
Learning to Compensate for the Drift and Error of Gyroscope in
Vehicle Localization

Xiangrui Zhao1, Chunfang Deng1, Xin Kong1, Jinhong Xu1, and Yong Liu1,2

Abstract— Self-localization is an essential technology for au-
tonomous vehicles. Building robust odometry in a GPS-denied
environment is still challenging, especially when LiDAR and
camera are uninformative. In this paper, We propose a learning-
based approach to cure the drift of gyroscope for vehicle
localization. For consumer-level MEMS gyroscope (stability
10), our GyroNet can estimate the error of each measurement.
For high-precision Fiber optics Gyroscope (stability 0.05), we
build a FoGNet which can obtain its drift by observing data
in a long time window. We perform comparative experiments
on publicly available datasets. The results demonstrate that
our GyroNet can get higher precision angular velocity than
traditional digital filters and static initialization methods. In
the vehicle localization, the FoGNet can effectively correct the
small drift of the Fiber optics Gyroscope (FoG) and can achieve
better results than the state-of-the-art method.

I. INTRODUCTION

For ground vehicles, localization in the environment is
the basis for path planning and motion control. In an
outdoor open environment, the vehicle can use the GPS to
obtain an accurate position. However, in the mountainous
environment of the wild and the urban environment with
many tall buildings, GPS signals are often obscured, and
the localization accuracy drops sharply. Although we can
use visual odometry and laser odometry as complements to
achieve high localization accuracy without GPS, they will
become unstable due to the poor illumination, snowy or
foggy scenes.

Compared to visual odometry and laser odometry, wheel
odometry has little dependence on the environment. It still
works when the camera and LiDAR are uninformative.
Vehicles have wheel odometers that measure the speed of the
wheels and then calculate bodies’ linear velocity and angular
velocity. Due to noisy measurement, the traditional methods
usually use the linear velocity only and acquire the angular
velocity by the gyroscope. Although the gyroscope’s error
is smaller than that calculated by wheel odometers, its drift
and error still harm the localization. Traditional denoising
methods, including digital filtering, static initialization, and
multi-sensor fusion, have developed for many years, but they
don’t perform well in vehicle localization. In this paper,
we propose a learning-based approach to compensate for
the gyroscopes with various precision. Since the MEMS

1Xiangrui Zhao ,Chunfang Deng, Xin Kong and Jinhong Xu are with
the Institute of Cyber-Systems and Control, Zhejiang University, Zhejiang,
310027, China.

2Yong Liu is with the State Key Laboratory of Industrial Control Tech-
nology and Institute of Cyber-Systems and Control, Zhejiang University,
Zhejiang, 310027, China (Yong Liu is the corresponding author, email:
yongliu@iipc.zju.edu.cn).

Fig. 1. The trajectory of Urban09.

gyroscopes and Fiber optics Gyroscopes have different work
principles, their noise properties are diverse. We use two
different networks for them to reduce the complexity of the
model. Different from the end-to-end method of IONet [1],
we only use neural networks to eliminate the drift and error
of the sensor, while the localization still follows the tradi-
tional way in section III.A. The advantage of our approach is
that it can achieve excellent results with a relatively simple
neural network. It is also easy to train and more interpretable.
Our contributions can be concluded as follows:

• For noisy gyroscope in the low-cost MEMS IMU,
we propose a GyroNet to estimate the error of each
measurement and compensate.

• For high-precision Fiber optics Gyroscope (FoG), we
propose a FoGNet to estimate the drift by observing
sensor measurements in a long time window.

• We also evaluate our approach on publicly avail-
able datasets. The experiment results demonstrate that
our approach outperforms the existing state-of-the-art
method lwoi [2].

II. RELATED WORK

Odometry technology has made significant progress in
recent years. IMU is first used in inertial navigation systems,
which relies on linear acceleration and angular velocity
measurements to estimate the pose of IMU. The most mature
method is zero-velocity aided INS using a range of threshold-
based detection methods [3]–[5]. When detecting a zero-
velocity event, the velocity state can be fused with the dead
reckoning motion model in an extended Kalman filter [6]
or Bayesian filter. However, due to the severe error and
long-term drift, traditional INS can hardly get accurate pose
estimation using low-cost IMU. To improve localization ac-
curacy, there are methods of fusing IMU measurements with
image information. Filter-based methods like MSCKF [7],
[8] add the image feature to the state vector together with



IMU. They perform well but are sensitive to IMU noise
parameters. VINS Mono [9] is a robust optimization-based
method that needs a specific initialization process to estimate
the bias of gyroscope and accelerometer. When the motion
excitation is insufficient during initialization, it usually fails.
VINS on wheels [10] adds a planar-motion constraint using
wheel odometers to improve localization accuracy.

