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TG: Accurate and Efficient RGB-D Feature With
Texture and Geometric Information
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and Yong Liu

Abstraci—Feature extraction and matching are the basis
of many computer vision problems, such as image retrieval,
object recognition, and visual odometry. In this article, we
present a novel RGB-D feature with texture and geometric
information (TG). It consists of a keypoint detector and a
feature descriptor, which is accurate, efficient, and robust
to scene variance. In the keypoint detection, we build a
simplified Gaussian image pyramid to extract the texture
feature. Meanwhile, the gradient of the point cloud is super-
imposed as the geometric feature. In the feature descrip-
tion, the texture information and spatial information are
encoded in relative order to build a discriminative descrip-
tor. We also construct a novel RGB-D benchmark dataset
for RGB-D detector and descriptor evaluation under single
variation. Comprehensive experiments are carried out to
prove the superior performance of the proposed feature
compared with state-of-the-art algorithms. The experimen-
tal results also demonstrate that our TG can achieve better
performance especially on accuracy and the computational
efficiency, making it more suitable for the real-time applica-
tions, e.g., visual odometry.

Index Terms—Feature detection, feature extraction, vi-
sual odometry.

[. INTRODUCTION

HE local feature technology is widely used in many fields,
T such as object detection, recognition, and geometrical
measurement. Although some fields currently have almost been
dominated by the deep learning-based methods, there are still
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Fig. 1.

Example of image matching with the proposed feature TG.

many aspects highly relies on the accuracy and efficiency of
the local features, especially in the simultaneous localization
and mapping (SLAM) [1], [2], structure from motion [3], and
augmented reality (AR) [4], [5].

The local feature problem consists of two main aspects, i.e.,
keypoint detection and description, which can also be regarded
as two operations: extracting keypoints and building feature
vectors. Enormous progress has been made in developing robust
local features in 2-D image space. Typical examples are scale
invariant feature transform (SIFT) [6], speed-up robust feature
(SURF) [7], and oriented FAST and rotated BRIEF (ORB) [8],
which can achieve excellent performance when texture informa-
tion is rich.

Due to the complementary nature of RGB image and depth,
it has become a trend to fuse the texture information of RGB
images with the geometric information of depth images to
extract robust features. Binary robust appearance and normal
descriptor (BRAND) [9] and our previous work LOIND [10]
are typical RGB-D descriptors. But the inefficient use of texture
and geometric information (TG) makes them perform unsatis-
factorily when the scene changes drastically. Then, we propose
RISAS [11] in our previous article, which consists of an RGB-
D keypoint detector and a feature descriptor. The detector of
RISAS calculates each normal vector’s dot product with the
primary normal vector from the depth image and combines
it with the gray image through the autocorrelation function,
respectively, to extract keypoints. The descriptor of RISAS
is improved on LOIND, which encodes texture information,
spatial distribution information, and plane norm information to
compute feature vectors. However, RISAS directly applies the
autocorrelation function to the gray image for feature detection,
making it sensitive to texture changes and noise.
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Fig. 2. Pipeline of TG feature detection. The difference of Gaussian
image Iy is generated through a simplified Gaussian image pyramid
as the texture feature. On the other hand, the gradient image Iyaq is
generated by computing the gradient from the depth image. We apply
an autocorrelation function R on I and Iy.q, respectively, to calculate
the final score map S.

This article proposes an RGB-D feature with TG,' consisting
of akeypoint detector and a discriminative feature descriptor. TG
is improved on RISAS [11] and inherits its robustness against
scene variation. Moreover, TG improves the localization accu-
racy at low thresholds and significantly optimizes the efficiency
to be used in real-time applications. Fig. 1 shows an example of
feature matching. The contributions of this paper are as follows:

1) TG detector builds a simplified Gaussian image pyramid
and calculates the image pyramid’s self-response as the
texture feature.

2) To speed up the extraction of geometric features, TG
calculates the gradient of point cloud by axes, then su-
perimposes the gradient values as the geometric feature.

3) To perceive the spatial characteristics of the local patch
and integrate the global information into each feature
vector, the TG descriptor couples the local normal vector
to neighbor point cloud and normalizes feature vectors.

