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A Robust Stereo Semi-direct SLAM System Based on Hybrid Pyramid
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Abstract— We propose a hybrid pyramid based approach
to fuse the direct and indirect methods in visual SLAM, to
allow robust localization under various situations including
large-baseline motion, low-texture environment, and various
illumination changes. In our approach, we first calculate coarse
inter-frame pose estimation by matching the feature points.
Subsequently, we use both direct image alignment and a multi-
scale pyramid method, for refining the previous estimation
to attain better precision. Furthermore, we perform online
photometric calibration along with pose estimation, to reduce
un-modelled errors. To evaluate our approach, we conducted
various real-world experiments on both public datasets and self-
collected ones, by implementing a full SLAM system with the
proposed methods. The results show that our system improves
both localization accuracy and robustness by a wide margin.

I. INTRODUCTION

Visual SLAM technology relies on small-sized and in-
expensive cameras to provide maps and local positioning
results for mobile robots in unknown environments. It has
made remarkable achievements in the past 30 years, and its
positioning accuracy has reached a practical level. However,
under challenging conditions, e.g., low-texture environment,
large-baseline motion, and various illumination changes, per-
formance degradation exists for most visual SLAM systems,
which is the problem we seek to improve.

Specifically, in this work, we propose our method by
exploiting the complementary characteristics of two well-
developed visual SLAM methods, geometric feature based
(indirect) ones [1]-[5] and photometric direct ones [6]-
[11]. On one hand, feature based method performs better
with large baseline motion, fast motion, and with large
illumination changes. This is due to the fact that feature
points are typically robust to scale, rotation, and illumination
changes, compared to the direct gradient computation used
in the direct methods. On the other hand, when performing
localization in low-texture environments where the number
of reliable feature points is limited, the accuracy of feature
based method will be inevitably reduced. However, in this
case the direct methods are less affected. In addition to
accuracy, we also note that the map generated by the indirect
methods is much sparser than the direct methods.

By analyzing the complementary properties of both indi-
rect and direct methods, in this paper, we propose a novel
hybrid approach to fuse both, to allow robust estimation
under challenging conditions. We also note that, similarly to
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Fig. 1. Map and tracjectory on KITTI 05

other robotic localization algorithms [11]-[16], we also per-
form online sensor model (photometric) calibration, which
is the key to low-drift localization. To summarize, the main
contributions of our work are as follows:

o We design a hybrid pyramid method, to allow both di-
rect and indirect based pose optimization for improving
estimation accuracy and robustness.

o We also perform online photometric calibration together
with pose estimation, to reduce un-modeled errors from
photometric cost functions.

o We build a full stereo visual SLAM system with loop-
close detection, pose graph optimization, and relocation,
for performance evaluation. Our system outperforms
state-of-the-art methods, e.g. ORB-SLAM?2 [3], signif-
icantly.

II. RELATED WORK

In recent years, SLAM systems that combine direct and
indirect methods have become popular. The SVO [17] pro-
posed by Forster, Christian and Pizzoli belongs to the semi-
direct method. It extracts feature points at the frontend,
and uses optical flow to perform feature matching and pose
estimation between consecutive frames. However, it still
relies on geometric reprojection errors for pose optimiza-
tion. Simiarly, [11] designed a method for extracting image
patches at frontend, while utilizing photometric errors for
backend optimization. Krombach [18], [19] used the pose
obtained by a feature-based method as the initial value for the
direct method. This can improve the stability of direct visual
odometry. However, this method fails to reach high-precision
pose estimation due to the lack of photometric sensor calibra-
tion. Kim [20] proposed a method of partitioned photometric
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estimation, modified the photometric error function, and im-
proved the partial illumination problem of the direct method.
Younes [21] presented a method in combination of the direct
and indirect methods, namely feature-based direct monocular
odometry. Specifically, they presented a VO method that is
based on DSO [22] but used feature-based tracking during
optimization. However, in this method, when the direct
method fails, it will begin to generate large calculation errors.
Lee [23] proposed a loose-coupled method by combining
ORB-SLAM?2 and DSO to improve positioning accuracy.
However, its frontend and backend are almost independent,
which cannot share estimation information to further improve
the pose precision.

III. ONLINE PHOTOMETRIC CALIBRATION BASED ON
FEATURE POINTS

Our method is initially motivated by the work of [12].
Specifically, [12] proposed to extract the Shi-Thomasi corner
points [24] by using gain-robust KLT algorithm and select-
ing good candidates for tracking. However, large exposure
changes and small overlapping regions between frames are
inevitable in real scenarios, which makes KLT not robust
enough. Therefore, we propose to use ORB feature points.
By performing descriptor based matching, the previously
mentioned difficulties can be reduced.