Deep learning methods are introduced into the odometry
estimation. VINet [11] is an end-to-end network for process-
ing images and IMU data. It outperforms some traditional
methods while it’s hard to train. IONet [1] is an end-to-end
inertial odometry based on IMU only. It’s robust to various
environments but not accurate enough. Although these end-
to-end methods work, they are not the best solution since
the search space of the neural network is very large and is
easy to be over-fitting or under-fitting. Many works combine
deep learning with traditional methods. Wagstaff [12] uses
LSTM for zero-velocity detection in inertial navigation.
DeepVIO [13] has an IMU status update scheme to update
the additional gyroscope and accelerometer bias. RINS-
W [14] builds an LSTM-based motion profile detector and
localizes through invariant Kalman filter. Lwoi [2] uses
Gaussian Process and variational inference to estimate wheel
odometry and IMU errors.

III. OUR LEARNING-BASED APPROACH

Our learning-based approach consists of two neural net-
works on different categories of gyroscopes. We propose
a GyroNet for noisy gyroscope in the low-cost IMU. It
estimates the bias and noise of each measurement by the
IMU data in a short sliding window. For high-precision Fiber
optics Gyroscope, we build a novel FoGNet that takes IMU,
odometers, and yaw-axis FoG measurements in a long time
window as input and generates bias and noise estimation. In
this section, we will first present the formal model of the
sensors and then give these two neural networks.

A. Sensor Model

1) IMU Model: IMU measures angular velocity ω̃b and
acceleration ãb in the body frame, which are given by:

ω̃b = ωb + bg + ng (1)

ãb = qbw (aw + gw) + ba + na (2)

where superscript w represents the world frame, and super-
script b represents the body frame. The measurements are
affected by gyroscope bias bg , accelerometer bias ba and
additive noise. We assume that the additive noise are zero-
mean Gaussian noise, na ∼ N

(
0,σ2

a

)
, ng ∼ N

(
0,σ2

g

)
.

gw is gravity in the world frame and qbw is the rotation
from the world frame to the body frame.

2) Odometry model: For a vehicle equiped with wheel
odometers, FoG and IMU on the ground, we define its state
at time t as:

xt = [xt, yt, φt, θt, ψt, pt, qt, rt]
T (3)

where [xt, yt]
T is the vehicle’s position in the local frame.

[φt, θt, ψt]
T are the Euler angles representing the vehicle’s

orientation, and [pt, qt, rt]
T are the angular velocity in body

frame. Since the vehicle moves on a plane, the altitude is
not observable by the wheel odometers and IMU.

For a given time step δt, the process model takes ut =
[vr, vl, δψ]

T as input, where vr and vl are the speed measured
by right and left wheel odometer. δψ is the change in yaw
axis. Based on planar-motion assumption, the state update
equation is given by:

xt+1 = xt + ztδt+ wt (4)

where zt = [v cos (ψt) , v sin (ψt) , 0, 0, δψ/δt, 0, 0, 0]
T and

wt is a zero-mean Gaussian noise. v is the velocity of the
vehicle equals the average of vr and vl.

δψ/δt = ω̃b − cg (5)

Our learning-based approach is to estimate compensation
parameters cg through neural network, cgM for MEMS gy-
roscope and cgF for Fiber optics Gyroscope(FoG). These
compensation parameters are not constant yaw rate bias. We
think that they contain errors such as measurement noise,
random walk, and other non-artificial modeling errors. Then
we subtract them from the raw data to compensate and
calculate the trajectory of the vehicle follow Eq. 4.

B. GyroNet

We are inspired by deep neural networks to estimate the
bias and noise of gyroscope. By treating a sequence of IMU
data as an image, it is possible to apply CNN on sensor data.
We evaluate different network structures, including CNN,
RNN, and LSTM, in the training process. Fig.2 gives the
test error of different frameworks. It shows that Bi-LSTM
can converge to a small error as fast as possible. Therefore,
we adopt Bi-LSTM as our backbone.

Fig. 2. Test error of adopting different framework.