4) We propose an RGB-D scene benchmark dataset that can
be used to evaluate features under a single variation.

Il. RELATED WORKS
A. 2-D Texture Features

There has been extensive research on feature detectors and
descriptors for 2-D RGB images. The most well-known one is
SIFT [6]. It contains a difference of Gaussian interest region
detector and a descriptor based on the gradient orientation
histogram, which is robust to scale and rotation variation. To
speed up SIFT, Bay et al. [7] proposed SURF, which utilizes
integral images, and a Hessian matrix-based measure is used for
the detector and a distribution-based descriptor. BRIEF [12] uses
a binary string as the feature descriptor, which takes relatively
less memory consumption and can be matched fast by Hamming
distance with limited computational resources.

2-D features based on deep learning are also proposed. Match-
Net [13] consists of a CNN that extracts features from patches
and a network with three fully connected layers, which is used
to compute the similarity between features. HardNet [14] uses

Both the code and proposed benchmark dataset are available on [Online].
Available: https://github.com/APRIL-ZJU/TEG.

a triplet margin loss for metric learning that maximizes the dis-
tance between the closest positive and closest negative samples
in a batch. DeTone et al. [15] and Li et al. [16] trained a primary
detector on a basic figure to detect corner points, then finetune
the detector with real images. To solve the nondifferentiable
problem of keypoint extraction during end-to-end training, LF-
Net [17] constrains the nondifferentiable part to one branch and
trains the network in the other branch. Improved on LF-Net,
RF-Net [18] obtains better performance with multiscale feature
maps.

B. 3-D Geometric Features

With the development of low-cost depth sensors, geometric
information of the environment can be easily captured, and
various 3-D features have been proposed. Zhong [19] proposed
intrinsic shape signature (ISS) based on the eigenvalue decom-
position of the scatter matrix consisting of the points that belong
to the support set of candidates. Another example of a fixed-scale
3-D keypoint detector is keypoint quality (KPQ), which was
proposed by Mian et al. [20]. Similar to ISS, KPQ is also based
on the scatter matrix. A significant difference compared with ISS
is that KPQ prunes nondistinctive points using the ratio between
the maximum lengths along the first two principal axes.

C. RGB-D Fusion Features

In some scenarios where texture information is not rich
enough, those 2-D features may be invalid. Then, the depth
information can be a useful supplementation to improve the
discriminability of features. Tombari et al. [21] proposed color
signature of histogram and orientation (CSHOT) that incorpo-
rates RGB information into SHOT descriptor. Nascimento et
al. [9] proposed BRAND that encodes local information as a
binary string to achieve low memory consumption. LOIND [10]
encodes both the texture and depth information by orders of
both intensities and angles between normal vectors. RISAS
detector [10] applies the autocorrelation function to the gray
image and the dot product between each normal vector and the
main normal vector, respectively, then fuses these two features
to extract keypoints.

More recently, some RGB-D features based on deep learning
have been proposed. For example, Zeng et al. [22] proposed
3-DMatch, an RGB-D descriptor that combines multiple con-
secutive depth images into one domain named as truncated
distance field (TDF), and learns the local geometric informa-
tion of TDF with a convolutional network. Kehl er al. [23]
proposed a 3-D object detection algorithm that uses regressed
descriptors of locallysampled RGB-D patches for 6-D vote
casting. Gupta et al. [24] proposed to convert depth images
into HHA images [25], which encodes geometric information by
three channels (horizontal disparity, height above ground, and
angle with gravity). Cheng ef al. [26] described RGB and HHA
images with a convolutional network, then assign the weights
of texture feature and geometric feature through a weighted
gate.
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Fig. 3. Process of extracting texture features.

lll. METHOD
A. Keypoint Detector

In this part, we will introduce how the proposed detector
extracts keypoints with both TG. The flowchart is shown in
Fig. 2.

