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Abstract— An event camera is a novel vision sensor that
can capture per-pixel brightness changes and output a stream
of asynchronous “events”. It has advantages over conventional
cameras in those scenes with high-speed motions and challenging
lighting conditions because of the high temporal resolution, high
dynamic range, low bandwidth, low power consumption, and
no motion blur. Therefore, several supervised monocular depth
estimation from events is proposed to address scenes difficult
for conventional cameras. However, depth annotation is costly
and time-consuming. In this paper, to lower the annotation
cost, we propose a self-supervised event-based monocular depth
estimation framework named EMoDepth. EMoDepth constrains
the training process using the cross-modal consistency from
intensity frames that are aligned with events in the pixel
coordinate. Moreover, in inference, only events are used for
monocular depth prediction. Additionally, we design a multi-
scale skip-connection architecture to effectively fuse features
for depth estimation while maintaining high inference speed.
Experiments on MVSEC and DSEC datasets demonstrate that
our contributions are effective and that the accuracy can
outperform existing supervised event-based and unsupervised
frame-based methods.

I. INTRODUCTION

Unlike conventional cameras, instead of capturing intensity
frames at a fixed rate, event cameras only report brightness
changes at the pixel level once they occur. The output
of an event camera is a stream of asynchronous events
in the format of (ui, ti, pi) that encode the pixel location
ui = (xi, yi), the time ti, and the polarity pi that denotes
the sign of the brightness change that exceeds a threshold of
±C. Such sensors have several advantages, e.g., very high
dynamic range(140 dB vs. 60dB of conventional cameras),
high temporal resolution and low latency(both in the order of
microseconds), no motion blur, and low power consumption.
These advantages give event cameras great potential for
machine vision applications in challenging scenes with high-
speed motions and high dynamic range. These years, event
cameras are attracting the attention of computer vision re-
searchers in various fields, including video reconstruction [1],
visual odometry [2], optical flow estimation [3] and depth
estimation [4], [5].

As a task of predicting a dense depth map from a single
image, monocular depth estimation is an important and
challenging field in computer vision. It helps computers
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(a) Training: Aligned events and intensity frames.

Depth-Net

(b) Testing: Only events.
Fig. 1. Method overview. During the training(a), Pose-Net and Depth-Net
are trained with aligned events and intensity frames. During the testing(b),
Depth-Net estimates monocular depth map only from events.

understand the 3D structure of a scene. Thus, it can be applied
in various fields such as autonomous driving, augmented
reality, and 3D modeling. In the past few years, many
monocular depth estimation methods that are based on con-
ventional cameras have been proposed, including supervised
methods [6], [7], self-supervised methods [8] and semi-
supervised methods [9], [10]. Monocular depth estimation
using event cameras is relatively less concerned [11], [12].
However, it is worth excavating the potential capacity of event
cameras on depth estimation tasks due to their advantages
in those application scenes which need high-frequency depth
maps and adaptation to illumination changes.

Existing supervised event-based monocular depth estima-
tion methods are fed with events [4] or a combination of
events and frames [5] and trained with supervisory from
ground truth depth maps collected by extra distance sensors.
Expensive annotation cost is the obvious shortcoming of
supervised methods. And existing unsupervised event-based
monocular depth estimation methods usually depend on self-
supervisory from event images deblurring [11], [12] or photo-
consistency between the adjacent event images [13]. However,
event data are sparse, so supervisory from events are not
dense enough to constraint networks. Furthermore, matching
pixels on adjacent event images is difficult because events
on corresponding pixels can be very different.

We propose a framework that consists of Depth-Net and
Pose-Net. Depth-Net and Pose-Net are jointly trained with
the supervisory signal from the cross-modal consistency of
intensity frames that are aligned with events in the pixel
coordinate. As shown in Fig. 1, the intensity frames are only
used for training, and at the testing time, our Depth-Net
infers monocular depth maps using events as inputs only.
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Besides, the decoder of conventional U-Net-based Depth-Net
usually fuses upsampling feature maps and original feature
maps from the encoder to get multi-scale feature maps for
estimating multi-scale depth maps. We design a multi-scale
skip-connection architecture based on the finding that Depth-
Net can perform better when the above fusion process includes
those lower-level feature maps.

To summarize, our contributions are the following:
• We find the photo-consistency of chronological events

is weak for self-supervised learning.
• We propose a self-supervised framework that exploits

cross-modal consistency from intensity frames for event-
based monocular depth estimation.