LSTM is a special type of RNN that has long-term
dependency. It combines the current input x(t) with the
network’s hidden state h(t− 1):

h(t) = φ(Whxx(t) + Whhh(t− 1)). (6)

The output h(t) is the activation result of the current input
and the previous hidden state. φ(·) is an activation function.
The matrices Whx and Whh are the weights that updated
during training process.

In addition to the hidden state h(t), LSTM also propagates
an internal state s(t). At each time, updates to s(t) contain
two parts: the input gate i(t) and the forget gate f(t).



Fig. 3. The pipeline of GyroNet. N is the length of time window and s is
the step size.

The input gate determines which part of the input g(t) is
added to the state, while the forget gate removes the part of
the hidden state that is no longer needed. The output gate
o(t) is used to select the elements of s(t) that will be passed
into h(t),

g(t) = φ(Wgxx(t) + Wghh(t− 1) + bg), (7)
i(t) = σ(Wixx(t) + Wihh(t− 1) + bi), (8)
f(t) = σ(Wfxx(t) + Wfhh(t− 1) + bf), (9)
o(t) = σ(Woxx(t) + Wohh(t− 1) + bo), (10)
s(t) = g(t)� i(t) + s(t− 1)� f(t), (11)
h(t) = φ(s(t))� o(t) (12)

where σ(·) is the sigmoid activation function and � repre-
sents multiplication of elements. The matrices Wgx, Wgh,
Wix, Wih, Wfx, Wfh, Wox, Woh are weight parameters.
The biases bg , bi, bf , bo are trainable parameters of the
network.

The LSTM only extracts information in the forward
sequence and can not use the backward sequence, which
explains why Bi-LSTM performs better in our experiment.
Our GyroNet consists of a 2-layer Bi-LSTM with 60 units per
layer. We include a single fully-connected layer after LSTM
to reduce the network’s output to 2D. The loss function
is defined as the mean absolute error of prediction. The
neural network works as a function f that maps sensor
measurements to compensation parameters over a sliding
window:

(a, ω)N∗6 f−→ (cgM )N (13)

where a is acceleration, ω is angular velocity and N is
window length.

C. FoGNet
Since the noise of low-cost MEMS gyroscope is very

strong (∼10◦/h), a simple network can work well. As
shown in Tab.6, although the GyroNet gets smaller final
orientation error, it is still worse than FoG on average. For
a high-precision FoG whose noise (∼0.05◦/h) is 200 times
smaller than the low-cost one, it requires a more complicated
network.

Fig. 4 shows the pipeline of FoGNet. The input data is
low-cost IMU, wheel odometers, and yaw-axis FoG mea-
surements in a time window with a dimension of N*9. We

Fig. 4. The pipeline of FoGNet. N is the length of time window.

first transmit the input data into the LSTM1, a 2-layer Bi-
LSTM with 90 units per layer, and obtain a N*1-dimensional
vector f1 through the fully-connected layer FC1. Then we
combine f1 with the measurements of the yaw-axis FoG
from raw data, and transmit them to the LSTM2, a 2-layer
Bi-LSTM with N units per layer. The layer FC2 generates
a scalar f2. Next, we combine f2 with f3 generated by
the fully-connected layer FC3 and transmit it to the FC4
to obtain a network prediction result. Finally, we subtract
the FoG measurement from the prediction result and get the
compensation parameter cgF .

The loss function consists of two parts. The first part is
the Manhattan distance between the ground truth ∆Θ and
estimated value ∆Θ̃ in a time window:

Loss1 =
∥∥∥∆Θ−∆Θ̃

∥∥∥
1

(14)

We expect that the input data can get a preliminary
denoising result after going through LSTM1 and FC1, so
f1 should be close to the measurements of the FoG. To
constrain the search space of the network parameters, we
use the difference of f1 and FoG measurements ∆θ as a
skip-connection loss.

Loss2 =
∥∥∥f1N∗1 −∆θN∗1

∥∥∥
1

(15)

The overall loss function is:

Loss =
∥∥∥∆Θ−∆Θ̃

∥∥∥
1

+ α
∥∥∥f1N∗1 −∆θN∗1

∥∥∥
1

(16)

where α is a weight coefficient. We set it to 0.5.

IV. EXPERIMENTS

We implement our model on the PyTorch framework and
run the training process on an NVIDIA GTX 1080Ti GPU.
During training, we used Adam, a first-order gradient-based
optimizer with an initial learning rate of 0.0015.