1) Texture Encoding: In order to obtain scale invariance,
SIFT builds a Gaussian image pyramid by upsampling and
downsampling the original image. It is an efficient technique
but damages the keypoint accuracy at the same time. We keep
the resolution of the image unchanged and convolute it with
different Gaussian kernels to build a simplified Gaussian image
pyramid. The Gaussian kernel function and its kernel reference
k, standard deviation ¢ are shown in (1), where w is the size
of window. According to the settings of SIFT, we set s =3
and a = 1.6. s represents the levels of image pyramid. « is the
standard deviation of the first level Gaussian function. Fig. 3
shows the process of extracting texture features. We subtract
adjacent images to get two DoG maps

1 22442
Gla,y,0) = et
270
fe=2'¢

oc=akl,ic1,2,4
w=2[4.00+05] + 1. 1)

We subtract adjacent images to get two DoG maps Igoei
and I4oe. When detecting keypoints, the changes of edges and
corners will gain more attention. As a result, the texture feature
map Iy is computed by (2), where g(-) is the absolute value
function.

Iar = 9(Laog1) + 9(Laog2)- ()

When different Gaussian kernels convolve an image, the two
DoG maps have edge features in different receptive fields, which
can help TG perceive the neighboring in distinct ranges.

2) Geometry Encoding: First, we transform each point (u, v)
in the depthimage Igepm to the 3-D space to build the correspond-
ing point cloud, as shown in (3), where (u, vo) is the principal
point, and f, and f, are the focal lengths.

Z = Idepth(u» U)

=t 3)
_ vty
Yy = 7 z.

To acquire the geometric feature of points in 3-D space, a
typical operation is to calculate the local plane normal vector for
the point cloud. However, calculating normal vectors is time-
consuming. On the other hand, the noises of the point cloud
will strongly affect the result. Therefore, we propose to utilize
the gradient of the point cloud as the geometric feature. When
calculating the gradient of point cloud, we can get the following
four values:

1) the X -axis gradient in height direction Iy,

2) the X -axis gradient in width direction 4y,

3) the Y'-axis gradient in height direction 4y, and

4) the Y'-axis gradient in width direction Jgyy.

The geometric feature map Iyr,q is computed by

Igrad = g(Idxh) + g(Idxw) + g(Idyh) + g(ldyw)- 4)

Gradient calculation of point cloud only has subtraction, so the
process is much faster compared with normal vectors calculation
in RISAS.

3) Feature Fusion: A similar principle as Harris detector is
adopted to compute the response value S(u,v), as shown in
(5), where (u,v) is the keypoint coordinate in image space.
The window function w(z, y) is a Gaussian function centered at
(u, v) with a window size of 20.

Ru,v); = 3 wla, )@ +uy+v) — I,y )

z,y

To better recept changes in the neighborhood, both texture
information and geometric information are utilized in the pro-
posed feature. The score function is defined as a weighted sum,
as shown in the following, where 7 is used to weight these two
kinds of information:

S = TR(Idf) + R(Igmd) (6)

4) Keypoint Selection: When selecting keypoints, we first
take the local maximum as the candidates with a window of
11 in the score map S(u, v). For all candidates, we perform the
following steps:

1) pick out points whose scores are larger than 0.002 X Syax;

2) remove points whose depths are missing.

Therefore, keypoints will be extracted from regions with suffi-
cient TG. For an RGB-D image with a resolution of 640 x 480,
the width of the boundary is set to 30 pixels, and the proposed
detector can detect about 400 — 1200 keypoints per image.

B. Feature Descriptor

In this section, we will propose the feature extraction of our
descriptor from texture and depth information, as well as the
process of feature vector construction.
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1) Background Elimination: To enhance the robustness of our
feature, we propose a background elimination algorithm to select
the patch where the descriptor is built.

For a point k; in image, the corresponding point in point cloud
is denoted as k. The patch centered at &; in image is extracted as
P*“?(k;) and the corresponding patch in point cloud is denoted as
P®¥#(k;). For each point £, € P*¥#(k}), we remove the outliers
with a distance greater than 0.3 m.

2) Plane Fitting: The normal vector is a discriminative fea-
ture of the point cloud, which is often used in the 3-D features.
In the process of feature description, the proposed descriptor
encodes the normal vector of the local point cloud as spatial
features. We use the normal vector estimation algorithm based
on the least squares proposed by Berkmann et al. [27].

