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a b s t r a c t

In autonomous driving, many intelligent perception technologies have been put in use. However, visual
SLAM still has problems with robustness, which limits its application, although it has been developed
for a long time. We propose a feature-aided semi-direct approach to combine the direct and indirect
methods in visual SLAM to allow robust localization under various situations, including large-baseline
motion, textureless environment, and great illumination changes. In our approach, we first calculate
inter-frame pose estimation by feature matching. Then we use the direct alignment and a multi-scale
pyramid, which employs the previous coarse estimation as a priori, to obtain a more precise result. To
get more accurate photometric parameters, we combine the online photometric calibration method
with visual odometry. Furthermore, we replace the Shi–Tomasi corner with the ORB feature, which
is more robust to illumination. For extreme brightness change, we employ the dark channel prior to
weaken the halation and maintain the consistency of the image. To evaluate our approach, we build
a full stereo visual SLAM system. Experiments on the publicly available dataset and our mobile robot
dataset indicate that our approach improves the accuracy and robustness of the SLAM system.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Perception and localization in the unknown environment are
he foundation of autonomous driving. In an outdoor open space,
he car can use the Global Positioning System(GPS) to obtain
n accurate pose estimation. The localization does not drift over
ime and location and is available in most scenarios. However,
n the mountains of the wild and the urban environment with
any tall buildings, GPS signals are often obscured, and the

ocalization accuracy drops sharply, which dramatically increases
he difficulty of navigation and vehicle control.

The most commonly used solution in autonomous driving is
mploying a 3D LiDAR with pre-build high-precision maps. LiDAR
an perform accurate distance measurement with only a few cen-
imeters of error. It can easily achieve high localization accuracy
ven in GPS-denied environments. Although the consumer-level
iDAR continues to progress currently and its price gradually
ecreases, there is only one manufacturer of mass-production
utomotive-grade LiDAR, which means that LiDAR is still far from
ractical applications.
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Vision is an essential way for autonomous vehicles to perceive
the environment. It relies on small-sized and inexpensive cam-
eras only and provides sufficient information. In driver assistance
systems, the vision has been used for a long time, such as lane
detection and car distance measurement. In recent years, visual
SLAM technology that provides maps and localization has made
remarkable achievements. Its localization accuracy has reached
a practical level. Besides, the visual SLAM system needs fewer
changes to the vehicle when it is deployed, and can even be made
as a plug and play module in the future, which has great potential
for application.

However, the current technical immaturity severely restricts
the practical performance of visual SLAM, especially in textureless
environment, large-baseline motion ,and various illumination.
General speaking, the feature-based (indirect) method [1–4] has
been regarded as a more suitable approach for the cases with
large baseline, fast motion and varied illumination compared with
direct method [5–10], as the feature points used in the indirect
methods are more robust to scale, rotation, and illumination than
the gradient points used in the direct method. The main drawback
of the indirect method is that it is less adaptable to the textureless
environment where the feature point detection often fails, while
the direct method can perform much better, as it employs pixel-
to-pixel match based on the hypothesis of constant brightness.
The map generated by the indirect method is much sparser than
the direct method. Thus it is a hot research trend to fuse the
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Fig. 1. Trajectory and point cloud on KITTI sequence 05.
dvantages of both the direct and the indirect methods in the
LAM system.
In this paper, we propose a novel approach to fuse both

he direct and the indirect methods together through a hybrid
yramid, which enables our approach robust to large-baseline
otion, textureless environment, and illumination change (see
ig. 1). The main contributions of our work are given as follows:

• We perform online photometric calibration to get more
precise photometric parameters used in the direct method.
By replacing the Shi–Tomasi corner with ORB feature point,
we improve the accuracy of calibration and its robustness to
illumination change.

• We design a hybrid pyramid to fuse direct and indirect
methods for improving estimation accuracy and robustness.

• We build a full stereo semi-direct visual SLAM system with
loop-closure detection, pose graph optimization, and relo-
calization module to evaluate our approach. Experiments
show that our method has superior accuracy and robustness
compared with the state-of-the-art ORB-SLAM2[4].