After getting a set of points P tracked across images where
point p € P is visible in frame F},, the energy function is
given by

E:Zwa OF — f(e;V (2) LP) (1)

pEP i€l

r(f,V,ei,LP) h

where w!” is a weighting factor for residual 7, O? is the

output intensity of p in image ¢, e; is the exposure time of
image i, L,, is the radiance of p and z¥ is the spatial location

of the projection of p onto image <. We use the Huber norm
|| - || for robust estimation, parametrized by h € R.

When a new frame arrives, it is corrected by the prior
response and vignette function. The exposure time of the
new frame can be calculated by the weighted least squares
method.
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where P; is the set of scene points visible in the ¢’th image
and f~! is the inverse of the response function. Each residual
is now only dependent on the exposure time of its frame and
the radiance of its scene point. So the exposure time can be
calculated efficiently.

To model the camera response function, we use the Empir-
ic Model of Response (EMoR) model. It applies a principal
component analysis to find the mean response fy(x) and
basis funciton h(z). By choosing parameters ¢, € R, we
can get fi(z) following:

Jol@) = fol) + 3 exl(a) )
k=1

When modelling vignette, we assume that its center falls
together with the image center. It is modelled as a sixth-order
polynomial:

V(z) =1+ viR(z)> + 02R(2)* + v3R(z)®  (4)
where R(z) is the normalized radius of the image point z.

IV. HYBRID PYRAMID-BASED SEMI-DIRECT METHOD

Visual odometry based on direct methods does not contain
feature point extraction and matching. Therefore, in order
to improve the robustness to large-baseline motion in direct
visual odometry, we add feature point matching into it and
propose visual odometry based on the hybrid pyramid. The
whole algorithm is based on the coarse-to-fine pyramid of
DSO for improvements.
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A. Feature Point Extraction

Feature point extraction is the same as LDSO [25].

o We first extract more corner points like the method in
DSO by using the dynamic grid gradient threshold. The
maximum number of corner points set here is 2000 so
that we can extract more points with different gradients
in the image.

o Further extraction is performed on the obtained corner
points using the Shi-Tomasi corner extraction method.
The corner points are filtered by a screening formula
of R = min(A1,\2) to extract points with higher
repeatability.

o Calculate the ORB descriptors on the points extracted
in the second step and convert them into Bag-of-Words
vectors.

« Repeat the above steps in mesh with different sizes.

B. Hybrid Pyramid

The direct sparse odometry uses a five-layer pyramid
framework. The highest level image is used for rough calcu-
lation, and then the upper layer’s result is passed to the next
layer, thereby achieving coarse-to-fine calculation, getting
more accurate results. It can be known from the experiment
that the first few layers can only get the approximate pose
transformation result, and only the last layer obtains the most
accurate results.

To get prior value in the first layer of the DSO, we
use zero motion, uniform motion and semi-uniform motion
hypothesis. It is possible to avoid being unable to iterate to
the global optimal solution caused by the long displacement
under some circumstances. However, in the case of large
motion baselines, such as high-speed vehicle motion, the
loss of pose calculation accuracy still exists. In this section,
we propose a hybrid pyramids framework to improve its
robustness to large motions.

1) Feature Matching Layer:

Step 1 : Feature extraction and matching. When a new
frame arrives, the feature points of the current frame are
matched with the previous one. 2D-2D matches are obtained.
If the number of matches is greater than N7, the process
goes to the next step. If it is less than N;, the feature point
matching fails due to the environment containing repetitive
textures or too few textures. Then the process skips the
following steps and goes to direct alignment layer.

Step 2 : Getting 2D-3D matches. The matching feature
points of the previous frame are projected onto the previous
keyframe by the projection relationship. Since the previous
keyframe calculated the depth, we select the matching feature
points with depth (greater than 0 and depth within 100 times
of the baseline)

Step 3 : Choosing calculation method. We need to choose
different calculation methods based on the number of 2D-3D
matches.

o If the 2D-3D matches are less than N, the feature point
matching fails. The process goes to direct alignment
layer.

o If the 2D-3D matches are less than N3 and more
than N5, we use the 2D-2D polar geometry method
to calculate the pose relationship between the current
frame and the previous one.

o If the currently obtained 2D-3D matches are more than
N3, we use the 2D-3D PnP method to calculate the pose
relationship between the current frame and the previous
one.

Ni, Ny, N3 are set as fixed parameters and satisfy Ny <

N3

After obtaining the feature point matching, we simulta-
neously calculate the exposure time of the latest frame and
pass it together to the direct alignment layer.