3) Scale Estimation: The scale of the keypoint in the gray
image is generally estimated by finding the extreme value in
scale space such as SIFT [6] and SURF [7]. However, it can be
easily measured using the depth information captured from the
modern RGB-D sensors, such as Kinect and Xtion. In this article,
we follow the approach in BRAND [9], given in the following,
to scale the distance range into the scale range:

_ 3.8—0.4max(2,d)
{ s = I}I{laX (0.2, s ) )
r = Rs.

We estimate scale s for a point with its d and select neigh-
boring feature block with radius r to build a descriptor. R is an
empirical value and is experimentally evaluated to 20 according
to LOIND [10].

4) Feature Extraction:

1) Extract texture feature: We extract the neighboring gray

block Pyr,y from the gray image Igpay.

2) Extract geometric feature: We calculate the gradient of

P, and get the following four items:
a) the X-axis gradient in height direction Pyyp,
b) the X-axis gradient in width direction Py,
c) the Y-axis gradient in height direction Pyyp,, and
d) the Y-axis gradient in width direction Pyyy,. Then,
the geometric feature block is computed by Pyaq =
g(deh) + g(dew) + g(deh) + g(dew)~

3) Extract Spatial Feature: We fit a plane for the keypoint.

The normal vector is transformed to the coordinate of
the keypoint and notated as n,,. For each point in B,
we multiply its coordinate by n,, to obtain the space dot
product block Fyp.

5) Descriptor Construction: We extract the circular feature
blocks through a mask M. The three square blocks Pyray, Perads
and Py, are multiplied, respectively, by M to the circular blocks
Pgray> Parag» and Py, Compared with the square block, the
circular block avoids considering the direction of feature blocks
during encoding and enhances the robustness against rotation
variation.

Compared with SIFT, which uses absolute values of features
to encode vectors, we use the relative order of features to improve
the robustness against noises.

1) Encoding texture information: We sort values in the gray

block P, in ascending order. The sequence is divided

L

P
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O
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'
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Fig. 4. Process of computing a feature vector. We extract three feature
blocks for a keypoint: gray information Py,,, geometric information Pérad,

and spatial information Pép. Their values are divided into ng, np, and nd

bins, respectively, to build a 3-D histogram, which is flattened to a feature
vector.

into ng bins. X; represents the number of elements in
the ith bin. We get ng values from which an X-axis is
established.

2) Encoding geometric information: We all values in the
grad block P4 in ascending order. The sequence is
divided into npbins. Y; represents the number of elements
in the jth bin. We get np values from which a Y -axis is
established.

3) Encoding spatial information: We all values in the dot
product block Pép in ascending order. The sequence is di-
vided into nd bins. Zj, represents the number of elements
in the kth bin. We get nd values from which a Z-axis is
established.

For each keypoint, we use the above three axes (X, Y, Z) to
establish a 3-D coordinate system, thus obtaining a feature vector
with dimensions of ng X np x nd. Increasing the number of
bins can enhance the discrimination of the descriptor, but it will
reduce the computational efficiency.

Fig. 4 shows the process of calculating the feature vector for
a keypoint (ng = np = nd = 8). The more vivid the color of
the point, the larger the value there. As can be seen from Fig. 4,
most values are 0 so the vector is very sparse. Therefore, after
calculating the feature vectors for all keypoints in an image,
they are normalized uniformly by dimensionalities to obtain the
final feature vector of each keypoint. This strategy integrates the
global information of an image into each feature vector, and it
turns out to improve the performance of the proposed descriptor.

IV. RGB-D EVALUATION BENCHMARK DATASET

Most of the existing public available RGB-D datasets are
frames taken from videos. As a result, the change between im-
ages is a mixture of illumination, rotation, scale, and viewpoint
variation. To evaluate the robustness of algorithms against a
single variation of the scene, we setup an RGB-D evaluation
benchmark dataset that contains the single variation in three
scenes with the different richness of texture information and
geometric information.
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Fig. 5.
system.

(a) Schematic (b) and physical picture of the Data collection

We mount the Xtion LIVE PRO RGB-D camera on a Comau
Racer robotic arm, which can perform six DoF movement so
that the pose of each frame can be obtained directly from the
controller. Under this circumstance, the environment used to
evaluate the RGB-D feature can show a single variation at a
time.

