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Single Object Tracking
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Abstract— This paper presents F-Siamese Tracker, a novel
approach for single object tracking prominently characterized
by more robustly integrating 2D and 3D information to reduce
redundant search space. A main challenge in 3D single object
tracking is how to reduce search space for generating appro-
priate 3D candidates. Instead of solely relying on 3D proposals,
firstly, our method leverages the Siamese network applied on
RGB images to produce 2D region proposals which are then
extruded into 3D viewing frustums. Besides, we perform an on-
line accuracy validation on the 3D frustum to generate refined
point cloud searching space, which can be embedded directly
into the existing 3D tracking backbone. For efficiency, our
approach gains better performance with fewer candidates by
reducing search space. In addition, benefited from introducing
the online accuracy validation, for occasional cases with strong
occlusions or very sparse points, our approach can still achieve
high precision, even when the 2D Siamese tracker loses the
target. This approach allows us to set a new state-of-the-art in
3D single object tracking by a significant margin on a sparse
outdoor dataset (KITTI tracking). Moreover, experiments on
2D single object tracking show that our framework boosts 2D
tracking performance as well.

I. INTRODUCTION

Along with the continuous development of autonomous
driving, virtual reality and human-computer interaction, sin-
gle object tracking, as a basic building block in various
tasks above, has sparked off public attention in computer
vision. For the past few years, many researchers have devoted
themselves to studying single object tracking. So far, there
are many trackers based on the Siamese network in 2D [1],
[2], [3] and [4], which have obtained desirable performance
in the 2D single object tracking. The Siamese network
conceives the task of visual object tracking as a general
similarity function employing learning through the feature
map of both the template branch and the detection branch.
In 2D images, convolutional neural networks (CNNs) have
fundamentally changed the landscape of computer vision by
greatly improving results on many vision tasks such as object
detection [16] [23], instance segmentation[24] and object
tracking [3]. However, since the camera is easily affected
by illumination, deformation, occlusions and motion, the
occasional cases above do harm to the performance of CNNs
and even make invalid.
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Fig. 1: Our proposed a double Siamese network illustration
of RGB (top) and point cloud (bottom). In the 2D Siamese
tracker, classification score and bounding box regression are
obtained via the classification branch and the regression
branch, respectively. In the 3D Siamese tracker, the shape
completion subnetwork serves as regularization to boost
discrimination ability (encoder denoted by ® and decoder
denoted by ). Then we compute the cosine similarity be-
tween model shapes and candidate shapes and then generate
3D bounding box.

Inspired by methods above, [13] takes the lead in coming
up with a 3D Siamese network in point clouds. Nevertheless,
approaches of this kind carry with them various well-known
limitations. The most prominent is that this method, via
exhaustive search and lacking RGB information, inevitably
has the weakness for the computational complexity in 3D
space to generate proposal bounding boxes, which not only
results in huge wasting time and space resources but lowers
performance. Then [18] utilizes the 2D Siamese tracker
in birds-eye-view (BEV) to generate region proposals in
BEV and projects them into the point cloud coordinate for
generating candidates. After that, they feed candidates into
the 3D Siamese tracker and output the 3D bounding boxes.
However, the serial network structure is mostly restricted
to relying heavily on 2D tracking results, and BEV loses
the fine-grained information in point clouds. We notice
that the current autonomous driving systems are mostly
equipped with various sensors such as camera and LiDAR.
As a consequence, there still requires a proven method of
integrating various information for single object tracking.

In this paper, we propose a novel F-Siamese Tracker to
address this limitation prominently characterized by fusing
RGB and point cloud information. The proposed method is



significant in at least two major respects: reducing redundant
search space and solving or relieving the rare case where
exist obscured objects and cluttered background in 2D im-
ages as mentioned in [17]. To be specific, firstly, we extrude
the 2D bounding box from the output by the 2D Siamese
tracker into a 3D viewing frustum, then crop this frustum by
leveraging the depth value of the 3D template frame. Besides,
we perform an online accuracy validation on the frustum to
generate refined point cloud searching space, which can be
embedded directly into the existing 3D tracking backbone.

To summarize, the main contributions of this work are
listed below in threefold:

o We propose a novel end-to-end single object tracking
framework taking advantage of various information by
more robustly fusing 2D images and 3D point clouds.