• In terms of extreme brightness change, we employ the dark
channel prior to remove halation and maintain the consis-
tency of image pixels, which avoids direct method failure.

. Related work

The feature-based frontend has long been considered as the
ainstream method of visual odometry, which makes full use
f the robustness of feature points to illumination and scale. It
irst selects feature points from the image that are more robust
o illumination and scale. These points generally do not change
uch between frames and can be used for data association be-

ween frames. Then, the descriptors of these feature points are
xtracted for matching. After the feature matching between the
wo frames is obtained, the pose transformation between the two
rames can be calculated through the eight-point method, PnP,
r reprojection error minimization. MonoSLAM [1] is the first
eal-time monocular SLAM system. It extracts few feature points
n the frontend and uses extended kalman filter as backend.
PTAM [2] is a milestone in the history of visual SLAM. It has an
optimization-based backend that applies bundle adjustment to
optimize camera poses and key points, which further improves
the accuracy of pose estimation. ORB-SLAM [3,4] is one of the
most advanced and robust SLAM systems. It employs bag-of-
words [11] to perform loop closure, making it suitable for wide
range motion.

Feature-based indirect methods rely on feature points. The ex-
traction and description of features usually cost much time. And
in a textureless environment where has little features, few feature
points will lead to a decrease in accuracy and pose estimation fail-
ure. Recently, some direct methods have appeared, aiming to use
the image to estimate poses directly, skip the key point selection
and matching steps, and do not perform data association between
frames. The direct method was first used on RGBD cameras in
DTAM [5]. It does not extract sparse feature points for each frame
but directly aligns each pixel of the image and uses an inverse
depth filter. LSD-SLAM [7] is the first large-scale monocular direct
SLAM. Compared with DTAM, it only selects pixels with a high
gradient to perform multi-scale pyramid alignment and tracking.
The direct method is greatly affected by photometric since it
estimates poses on the raw image. Jacob proposes photometric
calibration [12] and a more robust and accurate direct sparse
odometry [13], which significantly improved the practicability
and accuracy of the direct method.

In recent years, the SLAM systems combining direct and indi-
rect methods have become popular. The SVO [14] is a semi-direct
approach. It extracts feature points at the frontend but does not
calculate descriptors. It directly uses the optical flow to perform
feature matching and pose estimation between frames. However,
it still uses the traditional way of minimizing reprojection error
for backend optimization. Although SVO takes less time than
other methods, it is designed for small computing platforms and
mostly is used for tracking with down-view cameras. Krom-
bach [15,16] uses the pose obtained by the feature-based method
as the initial value of the direct method. It can increase the sta-
bility of the direct visual odometry. However, the accuracy needs
to be improved since it does not perform photometric calibra-
tion. Kim [17] proposes using partitioned photometric estimation,
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modifies the photometric error function, and improves the par-
tial illumination problem of the direct method. Younes [18] has
presented a combination of the direct and indirect method as
feature-based direct monocular odometry. They present a VO
method that is based on DSO but uses feature-based tracking
when optimization. The problem is that when the direct method
is going to fail, it has begun to produce large calculation errors.
Lee [19] proposes a loose couple approach of ORB-SLAM2 and
DSO to improve localization accuracy. However, its frontend and
backend are almost independent, which cannot share estimation
information to improve the pose precision.

3. Online photometric calibration based on feature points

Bergmann [20] presents to extract the Shi–Tomasi corner
points by using the gain-robust KLT algorithm and select good
candidate points for tracking. However, in some datasets and
real-world scenarios, there are larger exposure changes and non-
contiguous frames. The gain-robust KLT algorithm is still strongly
affected. Therefore, we propose to use ORB feature points to track.
The ORB feature point is to extract the BRIEF descriptor for each
FAST corner point, using KNN matching, cross filter, ratio test,
and RANSAC verification to obtain feature matches in two images.
Since we use the BRIEF descriptor, the matches obtained by this
method are not affected by illumination. Perfect match pairs can
be obtained even in the case of big illumination changes and
non-contiguous frames.