1) Hand-Eye Calibration: The schematic and physical pic-
tures of the data collection system is shown in Fig. 5, where
Fe, Fg, and Fp denote the camera coordinate system, grip-
per coordinate system, and the robot body coordinate system,
respectively. During the movement of the robotic arm, the
transformation between the robot base and the gripper T
can be obtained directly, and the transformation between two
consecutive image frame Tgi*' can be computed by

Cit1 _ mpGimB mGit1mCiti
TC,; = TCZ TGq‘,TB TGi+1 ®

= (TS) '"TE TS+ T.

In order to compute the transformation Tg:*' between frame i
and frame 7 + 1, we need to calibrate the relative transformation
between camera coordinate system T« and gripper coordinate
system Tg.

Estimating the transformation Tg is known as the hand—eye
calibration problem, which has been investigated by Horaud,
Dornaika [28], and Daniilidis [29]. In this work, we adopt more
recent method proposed by Liang and Mao [30].

2) Dataset With Single Variation: Based on the analysis in
Section II, those texture/geometric features may be selectively
sensitive to different variations. However, the current public
available RGB-D datasets are almost mixtures of various vari-
ations. They are not suitable to evaluate texture/geometric fea-
tures under a single variation. Thus, we have constructed an
RGB-D benchmark dataset with a single variation for the feature
evaluation in our approach. Table I gives the details of our
dataset.

As shown in Fig. 6, we have three different sets according to
the objects in the environment.

1) Texture: Textured objects such as snack boxes and books.

2) Geometry: Geometric objects, such as a sculpture, tellu-

rion, and pot plant.

3) Mixture: The mixture of textured and geometric objects.

TABLE |
NUMBER OF IMAGES IN THREE SETS

Variance Texture ~ Geometry  Mixture
Illumination 11 8 9
Scale 10 10 10
Viewpoint 11 11 11
3D rotation 16 9 10
In-plane rotation 16 12 12

(@) (b)

Fig. 6. Example images of our benchmark dataset. (a) Texture. (b)
Geometry. (c) Mixture.

(e)

Fig. 7. Example images which show different variation. (a) Natural light
illumination (b) Square root illumination (synthetic) (c) 3-D rotation (d)
In-plane rotation (e) Scale (f) Viewpoint.

For each of the three sets, we consider the following four
common single variation independently, as shown in Fig. 7:
1) illumination—synthetic and natural light;
2) rotation—in-plane rotation and 3-D rotation;
3) scale;
4) viewpoint.

V. EXPERIMENTS AND RESULTS

In this section, we compare the proposed feature TG against
state-of-the-art algorithms: Harris detector [31], SIFT [6],
ORB [32], RISAS [11], SuperPoint [15], and RFNet [18]. Each
consists of a keypoint detector and a feature descriptor except
Harris detector. Harris, SIFT, and ORB have been implemented
in OpenCV library, while RISAS, SuperPoint, and RFNet have
open-source implementations.

Algorithms are evaluated on the built RGB-D evaluation
benchmark dataset and the public 3-DMatch RGB-D indoor
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Matching performances under single variation with texture information only(r — oc), geometric information only (7 = 0), more texture

information (r = 10), more geometric information (= = 0.1), and same proportion of texture information and geometric information (= =1). (a)

lllumination. (b) Rotation. (c) Scale. (d) Viewpoint.

scene dataset.” The later contains many different scenarios, each
of which consists of images taken from a video sequence so there
are mixed variation between images. Three obviously different
scenes are used for evaluation in this article: rgbd-scenes-v2-
scene_03 (notated as rgbd03), bundlefusion-officel (notated as
bundle), and 7-scenes-redkitchen-01 (notated as 7kitchen).

When evaluating the performance of different algorithms, we
perform the following operations, respectively.

1) Extractkeypoints and compute feature vectors for a pair of
images. To reduce the impact of the number of keypoints,
only about 400 keypoints with the highest scores are taken
into consideration.

2) Match feature vectors with nearest neighbor distance ratio
matching (the ratio is set to 0.95) [33].

3) Estimate the homography between this pair of images
through random sample consensus [34] as the ground
truth.

4) Compare the distance ¢; of matched points with the
threshold £. A match is correct if £; < &; otherwise, it
is an incorrect one.

