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Abstract— Currently, there have been many kinds of point-
based 3D trackers, while voxel-based methods are still under-
explored. In this paper, we first propose a voxel-based tracker,
named PointSiamRCNN, improving tracking performance by
embedding target information into the search region. Our
framework is composed of two parts for achieving proposal
generation and proposal refinement, which fully releases the po-
tential of the two-stage object tracking. Specifically, it takes ad-
vantage of efficient feature learning of the voxel-based Siamese
network and high-quality proposal generation of the Siamese
region proposal network head. In the search region, the ground-
truth annotations are utilized to realize semantic segmentation,
which leads to more discriminative feature learning with point-
wise supervisions. Furthermore, we propose the Self and Cross
Attention Module for embedding target information into the
search region. Finally, the multi-scale RoI pooling module is
proposed to obtain compact representations from target-aware
features for proposal refinement. Exhaustive experiments on
the KITTI tracking dataset demonstrate that our framework
reaches the competitive performance with the state-of-the-art
3D tracking methods and achieves the state-of-the-art in terms
of BEV tracking.

I. INTRODUCTION

With the surging requirement of practical applications such
as robotics and autonomous driving, rapid development has
been achieved in 3D object tracking [1]–[6]. 3D sensors
that can capture the real scene information are essential
and critical for autonomous driving vehicles and robots. The
most commonly used 3D sensors for real-world applications
are LiDAR sensors, which generate point cloud data to
provide accurate distance information and be more robust for
illumination variation. Due to the sparseness and irregularity
of point clouds, well-established visual trackers cannot be
directly used for 3D object tracking. Moreover, 3D single
object tracking faces the challenge from the enormous search
space of 3D object.

Most existing 3D tracking methods can be divided into two
categories: the RGBD-based methods and the point-based
methods. The performance of the RGBD-based methods [7]–
[10] relies heavily on 2D prediction results and cannot utilize
point cloud information to generate high-quality proposals.
The first point-based method SC3D [4] leverages exhaustive
search to generate candidates in the 3D space and introduces
the 3D Siamese network based tracker. Nevertheless, it only
solves a similarity metric between each candidate and the
template. Later works such as [6], [11] improve SC3D by
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Fig. 1: Predicted tracking results from point clouds by
(a) PointSiamRCNN and (b) P2B [6] and SC3D [4]. The
proposed PointSiamRCNN can learn point-wise features and
achieve better tracking performance.

executing the region proposal network (RPN) from birds-
eye-view (BEV) or directly predicting the target center to
generate proposals. In this way, the inefficient sampling
process in SC3D can be avoided. However, the point-based
methods have no reference to high-performance 2D tracking
experience and cannot effectively embed target information
into the search region.

One of the strategies for tackling the irregularity and
disorder of point clouds is converting point clouds to voxel
grids. The voxel-based methods have achieved remarkable
performance in 3D object detection [12]–[15]. They com-
monly use 3D voxel Convolution Neural Network (CNN) to
abstract features from voxels and reshape the 3D voxel fea-
tures into the BEV representations for generating proposals
by leveraging a 2D detection head. However, the voxel-based
method was never explored in 3D object tracking.

Motivated by above observations, we propose the first
voxel-based Siamese tracking framework named PointSi-
amRCNN for 3D object tracking based on 3D voxel CNN.
The PointSiamRCNN consists of two stages, the first stage
is constructed for generating high-quality proposals and
learning target-aware features. We first construct the Siamese
network based on 3D voxel CNN for encoding discriminative
features from the template and search region, and then
reshape the features to BEV representations. The Siamese
region proposal network (Siamese-RPN) head generates pro-
posals from BEV representations, which avoids the ineffi-
cient sampling method in SC3D and utilizes mature visual
tracking experience. Inspired by [16], we observe that the 3D
box annotations of tracking can provide the semantic masks
and the track-id of each target, which guides the network to
segment the intra-target points in the search branch. Besides,
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we design the Self and Cross Attention (SCA) Module to
learn target information and encode context information for
learning the target-aware features in the search branch.

The second stage of PointSiamRCNN is designed for
proposal refinement. Given the proposals from the first stage,
we propose a multi-scale RoI pooling module to integrate
the target-aware features of different spatial resolutions and
transform the pooled points to canonical coordinates. Finally,
our refinement network is constructed by set abstraction (SA)
layers for further downsampling and extracting context fea-
tures with two heads for confidence prediction and location
refinement. By learning the target information and voxel-
wise features in the search branch, our method achieves more
accurate and robust tracking, as shown in Fig. 1.