After getting points P tracked between images, the energy
function is given by

E =

∑
p∈P

∑
i∈Fp

w
p
i

Op
i − f

(
eiV

(
xpi
)
Lp
)  

r(f ,V ,ei,Lp)


h

(1)

where point p ∈ P is visible in frame Fp, wP
i is a weight factor

for residual r , Op
i is the pixel intensity of p in image i, ei is the

exposure time, Lp is the radiance of p and xpi is the spatial location
of the projection of p onto image i. We use the Huber norm ∥ · ∥h
for robust estimation, parametrized by h ∈ R.

When getting a new frame, it is rectified by the existing
response and vignette function. The exposure time of the new
frame can be calculated by the weighted least squares.

E =

M∑
i=1

∑
p∈Ri

w
p
i

(
f −1

(
Op
i

)
V
(
xpi
) − eiLp

)2

(2)

where Pi is the set of scene points visible in the i’th image and
f −1 is the inverse of the response function. Each residual is only
dependent on the exposure time of its frame and the radiance
of its scene point. So that the exposure time can be calculated
efficiently.

4. Feature-aided semi-direct method

Direct visual odometry does not contain feature extraction and
matching, which is not robust to large-baseline motion. Therefore,
we add the feature-based method into it and propose a hybrid
pyramid.

4.1. Feature points selection

Feature points selection is the same as LDSO [21].

• We first extract corner points by using a dynamic grid
gradient threshold. The maximum quantity of corner points
is 2000, so that we can get more points with different
gradients in the image.
Fig. 2. Pipeline of hybrid pyramid.

• Further selection is applied to the obtained corner points
using the Shi–Tomasi point selection method to select points
with higher repeatability.

• Calculate the BRIEF descriptor on the points selected in the
second step and convert them to bag-of-words vectors.

• Repeat the above steps in the grid with different sizes.

4.2. Hybrid pyramid

The top layer of the image pyramid in DSO is used for rough
calculation. Then the upper layer’s pose estimation is passed to
the next layer, thereby achieving coarse-to-fine calculation, get-
ting more accurate pose estimation. We can find from the exper-
iment that the top layer can only get the coarse pose estimation,
and the last layer obtains the most precise result.

In DSO, it uses a constant motion model to get prior. It is pos-
sible to avoid being unable to iterate to the global optimal due to
the massive displacement under some circumstances. However,
in the case of large-baseline motion, such as high-speed vehicles,
the error of pose estimation is still big. In this section, we propose
a hybrid pyramid to improve its robustness (see Fig. 2).

4.2.1. Feature matching layer
When a new frame arrives, the feature points of the current

frame are matched with the previous one. 2D–2D matches are
obtained. If the quantity of matches is greater than N1, the process
goes to the next step. Otherwise, the feature matching fails due
to the environment containing repetitive textures or too few
features. Then the process goes to the direct alignment layer.
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Fig. 3. Pipeline of the whole SLAM system.
w
r

If feature matching succeeds, the matched points of the pre-
vious frame are projected onto the last keyframe. We select the
points whose depth is greater than 0 and within 100 times of the
baseline.

Finally, we choose the calculation method based on the quan-
tity of 2D–3D matches N:

• If N < N1, the feature matching fails. Then it goes to direct
alignment layer.

• If N1 < N < N2, we use the 2D–2D epipolar geometry to
calculate pose estimation.

• If N2 < N , we use the PnP algorithm to calculate pose
estimation.

N1, N2 are fixed parameters.
With the feature matches, we can simultaneously calculate

the exposure time for photometric rectification in the direct
alignment layer.

4.2.2. Direct alignment layer
According to the results of the feature matching layer, we get

the following situations:

• When the feature matching fails, we use a constant motion
model to give the prior.

• When the 2D–2D pose estimation succeeds, the rotation
of prior is obtained by the eight-point method, and the
translation is obtained by the constant motion model.

• When the 2D–3D pose estimation succeeds, the prior is
given by the feature matching and optimization directly.