5) Compute the matching accuracy P, which is the quotient
of the number of correct matches and of all matches.

6) Perform the abovementioned steps for each pair of images
on a dataset to get the average precision AP.

We first perform experiments to determine the value of 7.
The experimental results are shown in Fig. 8. The horizontal
axis is the matching threshold &, and the vertical axis is the
average precision AP. When there is only illumination variation
in the scene, the depth information does not change. As a result,
detectors with geometric information only (7 = 0 performs
significantly better than those with more texture information
(r = ooand 7 = 10). When there is rotation, scale, or viewpoint
variation, both the TG change. Overall, 7 = 0.1 achieves the best
matching performance under most single variation, which means
that a little geometric information can significantly improve the
descriptor’s performance.

A. Detector Evaluation

1) lllumination Variation: The main advantage of using geo-
metric information in feature detection is the robustness against
illumination variation. In this section, we will present the

2[Online]. Available: http://3dmatch.cs.princeton.edu/
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Fig. 9. Repeatability of different detectors under various illumination
conditions.

experimental results of the proposed detector under the various
illumination conditions.

The critical criterion in evaluating keypoint detector is re-
peatability [35] of keypoints across different images. Given
ground truth transformation [R, t] between two images, key-
points are evaluated using (9). In this experiment, we use image
pairs that only contain illumination variation, which means
there is no pose transformation between their coordinates, i.e.,
Rp; +t = p;.If p; is within the neighborhood of p; with radius
& (5 pixels), p; is regarded as repeated

lpi — (Rp; +t) || <¢. ©)

Fig. 9 shows the robustness of several detectors against illumi-
nation variation. It can be seen that with the brightness increases
(o < 1) or decreases (a > 1), the proposed TG detector will
show higher repeatability than others. The main reason is that
when texture information varies drastically, the depth image still
can help TG detector extract robust keypoints from geometric
information. However, the repeatabilities of those algorithms,
such as the detector of Harris, SIFT, and RFNet, show signifi-
cantly decrement when texture information becomes weak.

B. Robustness Evaluation

1) Single Variation:

1) Hllumination Invariance: Fig. 10(a) shows the perfor-
mances of different algorithms under single illumination
variation. The performance of TG is significantly better
than three traditional algorithms: SIFT, ORB, and RISAS.
Meanwhile, SuperPoint and RFNet also perform well
because deep learning algorithms use data augmentation
techniques during training, such as changing the bright-
ness of images to improve illumination robustness.
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2) Rotation Invariance: As shown in Fig. 10(b), the per-
formance of TG is better than other algorithms at each
threshold. It is mainly because TG encodes feature in
circular blocks rather than square blocks, which can help
it effectively resist rotation variation.

3) Scale Invariance: Fig. 10(c) shows the performance of
different algorithms under single scale variation. TG per-
forms best at low thresholds £ < 5, indicating that its
localization accuracy is relatively higher than others.
Compared with traditional algorithms, TG performs sig-
nificantly better than SIFT and ORB. One of the main
reasons is that TG estimates the scale information of
keypoints from depth images. Thereby it can resist the
scale variation of the scene. The performance of RISAS
is not as good as TG, for our descriptor can encode depth
information in a better way. On the other hand, with
the increase of the matching threshold, learning-based
descriptors show better performances since they have
large receptive fields in the network.
Viewpoint Invariance: As shown in Fig. 10(d), TG per-
forms best at low thresholds £ < 5, indicating that TG’s
localization accuracy is relatively higher than others un-
der viewpoint variation, which may be especially benefi-
cial for the applications of visual odometry.
Compared with hand-craft algorithms, the performance
of TG is better than SIFT, ORB, and RISAS. One of the
main reasons is that TG estimates the local plane normal
vector of a keypoint and couples it to the local neighbor
point cloud so that the dot product block has the ability
to perceive local spatial features.