A. GyroNet

1) Data Preparation: We evaluate our GyroNet on
KAIST Urban Dataset [15]. The input data is low-cost gy-
roscope and accelerometer measurements in a time window.
We collect training data through a sliding window with a

(a) Segway(NCLT) (b) Consumer car(KAIST Urban)
Fig. 5. Data acquisition platforms of two datasets.



TABLE I
ORIENTATION ERROR ON KAIST URBAN DATASET

Mean error Final error
(rad) (rad)

Static initialization 0.001535 0.3153
FIR filter 0.002755 0.5146

Xsens internal filter 0.001662 0.2584
GyroNet 0.0003854 0.06156

FoG 0.0003470 0.06448

Fig. 6. The yaw angle of test sequence Urban14. Ground truth, FoG, and
Xsens internal filter are provided directly from the dataset, and others are
derived from angular velocity integration.

length of 0.1s and a step size of 0.01s. Then the data is
shuffled to prevent over fitting. In this way, the model is not
affected by the sequence length. The network prediction is
the compensation parameters of the gyroscope getting from
the difference of measurements and ground truth data.

2) Comparison: We compare 5 methods:
• Static initialization: performing a 3s initialization to

estimate the bias of gyroscope.
• FIR filter: filtering the data by an FIR filter with
fpass = 10Hz and fstop = 15Hz.

• Xsens internal filter: the angle output of Xsens’ inter-
nal multi-sensor fusion algorithm.

• GyroNet (ours): the integration of network denoising
result.

In order to evaluate the performances of the above meth-
ods, we use the following two metrics:

• Mean orientation error: the average of orientation error
on yaw with respect to FoG in 1s.

• Final orientation error: the final orientation error on
yaw between the estimates and the FoG.

3) Results: We train our GyroNet on sequence
Urban06-13 and test on sequence Urban14-17.
Tab. I shows that our approach has the smallest error
compared with static initialization, FIR filter, and Xsens
internal filter. The average final error even better than
expensive high-precision FoG.

Furthermore, in Fig. 7, we calculate the vehicle trajectory
follow Eq.4 using the corrected angular velocity and the
wheel odometers, which makes it more intuitive to see how
our approach corrects the sensor measurements.

B. FoGNet

1) Data Preparation: We evaluate our FoGNet on KAIST
Urban Dataset [15] and NCLT Dataset [16]. The input data
is low-cost gyroscope, accelerometer, and yaw-axis FoG

Fig. 7. The angular velocity and odometers integration result of test
sequence Urban17.

measurements, while ground truth data is the yaw angle
change in the time window provided by the KAIST dataset.
We choose a window length of the 60s and a step size of 1s
since the error is extremely small. The disadvantage is that
we can not correct the gyroscope in the first time window
when evaluating our network. It causes an initial error in
the correction results. In RINS-W [14], they remove the
results of the first time window (nearly 100s), which makes
it impractical. To solve this problem, we get inspiration from
the padding operation in CNN. As is shown in Fig. 8, when
the current data is less than the length of the time window,
we pad a time window with the existing data and transmit
it to the network for prediction. It can effectively reduce the
initial error.

Fig. 8. The example of padding on IMU data. N is the length of the time
window, and t is the current time that satisfies t < N.

2) Comparison: We compare 4 methods on KAIST Urban
Dataset:

• FoG and odometers integration: the direct integration
of wheel odometers and FoG. The wheel odometers
provide linear velocity, and the FoG provides angular
velocity.

• Lwoi [2]: learning wheel odometry and IMU errors for
localization. It trains Gaussian processes on the local-
ization error that uses IMU, FoG and wheel odometers
measurements. We reproduce their results with open-
source code1.

• RINS-W [14]: a robust inertial navigation system on
wheels. It is a state-of-the-art Kalman filter that in-
corporates this knowledge as pseudo-measurements for
localization. It uses IMU measurements only but needs
the vehicle to move 100s for initialization, which limits
its practicality. We compare the results in their paper.

• FoGNet and odometers integration (ours): the pro-
posed aproach, that uses IMU, FoG and wheel odome-
ters to correct FoG measurements.