• We introduce a multi-scale skip-connection architecture
to effectively fuse features for depth estimation.

• We demonstrate that our framework can outperform ex-
isting supervised event-based methods and unsupervised
frame-based methods.

II. RELATED WORKS

A. Supervised Monocular Depth Estimation

Directly using the ground truth depth maps to supervise
the training of networks is the most intuitive way to learn
the monocular depth. [14] is the first to propose a supervised
learning-based method to learn dense monocular depth. They
consider monocular depth estimation as a regression task,
and later works have followed such an idea for several years.
However, [15] found that when depth estimation is regarded as
a classification task, the depth estimation network can achieve
better performance. And in these years, with the emergence
of vision transformer [16], the performance of various visual
tasks [17], [18], including monocular depth estimation [6],
[7], has been significantly improved. Supervised monocular
depth estimation models usually need a huge amount of
parameters to achieve high accuracy, e.g., AdaBins [6] has
78M parameters, and NeWCRFs [7] has 270M parameters.
Furthermore, obtaining GT depth maps at a high cost also
limits the application of supervised methods.

B. Self-supervised Monocular Depth Estimation

To release the burden of collecting ground truth depth
maps using expensive distance sensors, e.g., LiDAR, self-
supervised monocular depth estimation is proposed to learn
monocular depth by exploiting photometric consistency
between stereo pairs or monocular sequences. [19] is one
of the earliest works using stereo pairs to learn monocular
depth in a self-supervised manner, and [20] introduced a
left-right consistency loss to produce results comparable to
early supervised methods. [21] extended such self-supervised
framework to monocular sequences using an extra network to
predict relative poses between adjacent frames. As a milestone
in the self-supervised monocular depth estimation field, [8]
helped the accuracy reach new heights by introducing an
auto-masking technique and minimum reprojection loss to
handle moving objects and occluded areas. To further enhance
the accuracy, later works mainly focus on designing more
complex network architectures [22], [23], using extra semantic

constraints [24], [25]. Recently, several works [26], [27]
further enhanced the self-supervised method by adopting
novel data augmentation approaches to force networks to
focus on the key information of images. Also, some works
paid attention to the scale ambiguity of self-supervised
methods, which are based on monocular sequences and solved
the such problem by exploiting prior camera height [28], prior
object size [29] and linear velocity measurement [30].

C. Event-based Depth Estimation

Depth estimation based on conventional cameras is prone
to be affected by challenging illumination and limited by a
fixed frame rate. Therefore, in those scenes with challenging
lighting conditions and high-speed motions, depth estimation
with event cameras is promising to get more reliable and
higher-frequency depth maps.

Some methods estimate monocular depth using non-
learning or unsupervised approaches. [31] presented a non-
learning semi-dense depth estimation approach for a stereo
event camera moving in a static scene. Their method first
optimizes an energy function based on the spatiotemporal
consistency of events triggered across both stereo image
planes simultaneously, then uses a probabilistic fusion strategy
to improve density and certainty of estimation. [11] proposed
a method to estimate monocular depth from events by
maximizing the variance of an image of warped events under
the limiting assumptions that the camera pose is known and
the scene is static. Inspired by [11], [12] trained networks in
a self-supervised manner to predict optical flow, ego-motion,
and depths with the goal of deblurring the event images.

Also, there are supervised methods for different settings
with event cameras. For leveraging the temporal information,
[4] uses a recurrent network for depth estimation from
events. [5] extended this recurrent network for combining
asynchronous events and synchronous frames to overcome
their demerits and utilize their merits. [32] proposed a depth
completion network that generates depth maps from sparse
events and lidar point clouds.

III. METHOD

A. Method Overview

In this paper, we aim to train a network that can predict
dense monocular depth from a continuous stream of events
without ground truth depth maps. To this end, we propose a
framework that consists of a Pose-Net and Depth-Net. The
input of Depth-Net is event spatiotemporal voxel, which
we describe in Sec. III-B, and the input of Pose-Net is
adjacent intensity frames aligned with events. Our framework
exploits cross-modal consistency loss, as described in III-
E from adjacent intensity frames. Additionally, we design
a multi-scale skip-connection architecture introduced in III-
F for better performance of Depth-Net. The pipeline of our
framework is shown in Fig. 2. For the training, we split events
into subsequent non-overlapping windows of events εk =
{ei}N−1