« We propose an online accuracy validation approach for
significantly relieving the dependence on 2D tracking
results in the serial network structure and reducing 3D
searching space, which can be fed directly into the
existing 3D tracking backbone.

o Experiments on the KITTI tracking dataset [19] show
that our method outperforms state-of-the-art methods
with remarkable margins, especially for strong occlu-
sions and very sparse points, thus demonstrating its
effectiveness and robustness. Furthermore, experiments
on 2D single object tracking show that our framework
boosts 2D tracking performance as well.

II. RELATED WORK

This section will discuss the related work in single object
tracking and region proposal methods.

A. Single object tracking

2D-based methods: Visual object tracking methods have
developed rapidly and made great theoretical progress in
the past few years, as more datasets have been provided.
Public benchmarks like [5], [6], [7] provide fair platforms
for verifying the effectiveness of visual object tracking
approaches. Classic methods based on correlation filtering
have achieved remarkable results with the features of strong
interpretability and on-the-fly operation [8], [9]. Besides,
influenced by the success of deep learning in computer
vision, many end-to-end visual tracking methods have been
proposed like [10], [11]. Recently, [1] based on a Siamese
network proposes a Y-shaped network structure which joins
two network branches: one for the object template and
the other for the search region. With its remarkable well-
balanced tracking accuracy and efficiency, these methods [1],
[2], [3], [4] have also received attention in the community.
The current state-of-the-art Siamese tracker SiamRPN++ [3]
enhances the tracking performance by presenting a layer-
wise feature aggregation structure and depth-wise separable
correlation structure, which is one of the pioneering method
using deeper CNN such as ResNet-50 [14]. However, this
study is limited by the absence of 2D image information and
cannot capture geometrical features of the tracked object.

3D-based methods: Compared to 2D trackers, 3D single
object tracking methods are still at the primary stage, and
relevant work is few. [15] projects 3D point cloud to BEV,
and proposes a deep CNN based on multiple BEV frames to
perform various tasks such as detection, tracking and motion
forecasting. One major drawback of this approach is that it
loses 3D information and causes degradation. Since PointNet
[12] firstly designs an effective learning-based method to
directly process the raw point clouds, tracking methods in
point clouds are subsequently proposed. [13] proposes the
first 3D adapted version of the Siamese network for 3D point
cloud tracking. They regularize the latent space for a shape
completion network [20], which leads to the state-of-the-
art performance. Nevertheless, approaches of this kind carry
with them various well-known limitations. For instance, this
method via exhaustive search inevitably has the weakness
for extremely high computational complexity in 3D space to
generate proposals, which not only results in a huge waste of
time and space resources but also lowers performance. Based
on SiamRPN [13], [18] proposes an efficient search space
using a Region Proposal Network (RPN) in BEV and trains
a double Siamese network for tracking. However, BEV loses
fine-grained information, making 2D tracking results worse
than the ideal, and affecting the final 3D tracking results.
Hence, a concise and effective region proposal method is
still required to reduce the search space efficiently.

B. Region proposal methods

In the community, it is commonly noted that the main
weakness of two-stage region proposal methods like RCNN
[25] is the paucity of resolving the contradiction of high
accuracy but time wasting, due to redundant calculations.
In 2D space, in order to reduce the number of proposal
regions, Faster-RCNN [16] proposes RPN, which to some
extent relieves the computation expensiveness and redundant
storage space in region extraction. F-PointNet [17] uses 2D
detection result to generate frustums in 3D space, which
greatly reduces the search space. However, F-PointNet, with
its serial network structure, relies heavily on 2D detection
results. [18] provides an efficient search strategy utilizing
the RPN in BEV. However, although they actually leverage
additional LiDAR information, they have poor detection
for specific categories like “Pedestrian” and “Cyclist”. The
observed result could be attributed to lacking adequate in-
formation in two main respects. Firstly, this method does
not leverage RGB information. Secondly, objects in these
categories above are hardly any points in BEV so as to barely
identify. Besides, they rely heavily on 2D tracking results in
BEV.

To alleviate the problems above, we propose an approach
by making the most of RGB and point cloud information
and robustly integrate them. The proposed work takes full
advantage of 2D tracking results to reducing search space
for the 3D Siamese tracker while avoiding solely relying on
them caused by serial architecture like [17].
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Fig. 2: Our F-Siamese Tracker architecture. First, the 2D Siamese Tracker matches the template frame and the detection
frame then generates the results of 2D tracking. After that, the Frustum-based Region Proposal Module extrudes these 2D
tracking results into 3D viewing frustums and then reduces the volume of the frustum search space via utilizing the depth
value of the 3D template frame. Finally, the 3D Siamese Tracker serves as encoding point cloud features, then outputs 3D

bounding boxes.