The main contributions of our work can be summarized
into four-fold.
• To the best of our knowledge, PointSiamRCNN is the

first voxel-based Siamese tracker, which utilizes the 2D
tracking head for generating a small number of high-
quality 3D proposals from the BEV feature map.

• We propose the Self and Cross Attention (SCA) Module
to learn the target information and encode strong context
information, which enhances the discriminative power
and obtains target-aware features in the search branch.

• We propose the multi-scale RoI pooling module to
integrate target-aware features of different spatial reso-
lutions, which simply and effectively provides compact
representations for proposal refinement.

• Experimental results on the KITTI dataset demonstrate
that our PointSiamRCNN outperforms state-of-the-art
methods with remarkable margins and achieves 30 FPS
inference time.

II. RELATED WORK

In this section, we briefly introduce three tasks most
related to our PointSiamRCNN.

A. 2D Object Tracking with Siamese Network based Methods

Recently, the 2D Siamese trackers have attracted
widespread attention from the tracking community due
to well-balanced tracking accuracy and speed. Many 2D
Siamese trackers have achieved the state-of-the-art perfor-
mance, such as [17]–[26]. SiamFC [27] first proposes a full
convolution Siamese network with shared weights, which
includes the template branch and the search branch for
achieving object tracking. SiamRPN [28] and succeeding
works [21]–[24] append the RPN with the classification
branch and the regression branch after the Siamese network
to further improves the performance of Siamese trackers.
Although the Siamese trackers have achieved superior per-
formance in images, especially well-balanced accuracy and
speed, they cannot be directly leveraged for 3D tracking.

B. 3D Object Tracking with Siamese Network based Methods

Compared with the 2D Siamese tracking methods, the
3D Siamese tracking methods are still at the primary stage.
SC3D [4] first proposes a 3D Siamese tracker based on

PointNet [29] and leverages shape completion for regulariz-
ing feature learning to further improve tracking performance.
The exhaustive search is executed for generating candidates,
which makes it difficult to reach real-time speed. FST [5]
proposes a double Siamese network and generates proposals
from images by adding a 2D Siamese tracker before the
3D Siamese tracker. P2B [6] encodes the template and the
search region based on PointNet++ [30], embeds the clues
of the template into the search region, and then applies
Hough voting [31] for predicting the target center. In this
way, it effectively generates proposals but does not make full
use of the 3D box annotations and the mature 2D tracking
experience. For the first time, our method uses a Siamese-
RPN head to generate proposals from the BEV feature map
quickly and makes full use of the 3D box annotations for
achieving semantic segmentation in the search branch.

C. 3D Object Detection with Voxel-based Methods

One of the strategies for tackling the irregularity of point
clouds is converting point clouds to voxel grids. Voxel-
Net [32] produces regular voxels from the point cloud and
encodes them with 3D CNN and 3D sparse convolution [33]
is introduced by [12] for processing the voxels. Lang et al.
[34] produces pseudo image features by stacking the voxels
feature along the Z axis. Shi et al. [13] utilizes intra-object
part information to learn more discriminative features and
designs the RoI-aware point cloud pooling to aggregate part
features. He et al. [14] uses a detachable auxiliary network to
learn the structure information of point clouds for achieving
accurate detection. The voxel-based method has achieved
superior performance in 3D object detection, but it was never
explored in 3D object tracking. We propose the first voxel-
based tracker for 3D tracking and the experiments prove that
it is more effective than the point-based tracker.

III. METHOD

In this section, we describe our two-stage tracker PointSi-
amRCNN for 3D single object tracking from point clouds,
as illustrated in Fig. 2.

A. Backbone and tracking head

For the first time, we adopt a voxel-based Siamese network
as the backbone for learning more discriminative features
from point clouds, while previous point cloud Siamese
trackers [3]–[6] employ the PointNet-based network as the
backbone. For learning the target information and embedding
target clues into the search region, we propose the Self
and Cross Attention Module. Inspired by [16], due to the
fact that 3D targets are independent of each other without
overlapping, we achieve semantic segmentation by using
free-of-charge semantic masks that directly supplied by 3D
ground truth box in the training data. To the best of our
knowledge, we propose the first voxel-based Siamese tracker.

