3.953/0.129  2.803/0.153
Proposed-LI 2.333/0.199 3.325/0444 2.810/0306 5335/0.272 3.332/0.440 4.866/0412  3.667 / 0.345
LOAM 5.880/0.156 6.414/0.134 15384 /0.333  6.354/0.150 5.542/0.140  7.095/0.188  7.778 / 0.183
LIO-MAP -/ - 5.608 / 0.214 -/ - -/ - 4.890/0.170  12.862/0.238  7.786 / 0.207
LIC-Fusion 2.345/0.097 1.879/0.173 1.973 7 0.104 -/ - 2.743/0.100  3.788 / 0.131 2.546 / 0.121
0.06 ] i IC Subsyst
P~ ropagation [—IC Subsystem
D feat-extract r 1
2 - fcatrlralckut\g v
£002 o updue WWWMNWMWWWWM
E . marginalization 20 20 “ 0 100
0 20 40 60 80 100 0 20 40 60 80 100 Dataset Timestep (sec)

Fig. 6: The run time analysis of the proposed system.

X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang. “LIC-Fusion:
LiDAR-Inertial-Camera Odometry”. In: Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). Macau,
China, Nov. 2019, pp. 5848-5854.

P. J. Besl and N. D. McKay. “Method for registration of 3-D
shapes”. In: Sensor fusion IV: control paradigms and data struc-
tures. Vol. 1611. International Society for Optics and Photonics.
1992, pp. 586-606.

M. Velas, M. Spanel, and A. Herout. “Collar line segments for fast
odometry estimation from velodyne point clouds”. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE. 2016, pp. 4486—4495.

J. Zhang and S. Singh. “CLOAM: Lidar Odometry and Mapping in
Real-time.” In: Robotics: Science and Systems. Vol. 2. 2014, p. 9.
P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang. “LIPS: Lidar-
inertial 3d plane slam”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 123-130.
J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis.
“Consistency Analysis and Improvement of Vision-aided Inertial
Navigation”. In: [EEE Transactions on Robotics 30.1 (2014),
pp. 158-176. 1SSN: 1941-0468.

Y. Yang, P. Geneva, K. Eckenhoff, and G. Huang. “Degenerate
motion analysis for aided ins with online spatial and temporal sensor
calibration”. In: IEEE Robotics and Automation Letters 4.2 (2019),
pp. 2070-2077.

N. Trawny and S. I. Roumeliotis. “Indirect Kalman filter for 3D
attitude estimation”. In: University of Minnesota, Dept. of Comp.
Sci. & Eng., Tech. Rep 2 (2005), p. 2005.

Y. Yang, P. Geneva, X. Zuo, K. Eckenhoff, Y. Liu, and G. Huang.
“Tightly-coupled aided inertial navigation with point and plane
features”. In: International Conference on Robotics and Automation
(ICRA). IEEE. Montreal, Canada, May 2019, pp. 6094-6100.

M. Li and A. I. Mourikis. “Optimization-based estimator design for
vision-aided inertial navigation”. In: Robotics: Science and Systems.
Berlin Germany. 2013, pp. 241-248.

X. Zuo, Y. yang, P. Geneva, J. Lv, Y. Liu, G. Huang, and M.
Pollefeys. “Technique Report of LIC-Fusion 2.0 with Temporal

[16]

[17]

(18]

(19]

(20]

[21]

[22]

(23]

Plane Tracking”. In: Ethz, Dept. of Comp. Sci., Tech. Rep 1 (2020).
Available: http: / /udel . edu/ ~ghuang / papers / tr_
lic2.pdf.

Y. Yang, J. Maley, and G. Huang. “Null-Space-based Marginaliza-
tion: Analysis and Algorithm”. In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Vancouver,
Canada, 2017, pp. 6749-6755.

Y. Yang and G. Huang. “Aided inertial navigation with geomet-
ric features: Observability analysis”. In: 20/8 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 2334-2340.

S. Ceriani, C. Sénchez, P. Taddei, E. Wolfart, and V. Sequeira. “Pose
interpolation SLAM for large maps using moving 3D sensors”.
In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2015, pp. 750-757.

Y. Yang and G. Huang. “Observability Analysis of Aided INS With
Heterogeneous Features of Points, Lines, and Planes”. In: [EEE
Transactions on Robotics 35.6 (2019), pp. 1399-1418. 1SSN: 1941-
0468.

P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang. “LIPS: LiDAR-
Inertial 3D Plane SLAM”. In: Proc. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Madrid, Spain, 2018.
P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang.
“OpenVINS: A Research Platform for Visual-Inertial Estimation”.
In: Proc. of the IEEE International Conference on Robotics and
Automation (ICRA). Paris, France, 2020.

H. Ye, Y. Chen, and M. Liu. “Tightly coupled 3d lidar inertial
odometry and mapping”. In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 3144-3150.

Z. Zhang and D. Scaramuzza. “A tutorial on quantitative trajectory
evaluation for visual (-inertial) odometry”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE.
2018, pp. 7244-7251.