The quantity of image pyramid layers is also different when
performing the direct alignment. When the prior can be ob-
tained by feature matching, we only use a two-layer pyramid.
If the feature matching fails, we still use a five-layer pyramid,
which ensures that the direct alignment can be optimized to
the global optimal result under different conditions, and reduces
computational cost for real-time performance.
4.2.3. Hybrid residual function
We use a hybrid residual function to improve the accuracy of

the final optimization since we can get the reprojection error of
the feature matching and the direct alignment photometric error.
The total residual function is given by:

E(ξ ) = wrep
Erep2 + wphoto

Ephoto2 (3)

here wrep and wphoto are weights of the two errors. We can
ewrite the cost function as:

E(ξ ) =

[
erep
ephoto

]T [
wrep

wphoto

][
erep
ephoto

]
= eTWe

(4)

where e is joint residual, W is the information matrix and ξ is the
camera’s pose.

5. Stereo feature-aided semi-direct SLAM system

For further evaluation of our approach, we implement a full
stereo visual SLAM system. As is shown in Fig. 3, the frontend
tracking module is based on our hybrid pyramid. The whole
system resembles ORB-SLAM2, which consists of three paral-
lel threads: frontend tracking thread, backend sliding window
optimization thread and loop-closure detection thread.

• Frontend tracking thread. It includes monocular image dis-
tortion rectification, stereo images epipolar rectification, and
feature extraction. Then it uses the hybrid pyramid to track
and finally determine whether it is a keyframe.

• Backend sliding window optimization thread. It first per-
forms a stereo scale estimation, recovers the inverse depth
of 3D points in the current frame, and then minimizes the
hybrid residual to optimize the points and poses in the
sliding window. Finally, it judges whether the frames and
points in the sliding window need to be marginalized and
perform marginalization.

• Loop-closure detection and optimization thread. It first uses
the bag-of-words model to perform loop-closure detection.
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Fig. 4. Here is an example from [10]. Despite the photometric rectification the direct method still fails due to the extreme brightness change.
Fig. 5. Some images in Cityscapes Dataset [22] have severe brightness change due to the illumination and camera auto exposure and gain control.
Fig. 6. The dark channel histogram of two images in the second row of Fig. 5.
When detecting a closed loop, it projects the verified loop-
closure frame to the current sliding window and calculates
the Sim(3) transformation. Finally, it performs optimization
through the pose graph to correct the pose error and global
map points.

. Image brightness rectification using dark channel prior

The online photometric calibration that we use here models
xposure time, response function, and vignette, which are param-
ters of the camera. When the light source change that is causing
alation or local and global brightness change, modeling camera
arameters only does not help as well, leading to direct alignment
ailure in [10]. As is shown in Fig. 5, it is common in autonomous
ehicles. When a car is going through the shadow in an avenue,
he brightness changes frequently, and the halation will severely
amage the image.
Building on our previous work [23], we consider the pixel

alue as a combination of original scene radiance and atmo-

pheric light. More specifically, inspired by [24], we model the
image as follows:

I(x) = J(x)t(x) + A(1 − t(x)) (5)

where I is the acquired pixel intensity, J is the scene radiance,
A is the global atmospheric light and t is the transmissivity. To
remove halation and get J, we need to recover A and t from I. We
transform Eq. (5) to:

Ic(x)
Ac = t(x)

Jc(x)
Ac + 1 − t(x) (6)

where the superscript c represents each channel of the color
image.

First, we assume that the transmissivity t(x) in a window is
constant and define it as t̃(x). With a given A, we calculate the
minimum on both sides of Eq. (6):

min (min
Ic(y)

) = t̃(x) min (min
Jc(y)

) + 1 − t̃(x) (7)

y∈Ω(x) c Ac y∈Ω(x) c Ac
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and then:

t̃(x)(1 − min
y∈Ω(x)

(min
c

Jc(y)
Ac )) = 1 − min

y∈Ω(x)
(min

c

Ic(y)
Ac ) (8)

According to [24], the dark channel prior is defined as:

Jdark(x) = min
y∈Ω(x)

( min
c∈r,g,b

Jc(y)) = 0 (9)

here Jc represents each channel of the color image and Ω(x) is
a window with center x. We calculated the histogram of the dark
channel image with and without halation in Fig. 5, which shows
that it approximately meets the prior.