1) Network architecture: The 3D Siamese network is
constructed by two shared weights encoder with effective 3D
sparse convolution. The encoder has four convolution blocks
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Fig. 2: The overall framework of our PointSiamRCNN. In the first stage, after encoding the template and search region features
by the 3D voxel CNN, the Siamese-RPN head is utilized for proposal generation. We achieve the semantic segmentation
and design a Self and Cross Attention (SCA) module, which can generate the target-aware features in the search region. In
the second stage, the proposed RoI pooling module aggregates the target-aware features of different spatial resolutions to
the compact representations for confidence prediction and location refinement.

with the kernel size of 3 and feature dimensions of 16-32-
64-64, where the last three convolution blocks with stride
2 for down-sampling the spatial resolution by 8 times. For
further learning the discriminative point-wise features from
the search region, after the encoder, we append a decoder for
semantic segmentation. The backbone composes an encoder-
decoder architecture similarly with U-Net [35]. The decoder
includes four sparse deconvolution blocks with the kernel
size of 3 and feature dimensions 64-32-16-16, respectively.
The stride of the last deconvolution block is set to 1, and
the stride of the other three deconvolution blocks is set to
2. Each convolution and deconvolution is followed by a
batch normalization [36] and ReLU. As a result, 3D feature
maps with different spatial resolutions are produced from the
search region. Considering that the number of foreground
points is usually smaller than the number of background
points in outdoor scenes, focal loss [37] is applied for
calculating the segmentation loss Lseg to handle the class
imbalance issue.

Lseg(pt) = −αt(1− pt)γ log(pt),

where pt =

{
p for foreground points,

1− p otherwise.
(1)

2) Siamese-RPN head: In our case, after the sparse con-
volution based encoder downsamples the voxelized point
clouds, we further abstract the features of the Z axis and
the point clouds is downsampled on the X, Y, Z axis by 8,
8, 16 times. A 2D tracking head similar to [28] is applied
for proposal generation from the BEV representations that
are generated by stacking 3D feature maps along the Z axis
from the template and search region. The 2D tracking head

including 4 convolutions with a kernel size of 3 and the RPN
with the classification and regression branch is leveraged
to further abstract the BEV representations for achieving
box scoring and location refinement (totally K proposals are
generated).

3) Self and Cross Attention module: It is greatly important
for the search branch to embed the target information for
improving feature representation and learning target-aware
semantic features. Inspired by [26], we propose the Self
and Cross Attention (SCA) Module that consists of two
sub-module: the Self Attention sub-module and the Cross
Attention sub-module. In the Cross Attention sub-module,
as shown in the upper part of Fig. 3, given the template
features Z ∈ RC×h×w×d, we first reshape it to Zr ∈ RC×M ,
where M = h × w × d is the number of voxel features
from the template. Then we perform matrix multiplication
between Zr and its transpose matrix, and apply the softmax
layer to calculate the cross attention map Ac ∈ RC×C . We
feed the search region features X ∈ RC×H×W×D into a
convolution layer, and then reshape it to X1 ∈ RC×N , where
N = H ×W ×D is the number of voxel features from the
search region. Finally, we perform a matrix multiplication
between Ac and X1, and reshape the result for obtaining the
final output C ∈ RC×H×W×D. In the Self Attention sub-
module, as shown in the lower part of Fig. 3, we first reshape
the search region features X to Xr ∈ RC×N , perform matrix
multiplication between Xr and its transpose matrix, and then
apply the softmax layer to calculate the self attention map
As ∈ RN×N . Then, we feed the X into a convolution layer
and reshape it to X2 ∈ RC×N . Finally, we perform a matrix
multiplication between As and X2, and then reshape the
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Fig. 3: The details of the Self and Cross Attention Module,
where the

⊕
denotes the element-wise sum and the

⊗
denotes the matrix multiplication.

result for obtaining the final output S ∈ RC×H×W×D. The
final output of the SCA module is the element-wise sum of
X, C and S.