2) Direct Alignment Layer:

According to the results of the feature matching layer, we
get the following situations:

e« When the feature point matching fails, we use the
zero motion, uniform motion or semi-uniform motion
hypothesis to give the initial value.

o When the 2D-2D pose estimation succeeds, the rotation
in the relative pose of the current moment relative to the
previous moment is obtained by the eight-point method,
and the translation is obtained by the uniform velocity
model estimation.

o When the 2D-3D pose estimation succeeds, the relative
pose of the current moment relative to the previous
moment is calculated by the feature point matching
optimization.

The number of matching layer is also different when
performing direct multi-layer iterative alignment. When the
relative pose to the previous frame can be obtained, the
direct alignment only uses a two-layer pyramid. When the
feature point matching fails, we use a five-layer pyramid,
which ensures that the direct alignment can be optimized to
the global optimal solution under different conditions, and
reduces computation to improve real-time performance.

3) Hybrid Residual Function:

In this section, we show the details of the residual function
for the final optimization. Because we can get the repro-
jection error of the feature point matches and the direct
alignment photometric error, we use the hybrid residual
function to improve the accuracy of the final calculation.
The total residual function is given by:

E(f) = Wrep HET€])||2 + Wphoto HE‘photo”2 (5)

Where w;.¢p and wppoto are weights of the two errors set
as fixed parameters. We can rewrite the cost function as:

T
€y Wrep €Eu
E(é‘) = 671 w'rep ev
€photo Wphoto Ephoto
=el'We
(6)

where e is joint residual, W is the information matrix and
¢ is the camera’s pose. Based on L-M iterations, we can get
Ag
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At =—(JTWJIT+ )" JTWe 7
where J is the Jacobin of e and A is the damping factor.

V. STEREO VISUAL SLAM BASED ON FEATURE AND
DIRECT METHOD FUSION

In order to implement a full stereo visual SLAM system,
we complete each module of the system. The frontend
calculates the pose of each frame through the hybrid pyra-
mid visual odometry, the backend receives poses, calculates
stereo scales and optimizes keyframe poses. The loop-closing
detection and optimization is performed in another thread.
The global pose is optimized to obtain a globally consistent
trajectory and map.

As is shown in Fig. 2(b), the frontend tracking module
is similar to DSO. The whole system design resembles
ORB-SLAM?2, which is divided into three parallel threads:
pose tracking thread, sliding window optimization thread and
loop-closing detection thread.

« Frontend tracking thread. The image preprocessing sec-
tion includes monocular image distortion correction,
stereo image parallel correction, and corner points and
feature points extraction of the stereo image. Then it
uses the hybrid pyramid to track and finally determine
whether it is a keyframe.

o Backend sliding window optimization thread. It first
performs a stereo scale estimation, restores the inverse
depth of the current frame 3D point and then uses
the photometric error to optimize the points and poses
in the sliding window. Finally, it judges whether the
frames and points in the sliding window need to be
marginalized and performs marginalization.

o Loop-closing detection and optimization thread. It first
uses the bag-of-words model to perform loop-closing
detection. When detecting a closed loop, it performs
double matching verification of 2D-2D and 2D-3D.
Then it projects the verified loop-closing frame to
the current sliding window and calculates the Sim(3)
transformation. Finally, it performs loop-closing opti-
mization through the pose graph to correct the pose
error and global map points.

VI. EVALUATION
A. Online Photometric Calibration

In this experiment, the system uses a sliding window of
length 7, extracts 1000 ORB feature points per frame and
selects a keyframe every five frames. Each feature point
is tracked at least three frames in order to be considered
successful. The tracking image block size is set to 3*3, which
avoids the use of only high-gradient pixels and reduce the
amount of calculation. In this experiment, the whole image
is divided into multiple meshes according to the image size
to extract feature points. The size of each mesh is 32*32 so
that the distribution of feature points in the image is uniform.
In the backend optimization, the system sets 200 frames as a
block. It optimizes the exposure time, response function, and

vignette function parameters of the camera every 200 frames.
The exposure time uses the value estimated by the frontend
as the initial value. It is optimized again in this process. In
each iteration of the backend optimization, the system uses
an outlier culling strategy to eliminate some wrong points
continuously, thereby improving the optimization speed and
accuracy.
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Fig. 3. Exposure time on Sequence 47.

Fig. 3 shows the estimation result and ground truth on
Sequence 47. The red line is the exposure time estimation of
our algorithm, the blue line is the exposure time of the KLT
based photometric calibration and the black line is ground
truth. It can be seen from the figure that the estimated expo-
sure time of our algorithm is closer to the actual exposure
curve. The KLT based calibration algorithm shows a large
deviation in some cases with strong exposure, indicating that
the photometric parameter calibration algorithm proposed in
this paper has higher precision and robustness.
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Fig. 4. Photometric rectification comparison

(a) raw

We test our online photometric calibration on KITTI
dataset. Fig. 4 shows part of the rectified result.