Then we substitute Eqs. (9)–(8) and get the estimation of
transmissivity t̃(x):

t̃(x) = 1 − min
y∈Ω(x)

(min
c

Ic(y)
Ac ) (10)

As is shown in Fig. 6, not all of the dark channel in no halation
image is zero. So we introduce a constant parameter ω into
Eq. (10) to compensate:

t̃(x) = ω(1 − min
y∈Ω(x)

(min
c

Ic(y)
Ac )) (11)

The above inferences are with the assumption that A is known.
In the haze removal methods, the atmospheric light A is esti-
mated from the most non-transparent pixels. Tan [25] used the
most intense pixel as the atmospheric light. But in practice, the
brightest pixel does not always represent light. Sometimes it
could be on a white building. As is shown in Fig. 6, the dark
channel of the image can approximate the atmospheric light as
well. It is more robust than just taking the brightest pixel. We
can use the dark channel to estimate the atmospheric light.

• Pick the top 1% brightest pixels in the dark channel.
• Take the average intensity of those pixels in raw image as

the atmospheric light.

Then we can give the recovery equation:

J(x) =
I(x) − A

max((t(x), t0))
+ A (12)

where t0 is a threshold that prevent the image to become too
white when transmissivity t(x) is extremely small (see Fig. 4).

7. Evaluation

In this section, we evaluate our algorithms on KITTI Dataset
[26], self-collected Mobile Robot Dataset [27] and Cityscapes
Dataset [22].

The KITTI Dataset [26] is a popular public odometry dataset. It
contains data from various scenarios: rural, urban, and highway.
The data collection sensors include 64-ring LiDAR, GPS/INS, two
color, and two grayscale cameras.

The Mobile Robot Dataset [27] is collected on a skid-steering
robot. Sensors are shown in Fig. 7, including a 16-ring LiDAR,
an IMU, and two grayscale cameras. The LiDAR and cameras are
sampled at 10 Hz, and the IMU is sampled at 200 Hz. All the
sensors are well-synchronized with uniform timestamps. We do
not have the most commonly used RTK-GPS as ground truth
since there are many tall buildings and trees in our campus so
that the GPS is not reliable. Instead, we use LiDAR to generate
ground truth pose with a pre-built high-precision point cloud
map. We collect five sequences of data in our campus. Table 1
illustrates the specifics of the dataset. The sequence 1, 2, 3, 5 runs
under the same scene A and the sequence 4 runs under scene B.
Datasets are collected at different times under different weather
conditions, such as daytime, cloudy days, and even rainy days.
As we can see from the table, great changes have taken place in
Fig. 7. Data collection platform of mobile robot dataset.

different sequences, such as illumination, dynamic objects, and
weather conditions, which is enough to verify the robustness of
our approach.

The Cityscapes Dataset [22] focuses on semantic understand-
ing of urban street scenes. The images are collected by a stereo
camera with a 22 cm baseline. The whole sequence is divided into
many small parts since it is not an odometry dataset. Besides,
it only provides low-frequency consumer-level GPS data, which
makes it hard to evaluate trajectory accuracy. But in the valida-
tion sequence frankfurt, that are some typical scenes where the
extreme brightness changes cause the direct method to fail. So
we only use it to test image brightness rectification.

7.1. Online photometric calibration

We first test our photometric calibration on Monocular Visual
Odometry Dataset [12] since it provides exposure time of each
frame. Fig. 8 shows the estimation result and ground truth in
Sequence 47. The red line is the exposure time estimation of our
algorithm, the blue line is the exposure time of the KLT tracker
based photometric calibration, and the black line is ground truth.
It can be seen from the figure that the estimated exposure time
of our algorithm is closer to the ground truth. The KLT tracker
based calibration algorithm shows a large error in some cases
with strong exposure, indicating that our approach has higher
precision and robustness.

To evaluate its performance in autonomous driving, we test
on KITTI [26] dataset. But this dataset does not provide exposure
time. We only give the rectified images in Fig. 9. Some parts are
too intense, and the pixels have been overexposed in the raw
images, especially at the top of the house in the distance. It is
difficult to see the edge. When using the photometric calibration
algorithm based on the KLT tracker, the photometric correction is
wrong, and the entire image becomes overexposed. Our approach
of using the ORB tracker can reduce the image exposure so that
the overexposure is well corrected, and the texture of the whole
image is more precise.