B. Multi-scale RoI point cloud pooling

Due to the fact that the object tracking is commonly
the long-term tracking in real-world scenarios, the point
distribution of the targets changes drastically from the early
to late stage of the same tracklet. For handling the problem,
we propose the multi-scale RoI point cloud pooling, which
aims at aggregating the target-aware semantic feature of
different spatial resolutions to obtain the compact repre-
sentation for proposal refinement. Specifically, we expand
each proposal with a constant value τ to obtain a new 3D
box for extracting more context information. We denote
F (k) =

[
f
(k)
0 , · · · , f

(k)

Nk−1

]
as the feature vectors of

each voxel in the k-th level of 3D voxel CNN, and their
coordinates are V (k) =

[
v
(k)
0 , · · · , v

(k)

Nk−1

]
, where Nk

represents the number of voxels in the k-th level. We select
Nk
s voxels in the k-th level and retain the features denoted

as

F (k)
s =


[
f
(k)
j ; v

(k)
j − ci

]T
∣∣∣∣∣∣∣∣∣
v
(k)
j in bi,

j < Nk
s ,

∀v(k)j ∈ V (k),

∀f (k)j ∈ F (k).

 , (2)

where the bi denotes the i-th 3D box with center coordinate
ci. Then we use a multi-layer perceptron (MLP) to further
abstract the features to the same dimension ψ of each
layer. We perform the above process from different levels
of the 3D voxel CNN and concatenate them to obtain multi-
scale semantic features. For using shallow features that can
provide fine-grained information, we also perform the above
operations for the coordinate and mask of each voxel.

C. Refinement network

Given the target-aware semantic features of each proposal,
we propose the refinement network for predicting the box
location and size residuals between the proposal and their
corresponding ground truth boxes and scoring each 3D
proposal. Specifically, our refinement network follows [16]

to transform the proposal to a local normalized coordinate
system. As shown in the lower part of Fig. 2, we adopt Point-
net++ [30] (but not restricted to it), which is a hierarchical
network for learning a discriminative feature with a progres-
sive contextual scale for obtaining a discriminative feature
vector, and then append two heads for confidence prediction
and location refinement. With K proposals generated above,
the proposal with the highest proposal-wise score is selected
as the final result.

D. Loss functions

Our PointSiamRCNN framework can be trained end-to-
end with the Siamese-RPN loss Lsrpn, the semantic seg-
mentation loss Lseg and the refinement network loss Lrn.
We adopt the regression targets following [12], [13], [32]
and utilize the smooth-L1 loss for anchor box regression. For
the confidence prediction, we adopt the binary cross entropy
loss. The Siamese-RPN loss Lsrpn can be formulated as

Lsrpn = Lcls +
∑
res∈B

Lsmooth−L1(∆̂resa,∆resa), (3)

where B = {x, y, z, w, l, h, θ}, ∆̂resa is the predicted result,
∆resa is the corresponding ground-truth target calculated as

∆x(a) = x(gt)−x(a)

d(a) ,∆y(a) = y(gt)−y(a)

d(a) ,

∆z(a) = z(gt)−z(a)

h(a) ,∆w(a) = log(w
(gt)

w(a) ),

∆l(a) = log( l
(gt)

l(a) ),∆h(a) = log(h
(gt)

h(a) ),

∆θ(a) = sin(θ(gt) − θ(a)),

(4)

from the candidate (x(a), y(a), z(a), w(a), l(a), h(a), θ(a)), the
ground truth (x(gt), y(gt), z(gt), w(gt), l(gt), h(gt), θ(gt)) and
d(a) =

√
(l(a))2 + (w(a))2. The semantic segmentation loss

Lseg is the focal loss similar to (1). The refinement network
loss Lrn can be formulated as

Lrn = Lcls +
∑
res∈B

Lsmooth−L1(∆̂resr,∆resr), (5)

where ∆̂resr is the predicted result, ∆resr is the corre-
sponding ground-truth target calculated as (4). The overall
loss function of our PointSiamRCNN is the sum of the three
losses as

Ltotal = Lsrpn + Lseg + Lrn, (6)

where each loss has equal loss weights.

IV. EXPERIMENTS

In this section, we introduce the experimental details of
our PointSiamRCNN framework and compare it with the
state-of-the-art methods [4]–[6] on the KITTI [38] 3D/BEV
tracking dataset. At the same time, we conduct detailed abla-
tion experiments to verify the effectiveness of the proposed
modules on the most commonly used car category.

A. Experimental Setup

1) Dataset: We evaluate our framework on the KITTI [38]
tracking dataset. The entire dataset has 21 scenes. Follow-
ing [4]–[6], we use scenes 0-16 as the training set, 17-18 as
the validation set and 19-20 as the test set.
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Scene 19
Tracklet 7

Scene 20
Tracklet 19

# 10 # 15 # 25 # 45

# 10 # 50 # 100 # 300
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Fig. 4: Qualitative results using the previous result as the search center on the test set. We can observe that our method
achieves superior performance even in long distance and object occlusion scenarios.