III. METHODOLOGY

In this section, considering that the major limitation of 3D
single object tracking is lacking appropriate region proposal
method and leading to a huge and redundant calculation
and time consumption, we propose a novel end-to-end F-
Siamese Tracker prominently characterized by fusing RGB
and point cloud information. To our best knowledge, our
method firstly introduces the Siamese network for integrating
RGB and point cloud information in the task of 3D single
object tracking. To be specific, instead of solely relying on
3D proposals, we leverage RGB information to generate the
bounding boxes using the mature 2D tracker, then extrude
it into a 3D viewing frustum in point cloud coordinate. An
overview of our method is shown in Fig. 1 for training and
in Fig. 2 for inference. Our network architecture (see Fig. 2)
can be listed as follows: 2D Siamese Tracker, Frustum-based
Region Proposal Module and 3D Siamese Tracker.

A. 2D Siamese Tracker

It is noted that one of top priorities in tracking is how to
balance process speed and performance. Hence, the proposed
method takes the 2D Siamese tracker for on-the-fly tracking
in images. The 2D Siamese tracker, regarding this task as
a cross-correlation problem, consists of two parts listed as
follows: the siamese feature extraction subnetwork and the
region proposal subnetwork. The siamese feature extraction
subnetwork includes a fully convolutional network both in
the template branch and the detection branch to extract
features in the target and search area, respectively. After
that, the region proposal subnetwork serves as executing
cross-correlation operation between features generated above
and then outputs classification and bounding box regression.
From all operations above, the 2D Siamese tracker learns
a similarity function capable of matching between image in
the current frame and target object, then gets the location

where target object is in the current frame. Advantageously,
different 2D Siamese trackers can be flexibly integrated into
our framework. Separately, we implement two versions of
the tracker in our experiments. One, based on SiamRPN++
[3] and using ResNet-50 [14] as backbone, puts emphasis
on accuracy. The other, based on SiamRPN [2] and using
AlexNet[26] as backbone, focuses on the process speed on
the contrary.
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Fig. 3: Illustration of the process of producing candidates.
Coordinate system is shown listed as follows: (a) default
camera coordinate with template box indicated in green; (b)
frustum coordinate after rotating the frustum in red to center
view; (c) search space coordinate with generated search
space shown in blue; (d) candidate coordinates, where orange
boxes represent candidates generated in search space.

B. Frustum-based Region Proposal Module

After the 2D Siamese Tracker as mentioned above, the
Frustum-based Region Proposal Module projects them into
point cloud coordinate via camera projection matrix and then
extrudes these 2D bounding boxes to 3D viewing frustums.
As depicted in Fig. 3(a), frustums generated above are vast to
the disadvantage of searching. In view of solid target objects
all in continuous and smooth motion, the interval between
two frames is limited and the size of target remains constant.
Considering that the 3D template frame is continuously
updated, our framework uses the previous predicted result



as the 3D template frame. As shown in Fig. 3(b), our
approach can reduce the volume of the frustum search space
via utilizing the depth value of the 3D template frame,
which not only can solve the occasional case where exist
obscured objects and cluttered background in the 2D image
as mentioned in [17], but also has the capacity of reducing
redundant search space, for efficiency.

However, notwithstanding the satisfied performance of
the 2D Siamese tracker, its major limitation is likely to
miss target where there are occasional cases like strong
occlusions and illumination variance. In contrast to [17],
whereas taking generated frustums directly as 3D search
space, our approach carries out an online accuracy validation
of frustums generated above under the impact of missing
target in 2D. As demonstrated in Fig. 3(c), the proposed
method firstly calculates 3D IoU value (denoted by V)
between the intercepted frustum and the 3D template frame.
The intersection space of the frustum and the 3D template
frame could be utilized when V is greater than threshold
value of 3D IoU (denoted by 7) , otherwise remaining to
use the search space in line with [13]. According the degree
of dependency of the 2D Siamese tracker, we adjust the value
of 7. For instance, 7 equals to O shows our method with
full dependency of 2D tracking results. On the contrary, our
method does not take 2D tracking results into consideration
when 7 equals to 1. As shown in Fig. 3(d), candidates with
the same volume of the 3D template frame are exhaustively
searched from search space.

To sum up, through steps above, the method in this chapter
can significantly avoid or mitigate the weakness of the serial
network structure in [17] and obtain a more streamlined
candidates.