7.2. Hybrid pyramid tracking

We use the KITTI [26] dataset to test the pose estimation
between frames in the frontend. Most of the data is captured on
a moving car in high-speed environments. The motion baseline
between two frames is large, which can verify the improvement
of accuracy by using the hybrid pyramid algorithm proposed
in this paper. We perform frontend tracking only to show the

advantages of our approach. The specific steps are as follows:
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Table 1
Mobile robot dataset.
Num Date Time Scene Illumination Weather Dynamic scene Direction length (m)

1 6.1 9:18 A Daytime Sunny A little Counterclockwise 341.990
2 6.1 9:32 A Daytime Sunny A little Clockwise 325.425
3 6.5 18:16 A Dusk After raining Abundant Counterclockwise 361.765
4 6.5 18:38 B Dusk After raining Abundant Clockwise 777.568
5 6.12 17:48 A Dusk Cloudy Several Counterclockwise 406.877
Fig. 8. Exposure time in Sequence 47.
Fig. 9. Photometric rectification on KITTI Sequence 00.
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Fig. 10. Trajectory comparison in Sequence 05.
Table 2
Average running time.
Method Time

Direct method 30.3 ms
Feature-based method 24.2 ms
Hybrid method 35.7 ms

• Extract the FAST corner points of current image.
• Use the SGBM algorithm to estimate the depth map of

current frame, get the depth of each extracted corner point.
• Use 2D points of current frame and 3D points of previous

frame to perform pose estimation by different methods.
• Estimate poses between frames and draw trajectories for

comparison.

In this experiment, the direct method uses a 5-layer pyramid.
he parameters of the feature-based method are the same as
RB-SLAM2. In the hybrid pyramid, we extract 300 ORB feature
oints in the first layer to match and use two layers to perform
he direct alignment. Other parameters are the same as the direct
ethod.
In Fig. 10, the yellow line is the trajectory of the feature-based

ethod, the blue line is the direct method, and the red line is our
ybrid method. The black line is ground truth in Sequence 05.
e can find that the direct method is less accurate because of

he great movement. After adding feature matching in the upper
ayer to obtain the initial value, the accuracy of direct alignment
an exceed the feature matching method. The experiment shows
hat under the same conditions without other optimizations, the
ose calculated by the hybrid pyramid proposed in this paper is
ore accurate. It improves the robustness of the direct method

o large baseline motion.
The processor of the computing platform in the experiment

s Intel i7-4790@3.60 GHz. Table 2 shows the time consumption
f the three methods. The hybrid pyramid method proposed in
his paper takes more time than others. But it still meets the
equirements of real-time.

.3. Stereo feature-aided semi-direct SLAM system

We test the trajectory accuracy on public KITTI Dataset [26]
nd Mobile Robot Dataset to verify the accuracy and robust-
ess of the whole system. We compare the results with the
tate-of-the-art ORB-SLAM2 system.
First, we test the visual odometry and disable the loop-closure

etection thread. We run the feature-based method
Table 3
Visual odometry trajectory error without loop-closure.

Hybrid method Direct method ORB-SLAM2

Mean RMSE Mean RMSE Mean RMSE
(m) (m) (m) (m) (m) (m)

Seq00 3.9753 4.6433 12.0296 13.3774 4.2218 4.7353
Seq01 8.4216 10.9853 46.5368 57.9955 10.9960 11.6609
Seq02 7.2184 8.6793 10.8594 12.7483 8.8580 10.2612
Seq03 0.9342 1.0717 8.3263 9.3555 0.6867 0.8008
Seq04 0.4295 0.4659 2.9640 3.3881 0.3089 0.3469
Seq05 2.1815 2.4141 7.4165 8.0278 1.8962 2.0399
Seq06 2.7914 3.0485 7.4993 8.3491 2.1110 2.3154
Seq07 1.0849 1.4193 X X 1.3127 1.4960
Seq08 2.7613 3.3839 23.6450 25.6290 3.4244 3.8558
Seq09 2.8014 3.4086 22.0984 24.2153 2.8966 3.5395
Seq10 0.6620 0.7185 2.2024 2.6776 1.1124 1.2423

Table 4
ATE of our approach on KITTI with and without Loop-closure.