i=0 each spanning a fixed interval ∆T = tkN−1 − tk0
where tkN−1 is aligned with the time of the intensity frame Ik
and εk is then converted to spatiotemporal voxel Ek. After
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Fig. 2. Framework illustration. Our Depth-Net uses ResNet-18 as the encoder and uses several decoder nodes with multi-scale skip-connection architecture
as the decoder. Multi-scale features fe

i are encoded by ResNet-18 from event voxel grid Ek . These features are fused by decoder nodes xd
i that includes our

proposed multi-scale skip-connection architecture, and then outputs of decoder nodes are converted to disparity maps by DispConv blocks. At the same
time, the responding intensity frame and adjacent intensity frame are fed to a Pose-Net to predict relative pose [R|t]. Finally, the cross-modal consistency
loss is computed using multi-scale event-based depth maps, relative pose, and intensity frames. After training, Depth-Net can estimate high-frequency
monocular depth only from events.

training, Depth-Net can infer high-frequency dense depth
maps only from events within a fixed interval.

B. Event Representation

The output of an event camera is a stream of asynchronous
events, and each event ei = (ui, ti.pi) records the pixel
location ui, time ti and polarity pi of per-pixel brightness
change. To feed a batch of events within the time window ∆T
to networks, we convert the events to a tensor-like format Ek

with a fixed dimension. There are several methods [33], [34],
[35], [36], [37] proposed to represent events. In this paper,
for a fair comparison with the majority of learning-based
monocular depth estimation methods for events, we represent
events as a spatiotemporal voxel grid with a dimension of
B×H×W that expresses events within the time window ∆T
as B temporal bins. The converting process can be formulated
as follows:

Ek(uk, tn) =
∑

ui=uk

pimax(0, 1− |tn − t∗i |) (1)

where uk denotes pixel coordinate on the image plane of
H ×W , tn belonging to [0, B − 1] denotes order number of
temporal bins, t∗i = B−1

∆T (ti−t0) is the normalized timestamp
of event ei and ui is the pixel location of event ei. In
this paper, we represent events within ∆T = 50ms as a
spatiotemporal voxel grid with B = 5.

C. Cross-modal Consistency Loss

For constraining Pose-Net and Depth-Net in a self-
supervised manner, the very intuitive idea is to exploit
the photoconsistency between adjacent event spatiotemporal

voxels. However, we found the photoconsistency is unsuitable
for events in the adjacent time windows (see Fig. 3) because
brightness changes on corresponding pixels can have contrary
polarity and very different normalized timestamps that are
closely related to camera motion. Moreover, the event
spatiotemporal voxel is not dense enough (<15% in the
MVSEC dataset) to provide networks with intensive self-
supervisory signals.

   
   

   
  

(a) (b)

Fig. 3. Adjacent event spatiotemporal voxels visualization. The first
row shows grayscale intensity frames from MVSEC, and the second row
shows aligned events. We sum the voxel along the channel axis, then use
blue and red pixels to represent negative and positive results. (a) and (b) are
respectively from sample 125 and sample 126 of sequence outdoor_day1.
As shown in the figure, corresponding pixels can have very different events.
So, the photoconsistency of event spatiotemporal voxel is weak.

As a solution, we choose to get consistency signals from
other modals, e.g. intensity frames that are aligned with events
in the pixel coordinate. With the depth estimation Dk from
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an event spatiotemporal voxel Ek and the pose estimation
Tk→k′ between the corresponding intensity frame Ik and the
adjacent intensity frame Ik′ , a synthesized intensity frame
Ik

′

k can be reconstructed from frame Ik′ with depth Dk and
pose Tk→k′ using inverse-warping [21]. Then, combining
SSIM [38] loss and L1 loss, re-projection error pe(Ik, I

k
′

k )
can be computed as following:

pe(Ik, I
k
′

k ) =
α

2
(1− SSIM(Ik, I

k
′

k ))

+ (1− α)∥Ik − Ik
′

k ∥1
(2)

where SSIM is used to measure the structural similarity of
images and computed over a 3× 3 pixel window, and α is
set to be 0.85. We follow the per-pixel minimum reprojection
loss introduced by [8] to handle occlusion. The cross-modal
consistency loss Lp can be formulated as:

Lcc = min
k′

pe(Ik, I
k
′

k ) (3)

where k
′ ∈ {k−1, k+1} thus two frames temporally adjacent

to Ik are used as source frames.

D. Auto-Masking
To mask those pixels that remain the same due to a

relatively static state and low texture, we apply the auto-
masking technique proposed in [8]. The non-static mask Mns

is defined as:

Mns = [min
k′

pe(Ik, I
k
′

k ) < min
k′

pe(Ik, Ik′ )] (4)

where [] is the Iverson bracket.