C. 3D Siamese Tracker

After Frustum-based Region Proposal Module, we obtain
candidates in search space. The points of the interested
target are extracted in certain candidate. Fig. 3(d) shows that
candidate coordinates need to be normalized for translation
invariance. Furthermore, the 3D Siamese Tracker takes the
normalized point clouds in candidate bounding boxes as
input, then outputs the final 3D bounding box. The 3D
Siamese Tracker in our method is consistent with [13]. [13]
leverages the shape completion network in [20] as taking raw
point clouds as input to realize 3D single object tracking.

D. Training with Multi-task Losses

The 2D Siamese Region Proposal Network and the 3D
Siamese Tracker are simultaneously trained. After training,
the 2D Siamese Region Proposal Network is capable of
producing 2D region proposals quickly and accurately. Then
we feed them into the 3D Siamese Tracker to compare and
select the best candidate. Our network architecture adopts the
method of multi-task losses to optimize the whole network.
The loss function could be formulated as

Loss = Log + L3y (D)
L2d = /\clf ' Lclf + Areg : Lreg (2)

LSd = )\t’r ' Ltr + )\comp ' Lcomp (3)

where L. is the cross-entropy loss for classification, L4
is the smooth L1 loss for regression, Ly, is the MSE loss
for tracking and Lo, is the L2 loss for shape completion.
During training, the target is to minimize the loss using the
Adam optimizer [21] with the initial learning rate of 10~4,
B1 of 0.9 and the batch size of 32. Ayf, Areg, Atr, Acomp
equal to 1,1.2,1,1075 respectively.

IV. EXPERIMENTS

In the section that follows, we evaluate our approach by
comparing with the current state-of-the-art method [13]. The
main outcome to emerge from our experiments is that our
model improves the performance of 3D single object tracking
via an effective approach for reducing search space.

A. Implementation Details

Dataset: Here, we evaluate the proposed work on the
KITTI tracking dataset [19]. Following [13], this dataset is
divided into these three parts: 0-16 for training, 17-18 for
validation and 19-20 for testing. We use these categories:
‘Car’, ‘Pedestrian’ and ‘Cyclist’ and then combine all the
scenes located the tracking target object into a tracklet.

Evaluation Metric: Following previous works [13], we
use One Pass Evaluation (OPE) [22] as the metric for
evaluation. It defines the overlap as the IoU of a bounding
box with its ground truth, and the error as the distance
between both centers. The Success and the Precision metrics
are defined using the overlap and error Area Under Curve
(AUCQ).

B. Quantitative and Qualitative Results

Table. I reports an overview of the performance of our
architecture compared to the origin 3D Siamese tracker [13]
using two different 3D template frames: one is the current
ground truth and the other is the previous predicted result.
The output of our network is visualized in Fig. 4. From
Fig. 4 we can see that 3D object tracking might be under
very challenging cases, such as the very sparse point cloud,
obstacled object and invalid 2D tracker.

We choose SiamRPN++ as the 2D tracker, and the thresh-
old value T of 3D IoU should be set. When 3D IoU between
the generated frustum and the 3D template frame is greater
than 7, 3D search space is reduced to the intersection
space, and our approach generates N candidates in the 3D
detection frame, otherwise search space stays constant and
our approach generates 147 3D candidates in line with [13].
In the testing stage, however, the origin 3D Siamese Tracker
[13] takes the current ground truth as the 3D template frame,
instead of the previous predicted result. Consequently, we
change the 3D template frame to the previous predicted result
and evaluate the performance of [13]. Our experiments set
T to 0.8 for using current ground truth as the 3D template
frame, while setting 7 to 0.2 for using previous predicted
result. In the proposed method, we set A to 72 far less than
that in baseline.

What stands out in Table. I is that the proposed method
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Fig. 4: Comparisons of our approach with the state-of-the-art tracker when setting the 3D template frame as the previous
predicted result. Experiments show that our method is more robust due to introducing RGB information, and our method
can achieve stable tracking even with the very sparse long-range point clouds. Besides, in the occasional case when 2D
module passes inaccurate results, our method remains significantly accurate in tracking.