TABLE I: Performance comparison using 3D and BEV object tracking metric on the car class of the test set. Center denotes
the different search centers of generating search region. Succ and Prec denote Success and Precision, respectively. The bold
value indicates the top performance.

3D Tracking BEV Tracking
Center Previous result Previous GT Current GT Previous result Previous GT Current GT
Metric Succ Prec Succ Prec Succ Prec Succ Prec Succ Prec Succ Prec

SC3D [4] 41.3 57.9 64.6 74.5 76.9 81.3 39.5 47.3 66.5 75.9 77.0 81.5
FST [5] 37.1 50.6 68.2 77.1 81.6 87.3 43.3 51.5 69.1 78.5 82.4 88.7
P2B [6] 56.2 72.8 82.4 90.1 84.0 90.3 70.8 76.9 81.7 89.4 84.7 90.6

PointSiamRCNN 51.5 68.9 80.1 91.5 84.8 93.1 66.4 77.1 82.4 91.9 85.2 93.5

TABLE II: Extensive comparisons using 3D object tracking
metric on the car class of the test set. The previous result is
used as the center of the search region.

Scene 19 20
Metric Success Precision Success Precision

SC3D [4] 30.5 36.0 39.1 56.2
FST [5] 31.3 39.8 40.9 58.7
P2B [6] 46.7 60.3 57.8 73.7

PointSiamRCNN 56.2 73.3 50.7 68.1

2) Evaluation metric: We use the One Pass Evaluation
(OPE) [39] as the evaluation metric, which defines the
overlap that can be calculated as the Intersection-over-Union
(IoU) between a bounding box and its corresponding ground
truth (GT) box, and the error as the distance between both
centers. The Success and Precision metrics are respectively
defined by using the overlap and error Area Under Curve.

3) Implementation details: For the template, we reserve
the intra-target points that lie between the range (-2m, 2m),
(-2m, 2m), (-3m, 1m) along the X, Y, Z axis in the target
center. For the search region, we select all the points that lie
between the range (-4m, 4m), (-4m, 4m), (-3m, 1m) along
the X, Y, Z axis in the target center. Reserved points are
voxelized with each voxel size (2cm, 2cm, 4cm) on each
axis. The width, length and height of each anchor for the car
are (1.6m, 3.9m, 1.56m), respectively. For the multi-scale
RoI point cloud pooling module, we set the τ as 0.5m, Nk

s

as 256 and ψ as 128 fellow . All anchors that do not contain
points are ignored. We utilize the Adam [40] optimizer with
a learning rate of 0.001 for the first 50 epochs and then decay

it to 0.0001 for the last 50 epochs to train our framework
end-to-end. We use the fusion of the first ground truth and
previous result as the strategy of template update. To further
improve the performance, we apply data augmentation during
the training stage, such as randomly translated and rotated.

B. 3D Object Tracking on the KITTI Tracking Dataset

We compare PointSiamRCNN with state-of-the-art meth-
ods using the most commonly used car category on both
validation set and test set of the KITTI 3D/BEV tracking
dataset. All the methods are trained on the train set and
evaluated on the validation and test set.

1) Evaluation of 3D/BEV tracking: Following [4]–[6],
we generate the search region from the center of the pre-
vious result, previous GT and current GT, respectively. It
is noteworthy that the number of candidates for SC3D,
FST, P2B and PointSiamRCNN are 128, 72, 64 and 40,
respectively. As illustrated in Table I, our method reaches the
best performance in both 3D and BEV tracking tasks with
the current GT as the search center. Specifically, our method
leads the sate-of-the-art method [6] by (0.8%/2.8%) in 3D
tracking and (0.5%/2.9%) in BEV tracking. In terms of 3D
tracking, our method reaches the competitive performance
with the state-of-the-art methods and achieves the state-
of-the-art performance in BEV tracking. We further adopt
extensive comparisons using the 3D object tracking metric
with different scenes on the test set, as shown in Table II. In
scene 19, we achieve a notable improvement, the Success and
Precision increase by 9.5%/13% in 3D tracking. However,
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Fig. 5: Illustration the performance of different number of
proposals.

TABLE III: Comparison between with and without the SCA
module. The bold value indicates the top performance.