E. Training Loss
We combine cross-modal consistency loss Lcc and non-

static mask Mns as L = MnsLcc, and average over pixels
and scales to get final training loss L:

L =
1

s

s∑
j

(
1

T

T∑
i

M j
ns(pi)L

j
cc(pi)) (5)

where s denotes the number of scales, pi demotes a pixel
coordinate and T denotes the number of pixels of an image.

F. Multi-scale Skip-connection
U-Net-based architecture has become a common choice [8],

[39] for designing the decoder of Depth-Net in the self-
supervised monocular depth estimation field. As one of
the core components of U-Net, skip-connection is used for
recovering information lost in the downsampling process [23].
For an event spatiotemporal voxel, due to its natural sparsity
(<15% in the MVSEC), recovering information lost becomes
essential. Moreover, we think skip-connection from the
encoder feature with the same level is insufficient. Inspired by
[40], we propose a multi-scale skip-connection that connects
with the feature of the same level and the lower-level features.

Let fe
i denote a feature from the encoder, xd

i denote the
output of decoder node Xd

i . The xd
i can be computed as:

xd
i =

{
D(U(xd

i+1)), i = 0

D([[fe
i , [M(fe

k)]
i−1
k=1], U(xd

i+1)]), i > 0
(6)

where U(·) denotes an upsampling block consists of 3× 3
convolution layer with ELU activation and bilinear interpo-
lation. M(·) is a maxpooling layer to downsample lower-
level features, D(·) is a feature fusion block made up of
3× 3 convolution layer with ELU activation and [·] denotes
the concatenation operation. The details of multi-scale skip-
connection can be seen in Fig. 2.

With such designing, lower-level features can directly
participate in the feature fusion process. Thus, information
is less lost, and Depth-Net can achieve better performance.

IV. EXPERIMENTS

In this section, we evaluate our proposed framework on
the MVSEC dataset to present its qualitative and quantitative
results and compare them with previous works. Also, ablation
studies on the MVSEC dataset are conducted to demonstrate
the effectiveness of our contributions. Further, to test our
framework on higher resolution events and color intensity
frames in more scenes, we evaluate the framework on the
DSEC dataset, a very new event camera dataset.

A. Datasets

MVSEC. MVSEC1 is the most commonly used dataset for
the event-based depth estimation task. It was captured by a
synchronized stereo pair event-based camera system carried
on a handheld rig, flown by a hexacopter, driven on top of a
car, and mounted on a motorcycle in different scenes and at
various illumination levels.

DSEC. DSEC is a recently proposed dataset that offers data
from a wide-baseline stereo setup of two color frame cameras
with a resolution of 1080×1440 and two monochrome event
cameras with a resolution of 480× 640, and a lidar. DSEC
is in driving scenarios and contains 53 sequences in different
illumination conditions.

B. Inplementation Details

Network architectures. We use the same Pose-Net as
previous works [8]. Moreover, we revise the first convolution
layers of Depth-Net and Pose-Net to fit the channel number
of events voxel and grayscale intensity frame. Considering
different distributions of depth, the output σ of the Depth-
Net is further constrained between 0.1 and 100 units for the
MVSEC dataset and 0.1 and 60 units for the DSEC dataset
with D = 1/(aσ+b). For the MVSEC dataset, we take depth
estimation of 4 scales for training, while only the maximum
scale depth estimation is used for the DSEC dataset.

Data preprocessing of MVSEC. For the MVSEC dataset,
we use the split proposed in [4]. More specifically, we train
our networks on outdoor_day2 sequence that is splited into
8523 training samples, 1826 validation samples, and 1826
testing samples. After training, we evaluate networks on other
outdoor sequences. Considering static frames can disturb
self-supervised training, we follow Zhou et al.’s [21] pre-
processing and get 6817 training samples. To get a suitable
input size, we improve resolution from the original 260×346

1https://daniilidis-group.github.io/mvsec/
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TABLE I
QUANTITATIVE RESULTS ON THE MVSEC DATASET. COMPARISON OF THE AVERAGE ABSOLUTE DEPTH ERROR(IN METERS) AT DIFFERENT CUTOFF

DISTANCE. I MEANS USING INSTENSITY FRAMES AS INPUT. E MEANS USING EVENTS AS INPUT. AND I+ E MEANS USING BOTH INTENSITY FRAMES

AND EVENTS AS INPUT.