1https://github.com/CAOR-MINES-ParisTech/lwoi



TABLE II
ATE AND ALIGNED ATE ON KAIST URBAN06-17

FoG + odom Lwoi [2] FoGNet + odom
Seq ATE Aligned ATE Aligned ATE Aligned

(m) ATE (m) (m) ATE (m) (m) ATE (m)
Urban06 126.41 38.04 56.86 22.4 43.75 11.62
Urban07 3.02 0.41 6.92 4.7 3.62 0.30
Urban08 0.87 0.38 5.87 5.14 0.61 0.32
Urban09 18.3 12.49 11.6 7.76 2.67 1.34
Urban10 50.4 14.12 54.24 9.15 36.90 2.47
Urban11 109.92 25.39 27.79 16.13 46.88 14.77
Urban12 66.93 24.21 47.34 24.66 28.93 8.12
Urban13 7.01 3.94 10.29 2.78 1.94 0.51
Urban14 35.89 13.99 49.91 10.11 22.00 1.33
Urban15 3.69 3.54 9.52 8.23 2.59 1.29
Urban16 45.21 31.37 28.43 18.95 18.08 14.35
Urban17 20.97 14.25 15.04 10.2 7.32 6.91
Average 40.72 15.22 26.98 11.68 17.98 5.28

On NCLT Dataset, we compare two methods since the
open-source code of lwoi [2] doesn’t work on it and RINS-W
[14] doesn’t test on that dataset and doesn’t provide open-
source code.

As the error and drift of FoG are extremely small, direct
evaluation of angles is not intuitive. We compensate the raw
data, calculate the trajectory of the vehicle, and consider the
following two metrics:

• Absolute Trajectory Error (ATE): calculating the pla-
nar translation error between estimated trajectory and
ground truth using evo2.

• aligned Absolute Trajectory Error (aligned ATE): per-
forming trajectory alignment before calculating ATE.

3) Results: We train our FoGNet on sequence
Urban06-13 and test on sequence Urban14-17.
Tab. II show the ATE and aligned ATE on KAIST Urban
Dataset compared with lwoi [2] and original odometers and
FoG integration. In most cases, our approach is better than
the raw data integration and lwoi [2].

Tab. III shows comparative results with and without
padding. The effect is more evident without trajectory align-
ment. It will be helpful in practice since we cannot perform
any alignment when driving a car. Compared with RINS-W
[14], our approach performs well, as is shown in Tab. IV.
By using two more sensors, we get better results and do not
need a long time initialization.

Fig. 9. The trajectory of test sequence Urban17.

2https://github.com/MichaelGrupp/evo

TABLE III
COMPARATIVE EXPERIMENTS ON PADDING

Method ATE Aligned
(m) ATE (m)

No padding 19.64 5.47
Padding 17.98 5.28

TABLE IV
MEAN ATE COMPARED WITH RINS-W [14] ON TEST SETS

RINS-W [14] FoGNet + odom
Seq ATE Aligned ATE Aligned

(m) ATE (m) (m) ATE (m)
Urban15 7 5 3 1
Urban16 27 11 19 14
Urban17 13 11 7 7
Average 22 10 9 7

TABLE V
AVERAGE ATE ON NEWLY RELEASED SEQUENCE URBAN18-37

Method ATE Aligned
(m) ATE (m)

FoG + odom 23.10 7.02
Lwoi [2] 23.79 6.02

FoGNet + odom 14.60 4.31

TABLE VI
TOTAL RUNNING TIME ON KAIST URBAN06-17

Method Time
Lwoi [2] 1986 s

FoGNet (CPU) 1430 s
FoGNet (GPU) 220 s

To evaluate the generalization of our approach, we test the
trained lwoi [2] and FoGNet models on the newly released 20
sequences of KAIST Urban Dataset. We can find out from
Tab. V that our approach is still valid while the lwoi [2] has
little improvement on aligned ATE. As we mentioned before,
lwoi [2] trains Gaussian processes on the localization error.
But the error may not meet that distribution so that our pure
learning from the data approach outperforms that model.

In terms of computational efficiency, our approach is faster
than lwoi [2]. Since lwoi [2] only provides the CPU version,
we also test our model on the CPU. Tab. VI shows that our
approach is more efficient.

On NCLT Dataset, We use 18 train sets from sequence
2012-01-08 to 2012-08-20 and the remaining nine
as test sets. Tab. VII shows the ATE and aligned ATE on
NCLT Dataset compared with original odometers and FoG
integration. Our approach outperforms the original method.

C. Discussion

The experiments suggest that the improvement on NCLT
Dataset is not as evident as KAIST Dataset. The possible
reasons are as follows:

• The data acquisition platform in the NCLT Dataset is a
two-wheeled Segway robot that is not as stable as the
four-wheeled consumer vehicle in the KAIST Dataset.

• The wheel odometers on the Segway robot is not accu-
rate enough, which introduces large translation error in
localization. As is shown in Fig. 10, the rotation error
is small, but the translation error is large in the middle
of the trajectory.