2) Mixed Variation: To evaluate the proposed feature’s ver-
satility, we perform experiments on the public 3DMatch RGB-
D indoor scene dataset. We use three different scene sets:
rgbd03, bundle, and 7kitchen, and randomly select 30 pairs
of images from each set. Each pair of images is randomly
separated by 30 — 50 frames to ensure that they can have

4)

Matching performances of different algorithms on 3-DMatch datasets. (a) rgbd03 (b) 7kitchen (c) Bundle.

sufficient changes and similarities. Since images of the 3DMatch
dataset are consecutive frames taken by videos, each image
pair contains mixed variation. Therefore, we can evaluate the
performance of different algorithms under mixed variation.

Fig. 11 shows the matching performances of different algo-
rithms on these three datasets. At low thresholds (£ < 10), TG
has the highest accuracy than others, but deep learning-based
algorithms, RFNet and SuperPoint, do not perform well. In par-
ticular, the performance of SuperPoint is significantly affected
by the threshold &.

3) Analysis: From the experimental results, we can find the
following two phenomena when comparing the proposed feature
TG with two deep learning algorithms, SuperPoint and RFNet.

1) When there is rotation variation between images, deep

learning algorithms’ performance is poor. They perceive
a square block when convolution, while TG encodes
circular feature blocks, which is rotation invariant in
theory.

2) When the matching threshold is low (¢ < 5), TG obtains

the highest AP in almost all experiments. It is more
accurate than others in localization.

C. Efficiency Analysis

In this section, we analyze the efficiency of different algo-
rithms on the built mixture dataset. The evaluation platform is
Intel i7 7700K and 16 GB RAM.

As givenin Table II, TG takes 31.1 ms to extract keypoints and
calculate feature vectors for an image with the C++ implemen-
tation. The average processing time for each keypoint is 0.0975
ms. It shows that the TG has relatively high computational
efficiency. On the other hand, ORB and SIFT in the OpenCV
library are implemented with parallel technology, significantly
improving computational efficiency. If parallel technology is
used in TG, it will be faster.
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TABLE Il
COMPUTATIONAL EFFICIENCY OF DIFFERENT ALGORITHMS

Algorithm Code Image time Number Point time
(s) of points (ms)
TG C++ 0.0311 319 0.0975
SIFT C++ 0.0881 400 0.2203
ORB C++ 0.0057 400 0.0143
RISAS Python 67.729 278 243.19
SuperPoint (CPU) Python 0.3917 468 0.8356
SuperPoint (GPU) Python 0.1736 468 0.3709
RFNet (CPU) Python 2.5859 400 6.4648
RFNet (GPU) Python 0.2944 400 0.7360
TABLE Il

AVERAGE TRAJECTORY ERROR(M) ON THREE DATASETS WITH DIFFERENT
DES CRIPTORS

Dataset ~ ORB  SIFT TG SuperPoint” RFNet
bundle ~ 0.096 0.086 0.078 0.165 0.126
7kitchen ~ 0.145 ~ 0.100  0.103 0.103 0.167
rghd03 ~ 0.086  0.071  0.060 - 0.057
Mean 0.109  0.086  0.080 - 0.117

*SuperPoint fails on the rghd03 sequence.
Bold entity represents the best performance of multiple methods in each
sequence.

D. Visual Odometry

We employ different descriptors in visual odometry to eval-
uate their performance in practical applications. When a new
frame arrives, we extract feature points, calculate descriptors,
and get their depth in the depth map. After feature matching, we
perform bundle adjustment to optimize the camera pose.

Table IIT gives the absolute trajectory error of the estimated
trajectories with different algorithms in three datasets. TG
reaches the best performance on bundle dataset, and overall has
the smallest mean error in these three scenarios.

As given in Table II, SIFT and RFNet are slower than TG,
so that they are not suitable for real-time applications. In visual
odometry, ORB is the most commonly used feature with high
computational efficiency. Table III tabulates that the localization
error of TG is significantly smaller than ORB. Since TG also
has relatively high computational efficiency, it could be an
alternative to ORB in current visual odometry systems.

VI. CONCLUSION

This article proposes an RGB-D fused feature TG that consists
of a keypoint detector and a feature descriptor. We use a sim-
plified Gaussian image pyramid to perceive texture information
and the DoG pyramid to extract texture features. The gradient
of the point cloud is encoded as geometric features, and the
autocorrelation function is performed to fuse both TG. Future
work will focus on further experimental evaluation and bringing
it into more SLAM systems.
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