Dataset Cutoff Supervised hybrid Supervised frame-based Unsupervised frame-based Supervised event-based Unsupervised event-based
RAM-Net(I + E) [5] RAM-Net(I) [5] Ours(I) E2Depth [4] Zhu et al. [12] Ours(E)

10m 1.39 1.74 1.54 1.85 2.72 1.40
outdoor day1 20m 2.17 2.55 2.23 2.64 3.84 2.07

30m 2.76 3.07 2.71 3.13 4.40 2.65
10m 2.50 2.72 3.24 3.38 3.13 2.18

outdoor night1 20m 3.19 3.35 3.74 3.82 4.02 2.70
30m 3.82 3.99 4.60 4.46 4.89 3.64
10m 1.21 1.36 3.16 1.67 2.19 2.06

outdoor night2 20m 2.31 2.42 3.65 2.63 3.15 2.76
30m 3.28 3.47 4.24 3.58 3.92 3.42
10m 1.01 1.20 3.09 1.42 2.86 2.09

outdoor night3 20m 2.34 2.44 3.55 2.33 4.46 2.82
30m 3.43 3.64 4.20 3.18 5.05 3.52

TABLE II
QUANTITATIVE RESULTS ON THE DSEC DATASET. I MEANS USING INSTENSITY FRAMES AS INPUT AND E MEANS USING EVENTS AS INPUT. RESULTS

IN LAST THREE COLUMNS DENOTE AVERAGE ABSOLUTE DEPTH ERRORS (IN METERS) AT DIFFERENT MAXIMUM CUT-OFF DEPTHS.

Method Abs Rel↓ Sq Rel ↓ RMSE↓ RMSE log↓ SI log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ c = 10 ↓ c = 20 ↓ c = 30 ↓
Ours(I) 0.166 1.346 5.934 0.229 0.050 0.749 0.934 0.980 1.042 1.942 2.622
Ours(E) 0.142 1.152 5.258 0.202 0.043 0.819 0.948 0.983 0.960 1.550 2.205

Frame Events GT Depth E2Depth [4] RAMNet(I + E) [5] Ours(E)
Fig. 4. Qualitative results on the MVSEC dataset. The qualitative result of Zhu et al. [12] is omitted because their code isn’t publicly available. Our
EMoDepth has a relatively more reasonable prediction on distant areas, e.g., trees and sky in the upper part of the image.

Frame Events GT Depth Ours(I) Ours(E)
Fig. 5. Qualitative results on the DSEC dataset. I means using instensity frames as input and E means using events as input.

to larger 288×352 using zero padding. An evaluation is done
on the upper middle areas with a resolution of 200× 346.

Data preprocessing of DSEC. For the DSEC dataset,
there are only optical flow benchmark and stereo matching
benchmark on the official website2 and the ground truth
disparity maps of official testing sequences are reserved by
the official server. For convenience, we split official training
sequences into 28 for training and 13 for testing. The training

2https://dsec.ifi.uzh.ch/

set containing 16838 images has all images per training scene,
and the testing set containing 1300 images has 100 images
per testing scene. In the DSEC dataset, events and intensity
frames are separately collected by different synchronized
sensors. Following [41], we warp the rectified intensity
frames to the event locations according to the calibration
parameters provided. First, we get undistort and aligned event
spatiotemporal voxels with intensity frames at a resolution of
480× 640. Then, these data are center-cropped to 320× 640
for cropping the car-hood.
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Data augmentation. We randomly flip the input images
horizontally and apply color augmentations with a probability
of 50%. For the color augmentation, we perform random
brightness, contrast, saturation, and hue jitter by sampling
uniform distributions in ranges of [0.8,1.2], [0.8,1.2], [0.8,1.2],
[0.9,1.1], respectively. Note that color augmentation is only
applied to the DSEC dataset.

Training setup. Our work is implemented in PyTorch on a
single GTX1080Ti with 11GB memory. We train the networks
for 10 epochs with Adam optimizer (β1 = 0.9, β2 = 0.999)
and a batch size of 8. The initial learning rate is 1× 10−4

for the first 8 epochs and 1× 10−5 for the remaining.