With loop-closure Without loop-closure

Mean RMSE Mean RMSE
(m) (m) (m) (m)

Seq00 1.0297 1.1185 3.9753 4.6433
Seq02 3.6286 4.1144 7.2184 8.6793
Seq05 0.8628 0.9859 2.1815 2.4141
Seq06 1.2887 1.3956 2.7914 3.0485
Seq07 0.8231 0.8979 1.0849 1.4193

Table 5
ATE on KITTI with loop-closure.

Hybrid method ORB-SLAM2

Mean RMSE Mean RMSE
(m) (m) (m) (m)

Seq00 1.0297 1.1185 1.1358 1.2681
Seq01 8.4216 10.9853 10.9960 11.6609
Seq02 3.6286 4.1144 5.8315 6.9868
Seq03 0.9342 1.0717 0.6867 0.8008
Seq04 0.4295 0.4659 0.3089 0.3469
Seq05 0.8628 0.9859 0.7318 0.8135
Seq06 1.2887 1.3956 0.8863 0.9068
Seq07 0.8231 0.8979 1.3127 1.4959
Seq08 2.7613 3.3839 3.4244 3.8558
Seq09 2.8014 3.4086 2.8966 3.5395
Seq10 0.6620 0.7185 1.1124 1.2423

(ORB-SLAM2), direct method, and our method on 11 sequences.
Each algorithm is run six times and averaged. Table 3 shows
the average ATE and RMSE of the feature-based method, direct
method, and hybrid method. We can see that the accuracy of



X. Zhao, L. Liu, R. Zheng et al. / Robotics and Autonomous Systems 132 (2020) 103597 9
Fig. 11. KITTI loop-closure test.
Fig. 12. Average RPE on KITTI Dataset.
Table 6
ATE on mobile robot dataset.

Hybrid method ORB-SLAM2

Mean RMSE Mean RMSE
(m) (m) (m) (m)

Seq1 0.3586 0.4370 0.7555 0.8619
Seq2 0.4206 0.4597 1.1723 1.2915
Seq3 0.6231 0.7524 1.2454 1.3366
Seq4 0.9056 1.0150 2.2877 2.4919
Seq5 0.3700 0.4876 0.6108 0.6943

the direct method is low, most of the root mean square errors
are above 10 m, and sequence 07 even fails, mainly due to the
large-baseline motion and low frame rate of the KITTI dataset.
The direct method does not have good adaptability, and the
accuracy of the hybrid method is much higher than the direct
one. Compared with the feature-based method, our approach is
comparable to the most advanced ORB-SLAM2, and the accuracy
on the sequence 00,01,02,07,08,09,10 even exceeds it.

Then, we evaluate the loop-closure module using the sequence
00,02,05,06, and 07. All five sequences have closed-loop paths.
We compare the trajectory accuracy of the full SLAM system with
and without loop-closure to verify the impact of the loop-closure
detection and optimization module on the localization accuracy.
In this experiment, the frontend tracking thread and the backend
sliding window optimization thread use the same parameters and
settings. Table 4 lists the ATE after optimization with and without
loop-closure detection. Fig. 11 shows the trajectory estimation
and the ground truth. We can find that after the loop-closure
detection and optimization, the root mean square error is much
smaller, which shows that the module can continuously cor-
rect error for a long time, thereby obtaining higher localization
accuracy.