In the original image, some parts of the picture are too in-
tense and the pixels have been overexposed, especially at the
top of the house in the distance. It is difficult to see the edge.
When using the photometric correction algorithm based on
KLT tracking, the photometric correction is wrong, and the
entire image becomes overexposed. Using the photometric
calibration algorithm proposed in this paper can reduce the
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image exposure so that the overexposure is well corrected
and the texture of the whole image is clearer.

B. Hybrid Pyramid Tracking

We use the KITTI dataset to compare the pose proposition
between frames in frontend. Most of the data is captured
on a moving car in high-speed or highway environments.
The motion speed is fast and the image frame rate is low.
The motion baseline between two frames is large, which can
verify the improvement of the large-baseline motion by the
hybrid pyramid algorithm proposed in this paper. In order
to reflect only the advantages of hybrid method tracking,
without adding interference from other modules such as
depth estimation, back-end optimization and other strategies.
We accumulate the pose between two frames. The specific
steps are as follows:

o Extract the FAST corner points of the current image.

o Use the stereo matching SGBM algorithm to estimate
the depth of the image of the current frame, providing
a corresponding depth for each extracted corner point.

e Use the 2D points of the current frame and the 3D
points of the previous frame to perform pose estimation
of different methods.

« Accumulate the estimated poses between the two frames
obtained each time and draw the trajectories for com-
parison.

In this experiment, the original direct method uses a 5-
layer pyramid. The parameter of the feature method refers
to ORB-SLAM2. In the hybrid method, we use 300 ORB
feature points in the first layer to match and use another two
layers to perform the direct alignment. Other parameters are
the same as the original direct method. This setting can rule
out the influence of other parameters and algorithms on the
pose estimation.

JE—
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Fig. 5. Pose accumxl.{xl]:;tion comparison

In Fig. 5, the yellow line is the result of the ORB
feature matching method, the blue line is the original direct
method and the red line is the hybrid pyramid method. The
black line is ground truth in Sequence 05. It can be seen
that the original direct method is less effective because of
the great movement. After adding feature matching in the
uppermost layer to obtain the initial value, the accuracy of
direct alignment can exceed the feature matching method.
The experiments show that under the same algorithm s-
trategy without other optimizations, the pose calculated by
the hybrid pyramid method proposed in this paper is more

accurate. It improves the robustness of the direct method to
large baseline motion.

TABLE I
AVERAGE RUNNING TIME

Method Time

Direct method 30.3ms
Feature-based method | 24.2ms
Hybrid method 35.7ms

The processor of the computing platform in the test is Intel
i7-4790@3.60GHz. Table I shows the time consumption of
the three methods. The hybrid pyramid method proposed in
this paper takes more time than others. But it still meets the
requirements of real-time.

C. Stereo Visual SLAM Based on Hybrid Pyramid

In order to verify the accuracy and robustness of the
overall system, this section tests the trajectory accuracy of
the entire system on public dataset KITTI and our dataset
collected by a mobile robot in the campus. We compare the
result with the state-of-the-art ORB-SLAM?2 system.

TABLE II
COMPARISON WITH DIRECT METHOD

Hybrid method Direct method

Mean RMSE Mean RMSE

(m) (m) (m) (m)
Seq00  1.02973  1.11851 12.0296  13.3774
Seq01  8.42158 10.9853  46.5368  57.9955
Seq02  3.62857 4.11444 10.8594  12.7483
Seq03  0.93416 1.07167  8.32629  9.35551
Seq04  0.42946  0.46587 296395  3.38809
Seq05  0.86280 0.98589  7.41651  8.02779
Seq06  1.28865 1.39560  7.49934  8.34913
Seq07  0.82309  0.89792 X X
Seq08  2.76125  3.38392  23.6450  25.6290
Seq09  2.80135 3.40864 22.0984 24.2153
Seql0  0.66203  0.71849 220243  2.67760

TABLE III
KITTI RESULT WITH LOOP-CLOSING

Hybrid method ORB-SLAM2

Mean RMSE Mean RMSE

(m) (m) (m) (m)
Seq00  1.02973  1.11851 1.13575 1.26814
Seq01  8.42158 10.9853 10.9960  11.6609
Seq02  3.62857 4.11444 583154 6.98676
Seq03  0.93416 1.07167 0.68673  0.80080
Seq04  0.42946  0.46587  0.30890  0.34692
Seq05  0.86280 0.98589  0.73178  0.81351
Seq06  1.28865  1.39560  0.88633  0.90682
Seq07  0.82309  0.89792  1.31268  1.49593
Seq08  2.76125  3.38392  3.42435  3.85576
Seq09  2.80135 3.40864 2.89656  3.53948
Seql0  0.66203  0.71849  1.11236  1.24230