Class
Method Car Pedestrian Cyclist
Success Precision Success Precision Success Precision
Origin 3D Siamese Tracker + GT 78.46 82.96 - - - -
Origin 3D Siamese Tracker + PR 24.66 30.67 - - - -
Ours + GT 81.58 87.32 61.85 70.36 88.66 99.67
Ours + PR 37.12 50.60 16.28 32.28 47.03 77.26

TABLE I: Comparisons of the performance of 3D single object tracking between our method and state-of-the-art. + GT
denotes adopting the current ground truth as the 3D template frame. + PR denotes adopting the previous predicted result as

the 3D template frame.

performs better than state-of-the-art for all settings in our
experiments. Specifically, our method obtains 50.6% pre-
cision, which outperforms precision 30.6% of baseline by
nearly 20% when using previous predicted result as the
3D template frame. We also test 2D single object tracking
by projecting the results in 3D space into images at the
same time. Following settings in line with [13], Table. II
reports that our method outperforms than 2D single object

tracking state-of-the-art [3] as well. Our method achieves
better performance, and increases the success rate to 8§0.42%
and the precision rate to 85.24% in the category of car.

Taken together, this remarkable improvement of precision
both in 2D and 3D proves that the robustness and accuracy
of the proposed method.
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Fig. 5: Ablation study for different threshold values V of 3D IoU and the number A of candidates and model shapes as
the current GT (top) and the previous predicted result (bottom) on Car. We report the OPE Success/Precision metrics for

different values of V and N averaged over 5 runs.

Class
Method Car
Success Precision
SiamRPN][2] 63.80 70.00
SiamRPN++[3] 64.12 71.35
Our 79.42 85.24

TABLE II: Comparisons of the performance of 2D single
object tracking between our model and [2], [3] by projecting
the generated 3D bounding box to image coordinate to obtain
2D bounding box.

C. Ablation Studies

In this subsection, we conduct extensive ablation experi-
ments to analyze the performance of the proposed method for
introducing the image information into the 3D single object
tracking.

Threshold of 3D IoU: To begin with, we follow the
standard-settings provided by [13], and conduct an ablation
study to analyze the effects of inverse thresholds 7 of 3D
IoU. Fig. 5(a) and Fig. 5(c) illustrates the performance by
a large margin among different 7. When using the previous
predicted result as the 3D template frame, setting 7 to 0.1

tends to have the best performance in our experiments. A
possible explanation for this might be that baseline performs
not very well when using the previous predicted result rather
than ground truth. Hence, introducing RGB information
seems to significantly improve the results. Besides, when
using current ground truth as reference, setting 7 to 0.8 tends
to have the best performance in our experiments. This result
is likely to be related to that the performance of baseline
is probably good enough, introducing RGB information has
limited performance improvement.

Quantity of Candidates: Furthermore, we also study the
effects of the inverse quantity of candidates N, considering
the baseline lacking an effective region proposal method, we
set 7 to 0.2 when using the previous predicted result as ref-
erence, and to 0.8 when using ground truth as reference. Fig.
5(b) and Fig. 5(d) show that there is the best performance
when N equals to 72, and more candidates have little effect
on the improvement of the performance.

Taking into account the efficiency problems in practical
application, we conduct an ablation study on the number
of candidates. We adopt the previous predicted result as
the 3D template frame. We replace SiamRPN++ [3] with



Class
Method Car
Success Precision
Our + 27 22.79 30.61
Our + 32 25.54 34.21
Our + 50 28.79 38.58
Origin 3D Siamese tracker + 147 24.66 30.67

TABLE III: Comparisons of the performance of 3D single
object tracking between our model and state-of-the-art with
different quantity of candidates. + A/ denotes setting A
candidates.

SiamRPN [2] as the 2D Siamese tracker and set 7 equals to
0. Table. III presents that our approach significantly improves
efficiency with less candidates. Specifically, when setting A/
to 32, our method with higher precision is nearly twice fast
than baseline. In our experiments on GTX 1080Ti GPU, the
operation time of our method in 1000 frames is 3.37 minutes,
less than 7.45 minutes of baseline.

V. CONCLUSIONS

This paper has presented a unified framework named
F-Siamese Tracker to train an end-to-end deep Siamese
network for 3D tracking. Via robustly integrating RGB and
point cloud information, the search space of the 3D Siamese
tracker is significantly reduced by introducing a mature
2D single object tracking approach, which greatly improves
the performance of 3D tracking. Extensive experiments
with state-of-the-art performance on KITTI tracking dataset
demonstrate the effectiveness and generality of our approach.
Further research might explore how to further integrate RGB
and point cloud information into the Siamese network. We
believe the proposed framework can, in principle, advance
the research of 3D single object tracking in the community.
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