C. Depth Estimation Results

We compare our framework performance with other
methods on the MVSEC dataset. As in previous works, we
report the average mean errors at maximum cutoff depths
of 10m, 20m, and 30m. The quantitative and qualitative
results are represented in Tab. I and Fig. 4, respectively.
The quantitative results demonstrate that our EMoDepth
outperforms unsupervised frame-based methods and even
outperforms RAMNet(I) and E2Depth, which design recurrent
architectures to leverage the temporal information and use
additional synthetic data for better results. Due to the more
practical constraints of proposed cross-modal consistency,
EmoDepth performs better than Zhu et al. [12], which utilizes
relatively weaker supervision by deblurring the event images.
The qualitative results show that compared with E2Depth and
RAMNet, our EMoDepth has a relatively more reasonable
prediction on distant areas, e.g., trees and sky in the upper
part of the image.

Also, we test our EMoDepth on the DSEC. Since there are
no event-based monocular depth estimation methods reporting
results on the DSEC dataset, we test our EMoDepth using
frames(I) as input and using events(E) as input for comparison.
The quantitative and qualitative results represented in Tab. II
and Fig. 5 also show that when using the event as input,
our EMoDepth can achieve better performance. Results also
indicate that performance on the DSEC dataset is significantly
better than on the MVSEC dataset. It can be explained as
the benefits of denser events and color intensity frames.

D. Ablation studies

a) Choice of self-supervisory signal: We propose to
exploit aligned intensity frames to form self-supervisory
signals. To validate its effectiveness, we directly use the
consistency of adjacent event spatiotemporal voxels to train
the networks. As shown in Tab. III, the accuracy drops
dramatically when the self-supervisory signals come from
event spatiotemporal voxels. This is consistent with our
analysis in III-C.

b) Effect of multi-scale skip-connection: We introduce
multi-scale skip-connection to reduce information loss of
sparse events. And the results in IV show that Depth-Net
can achieve better performance when the multi-scale skip-
connection is introduced when compared to the baseline
(MonoDepth2).

TABLE III
ABLATION STUDIED OF DIFFERENT SELF-SUPERVISORY SIGNALS ON

MVSEC DATASET

Dataset Cutoff Self-supervisory signal
Event spatiotemporal voxels Intensity frames

10m 3.90 1.40
outdoor day1 20m 3.79 2.07

30m 4.89 2.65
10m 5.55 2.18

outdoor night1 20m 4.57 2.70
30m 5.72 3.64
10m 5.76 2.06

outdoor night2 20m 4.48 2.76
30m 5.26 3.42
10m 5.87 2.09

outdoor night3 20m 4.39 2.82
30m 5.33 3.52

TABLE IV
ABLATION STUDIED OF MULTI-SCALE SKIP-CONNECTION ON MVSEC

DATASET.

Dataset Cutoff Baseline + multi-scale SC
10m 1.48 1.40 (↓0.08)

outdoor day1 20m 2.22 2.07 (↓0.15)
30m 2.74 2.65 (↓0.09)
10m 2.55 2.18 (↓0.37)

outdoor night1 20m 3.06 2.70 (↓0.36)
30m 3.95 3.64 (↓0.31)
10m 2.47 2.06 (↓0.41)

outdoor night2 20m 3.03 2.76 (↓0.27)
30m 3.64 3.42 (↓0.22)
10m 2.44 2.09 (↓0.35)

outdoor night3 20m 2.95 2.82 (↓0.13)
30m 3.60 3.52 (↓0.08)

c) Time consumption: We also test the inference time
of E2Depth, RAM-Net, and our EMoDepth, on the MVSEC
with a GTX1080TI GPU. The results in Tab. V show that
the inference speed of EMoDepth is significantly faster than
E2Depth and RAM-Net. And the introduction of multi-scale
skip-connnection does not affect real-time performance much
(from 4.67ms to 5.25ms) while improving performance.

TABLE V
TIME CONSUMPTION ON MVSEC DATASET USING DIFFERENT

NETWORKS.

Network Time consomption (ms)
E2Depth 24.22
RAM-Net 25.68

EMoDepth(w/o multi-scale SC) 4.67
EMoDepth 5.25

V. CONCLUSION

In this paper, we present a self-supervised framework
named EMoDepth to learn monocular depth from events.
Based on the observation that matching chronological events
is challenging, we propose utilizing cross-model consistency
from intensity frames. To fuse features more effective
for improving performance, we design a multi-scale skip-
connection architecture for EMoDepth. Extensive experiments
on MVSEC and DSEC datasets show that EMoDepth can
achieve state-of-the-art performance. In the feature work, we
will explore exploiting events to remove moving objects to
improve performance. Besides, a better event representation
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method for retaining more spatiotemporal information of
events while keeping a small data size is also a promising
direction.
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