Sequences 0-10 in KITTI provide ground truth pose. But
they are not completely accurate, especially in the vertical
direction. So we only compare x and y on the translation
error. We run our method, ORB-SLAM?2 and direct method
on 11 sequences. Table II shows the average ATE and RMSE
of the hybrid and direct methods proposed in this paper after
six runs. The result shows that the direct method has lower
precision, most of the root mean square errors are above
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TABLE IV
MOBILE ROBOT DATASET

Num Date Time Scene Illumination Weather Dynamic scene Direction length(m)
1 6.1 9:18 A Daytime Sunny A little Counterclockwise 341.990
2 6.1 9:32 A Daytime Sunny A little Clockwise 325.425
3 6.5 18:16 A Dusk After raining Abundant Counterclockwise 361.765
4 6.5 18:38 B Dusk After raining Abundant Clockwise 777.568
5 6.12  17:48 A Dusk Cloudy Several Counterclockwise 406.877
TABLE V
TEST RESULT ON MOBILE ROBOT DATASET
Hybrid method ORB-SLAM2 o
Mean RMSE Mean RMSE
(m) (m) (m) (m)
Seql  0.35860 0.43696 0.75548  0.86192 .
Seq2  0.42058 0.45972  1.17225 1.29146
Seq3  0.62313  0.75241  1.24543  1.33656
Seq4 090563 1.01496 2.28772  2.49190
SeqS  0.36995 0.48760 0.61075  0.69430

10m. It is because the KITTI dataset has a lower frame
rate and large motion baseline. The direct method doesn’t
have good adaptability. The accuracy of our hybrid method
is much higher than that of the direct method. Table III shows
the comparison results between the proposed algorithm and
ORB-SLAM?2 on KITTI with loop-closing detection module.
Our method proposed in this paper is equivalent to the
accuracy of the state-of-the-art ORB-SLAM?2 system. The
accuracy on sequence 00, 01, 02, 07, 08, 09 and 10 even
exceeds ORB-SLAM2.

We use five sequences of data collected by mobile robots
for testing. The sequence 1, 2, 3, 5 runs under the same
scene A and the sequence 4 runs under scene B. Datasets are
collected at different time under different weather conditions,
such as daytime, cloudy days, and even rainy days. The Table
IV illustrates the specifics of the data set. As we can see
from the table, great changes have taken place in different
data sets, such as changes in illumination, dynamic car
body movement, dynamic pedestrian movement, and weather
conditions. Moreover, in order to verify whether the proposed
algorithm works in different environments, we collected data
in different directions of movement. Sequences 1, 3, and 5
are collected in a counterclockwise direction, and sequences
2 and 4 are collected in a clockwise direction.

From Table V we can know that the proposed algorithm
in the mobile robot dataset has a much smaller ATE than
ORB-SLAM2.

Fig. 6. Direct method fails due to light interference

As is shown in Fig. 6, the data collected by the mobile
robot has a large amount of light interference. There are
many cases of excessive darkness or overexposure. Some

Fig. 7. The result of direct tracking failure

of the pedestrians and cars are overexposed because of the
sunlight. In Fig. 7, the blue line is the trajectory of the
hybrid algorithm proposed in this paper and the red line
is the trajectory of the direct method that does not use
feature point tracking. Because of the online photometric
estimation algorithm based on ORB feature point tracking,
the whole system can still estimate the pose normally, while
the ordinary direct method runs under the influence of
illumination and finally lead to the program crash. It shows
that the hybrid algorithm proposed in this paper has higher
illumination robustness than the original direct method.

VII. CONCLUSION

In this paper, we propose a robust stereo visual SLAM
system based on the hybrid pyramid to for robust pose
estimation under challenging environments. We also perform
online photometric calibration to obtain better photometric
parameters and apply it into visual odometry. Furthermore,
We extend stereo visual SLAM system based on our hybrid
pyramid frontend for evaluation. The photometric rectifica-
tion test, hybrid pyramid tracking test and SLAM test on
KITTI and mobile robot dataset indicate that our method is
accurate and robust in challenging real-world scenarios.

In future work, we plan to integrate inertial measurement
unit to deal with stronger inter-frame motion and apply
local photometric calibration to eliminate regional luminosity
changes.
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