TABLE VII
AVERAGE ATE ON NCLT DATASET

Method ATE Aligned
(m) ATE (m)

FoG + odom 41.98 18.15
FoGNet + odom 38.64 16.66

Fig. 10. The trajectory of test sequence 2012-11-17.

• The data synchronization of the NCLT Dataset is not
as good as KAIST. As is shown in [16], the KVH is
timestamped according to the arrival time of the sensor
message. The timestamp will be confusing when data is
blocked. As is shown in Fig. 11, the time difference of
FoG between adjacent timestamps in the NCLT Dataset
is more chaotic than that in KAIST Dataset. Other
sensors have the same situation.

Fig. 11. The time difference of FoG between adjacent timestamps.

V. CONCLUSION

This paper proposes a novel approach for gyroscope
denoising in vehicle localization through the neural network.
The experiments on publicly available datasets show that
our GyroNet has better performance on denoising than the
traditional methods, our FoGNet outperforms the state-of-
the-art method lwoi [2] and is more efficient.

In future work, we plan to compensate for the drift of
the wheel odometers and the gyroscope at the same time to
get more accurate results on NCLT Dataset. Furthermore,
we will combine the GyroNet and the FoGNet together,
which takes the denoising result of GyroNet as a pseudo-
FoG measurement and replace the real FoG measurements in
FoGNet. Thus, the costly FoG is only used for data collection
in the training process, and we can get an accurate location
based on low-cost IMU and wheel odometers. Besides, this
work is an attempt to utilize machine learning in the sensor
data processing. It approves that the model can learn some
non-artificial parameters from sequence data. In application,

the easiest way is to use the network to denoise raw sensor
data in the visual-inertial navigation system. We will focus
on learning uncertainty to distinguish sensor failure and get
sensor confidence for multi-sensor fusion algorithm.

VI. ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under Grant 61836015 and the Key
Research and Development Program of Guangdong Province
of China under Grant 2019B010120001.

REFERENCES

[1] C. Chen, C. X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning
to cure the curse of drift in inertial odometry,” in The Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

[2] M. BROSSARD and S. BONNABEL, “Learning wheel odometry
and imu errors for localization,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 291–297, May 2019.

[3] I. Skog, P. Handel, J. Nilsson, and J. Rantakokko, “Zero-velocity
detectionan algorithm evaluation,” IEEE Transactions on Biomedical
Engineering, vol. 57, pp. 2657–2666, Nov 2010.

[4] I. Skog, J. Nilsson, and P. Hndel, “Evaluation of zero-velocity de-
tectors for foot-mounted inertial navigation systems,” in 2010 Inter-
national Conference on Indoor Positioning and Indoor Navigation,
pp. 1–6, Sep. 2010.

[5] A. Olivares, J. Ramirez, J. M. Górriz, G. Olivares, and M. Damas,
“Detection of (in) activity periods in human body motion using inertial
sensors: a comparative study,” Sensors, vol. 12, no. 5, pp. 5791–5814,
2012.

[6] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”
IEEE Computer Graphics and Applications, vol. 25, pp. 38–46, Nov
2005.

[7] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Robotics and automation,
2007 IEEE international conference on, pp. 3565–3572, IEEE, 2007.

[8] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-
inertial odometry,” The International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, 2013.

[9] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[10] K. J. Wu, C. X. Guo, G. Georgiou, and S. I. Roumeliotis, “Vins
on wheels,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5155–5162, May 2017.

[11] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “Vinet:
Visual-inertial odometry as a sequence-to-sequence learning problem,”
CoRR, vol. abs/1701.08376, 2017.

[12] B. Wagstaff and J. Kelly, “Lstm-based zero-velocity detection for
robust inertial navigation,” in 2018 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pp. 1–8, Sep. 2018.

[13] L. Han, Y. Lin, G. Du, and S. Lian, “Deepvio: Self-supervised deep
learning of monocular visual inertial odometry using 3d geometric
constraints,” CoRR, vol. abs/1906.11435, 2019.

[14] M. Brossard, A. Barrau, and S. Bonnabel, “Rins-w: Robust inertial
navigation system on wheels,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 2068–2075, Nov
2019.

[15] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex
urban dataset with multi-level sensors from highly diverse urban
environments,” The International Journal of Robotics Research,
p. 0278364919843996, 2019.

[16] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of Michigan North Campus long-term vision and lidar dataset,”
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2015.