Metric Success Precision
with SCA module 39.6 59.7

without SCA module 36.2 55.4

we find that our method fails when the initial template is
too sparse to generate effective target information and the
voxelization inevitably loses the fine-grained information,
which reduces the performance in scene 20. We also illustrate
the prediction results using previous results as the search
center and project the tracking result into the image for better
visualization, as shown in Fig. 4.

2) Evaluation of 3D proposal generation: We evaluate
the performance of our method and P2B [6] with different
numbers of proposals. As shown in Fig. 5, our method
achieves significantly higher performance than P2B. With
only 60 proposals, our method obtains 39.6%/59.7%, which
outperforms 31.2%/56.9% of P2B by 8.4%/2.8% at the same
number of proposals. When using 60 proposals, our method
achieves the best performance, while P2B achieves the best
performance using 100 proposals. In summary, our method
can be more robust to the number of proposals and achieve
a better balance between tracking speed and accuracy.

3) Runtime analysis: We analyze the runtime for each part
of our framework separately. PointSiamRCNN achieves 30
FPS, including 8ms for prepossessing point clouds, 19 ms
for the stage-one network, 6 ms for the stage-two network
and 0.5 ms for post-process on a desktop equipped with an
Intel i7 CPU and a 1080Ti GPU, while other methods cannot
achieve real-time running speed, except P2B.

C. Ablation studies

In this section, we develop detailed experiments to analyze
the effect of the proposed modules. All models are trained
in the training set and evaluated in the validation set.

1) Effect of the SCA module: As discussed above, the
SCA module learns the discriminative features from the
search region and template. In order to verify the effect of
the SCA module, we conduct experiments between with and
without the SCA module, as shown in Table III. We can
observe that our SCA module can learn more discriminative
features and make full use of template features and search
region features to achieve better tracking performance.

2) Effect of the multi-scale RoI pooling module: As
shown in Table IV, we explore the importance of each feature
components in multi-scale features. The first row shows that

TABLE IV: Effects of different feature components for the
multi-scale RoI pooling module.

F
(1)
s F

(2)
s F

(3)
s F

(4)
s Coords Success Precision

- - - - X 35.6 55.1
- - - X X 36.3 57.0
- - X X X 38.1 58.0
- X X X X 39.4 58.2
X X X X X 39.6 59.7
X X X X - 37.9 57.7

TABLE V: Effects of different strategy of the template
update. The “First & Prev” denotes the first ground truth
and previous result, “All” denotes all previous result.

Metric Success Precision
Strategy SC3D P2B Ours SC3D P2B Ours

First 20.9 23.3 34.8 38.4 37.8 50.9
Previous 15.9 26.4 35.6 30.3 46.3 55.5

First & Prev 25.2 31.0 39.6 44.8 55.3 59.7
All 28.3 29.5 37.7 47.1 49.8 56.6

the performance is significantly reduced, where we only use
the shallow semantic features. Rows 2 to 5 further improve
the performance by aggregating shallow semantic features
and high-level semantic features. The last row shows that
the performance of only using high-level semantic features
is also reduced since the lack of shallow features cannot
capture the fine-grained information. The best performance
is achieved by aggregating all high-level features and shallow
features of different resolutions in 5th row.

3) Strategy of the template update: As one of the main
challenges of object tracking, we evaluate four template
update strategies for template generation: using the first GT,
using the previous result, using the fusion of the first GT
and the previous result and using the fusion of the first GT
and all previous results. As shown in Table V, the strategy
that uses the fusion of the first GT and previous result as the
template achieves the best performance, where the previous
result provides real-time target information for the tracker
and the first GT provides accurate tracking clues throughout
the tracking process. Our method outperforms previous state-
of-the-art methods with remarkable margins in all settings.

V. CONCLUSION

In this paper, we have presented PointSiamRCNN, a two-
stage object tracker for 3D tracking from point clouds. The
voxel-based Siamese network with the Siamese-RPN head
is firstly adopted to generate 3D proposals for 3D tracking.
Meanwhile, the free-of-charge 3D tracking annotations are
made full use for achieving semantic segmentation. The
proposed SCA Module guides the network to be aware of
the target information and encodes strong context infor-
mation. Moreover, the RoI point cloud pooling module is
applied to aggregate the target-aware features for generating
compact representations. Experimental results on the KITTI
tracking dataset demonstrate that our framework significantly
improves tracking performance with real-time running speed.
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