Finally, we test the full SLAM system compared with ORB-
SLAM2 on KITTI Dataset [26] and Mobile Robot Dataset. In Fig. 12,
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Fig. 13. Trajectories on mobile robot dataset.
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Fig. 14. Direct method fails due to light interference.
Fig. 15. The result of direct tracking failure.
we draw the average RPE of the 11 sequences, that is, the curves
of translation error and rotation error relative to the path, respec-
tively, where the blue curve is our approach and green curve is
ORB-SLAM2. As is shown in the figure, our approach is better than
ORB-SLAM2 in terms of rotation. The error in short distance ORB-
SLAM2 is smaller, and in long-distance, our approach is better.
The reason is that the high-speed scene leads to a reduction
in the translation accuracy of our approach. Because the pose
estimation accuracy still partially depends on the photometric
error. Although we use feature matching to provide the prior, it
is still slightly worse than the feature-based method under the
large-baseline motion. It can also be seen in Table 5 that the
accuracy of the sequence 03,04,05,06 is marginally lower than
that of the ORB-SLAM2. The main reason is that there are more
short-distance high-speed movements in these four sequences,
resulting in a reduction in translation accuracy, which shows that
our approach needs to be improved for high-speed scenarios.

Fig. 13 and Table 6 gives the trajectories and error on Mobile
Robot Dataset compared with ORB-SLAM2. In this dataset, the
robot moves slowly and does not have a large baseline movement,
which is conducive to obtaining more accurate calculation results
in direct alignment. At the same time, the outdoor scene is rich in
texture and can continuously track stable feature points. Even in
the case of illumination changes, the pose prior can be obtained
through the feature matching to ensure that the direct align-
ment layer is not affected. Therefore, our approach outperforms
ORB-SLAM2 in all sequences.

As is shown in Fig. 14, the data collected by the mobile robot
has a large light interference. There are many cases of excessive
darkness or overexposure. Some of the pedestrians and cars are
overexposed because of the sunlight. In Fig. 15, the red line is
the trajectory of the hybrid algorithm proposed in this paper,
and the blue line is the trajectory of the original direct method.
Our system can still work under light interference, while the
direct method gets the wrong results. It shows that the hybrid
pyramid algorithm proposed in this paper has higher illumination
robustness than the original direct method.

7.4. Image brightness rectification

We test on validation sequence frankfurt of Cityscapes Dataset
[22], which contains extreme brightness changes that cause direct
method failure. In Fig. 16, we sample five images uniformly in
the sequence. The first and the last images do not have halation.
But there are some high-brightness areas in the dark channel due
to the strong reflection of the ground. The other three images
have halation, and its intensity increases gradually. The details
of the image are less affected so that the feature-based method
works well. But the whole image becomes brighter, which brings
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Fig. 16. The raw image, dark channel, transmissivity and rectification on Cityscapes Dataset.
Fig. 17. Comparison with different compensation parameter ω.
T
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drastic jump in the photometric error of the direct method.
rom the perspective of the dark channel and transmissivity, the
ark channel is bright, and transmissivity is small where there is
alation. That is, the proportion of scene radiance in the image
ixel is less than the atmospheric light, according to Eq. (5). After
ectification, the brightness of the non-halation image slightly
ecreased, but the consistency of the image sequence has sig-
ificantly improved. There is no longer jump in the photometric
rror, which guarantees the direct method works well.
 o
In Fig. 17, we test with different compensation parameter w.
he images in the fourth column are a little bit brighter than
hat in the second column, which means that the compensation
arameter w can control the rectification level. If the images are
oo dark, we can increase w.

For further evaluation, we test our SLAM system on the rec-
ified sequence. Fig. 18 shows the trajectory and the point cloud
f the part where illumination changes extremely. It proves that
ur brightness rectification is helpful for the SLAM system.
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Fig. 18. Part of trajectory and point cloud on Cityscapes Dataset [22], sequence frankfurt.
. Conclusion

In this paper, we propose a robust stereo feature-aided semi-
irect SLAM system for robust pose estimation under challenging
nvironments. We also perform online photometric calibration
o obtain better photometric parameters and apply it into visual
dometry. Furthermore, we extend the stereo visual SLAM system
ased on our hybrid pyramid frontend for evaluation. For extreme
rightness change, we employ the dark channel prior to rectify
nd maintain the consistency of image pixels. The photometric
ectification test, hybrid pyramid tracking test, image bright-
ess rectification test, and SLAM test on KITTI [26] and mobile
obot dataset indicate that our method is accurate and robust in
hallenging real-world scenarios.
In future work, we plan to integrate the inertial measurement

nit to deal with stronger inter-frame motion and combine the
mage brightness rectification and the photometric calibration to
liminate regional illumination changes.
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