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Abstract—Self-supervised learning (SSL) has recently achieved
impressive performance on various time series tasks. The most
prominent advantage of SSL is that it reduces the dependence on
labeled data. Based on the pre-training and fine-tuning strategy,
even a small amount of labeled data can achieve high performance.
Compared with many published self-supervised surveys on com-
puter vision and natural language processing, a comprehensive
survey for time series SSL is still missing. To fill this gap, we
review current state-of-the-art SSL methods for time series data
in this article. To this end, we first comprehensively review existing
surveys related to SSL and time series, and then provide a new
taxonomy of existing time series SSL methods by summarizing
them from three perspectives: generative-based, contrastive-based,
and adversarial-based. These methods are further divided into ten
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subcategories with detailed reviews and discussions about their
key intuitions, main frameworks, advantages and disadvantages.
To facilitate the experiments and validation of time series SSL
methods, we also summarize datasets commonly used in time series
forecasting, classification, anomaly detection, and clustering tasks.
Finally, we present the future directions of SSL for time series
analysis.

Index Terms—Deep learning, representation learning, self-
supervised learning, time series analysis.

I. INTRODUCTION

T IME series data abound in many real-world scenarios [1],
[2], including human activity recognition [3], industrial

fault diagnosis [4], smart building management [5], and health-
care [6]. The key to most tasks based on time series analysis
is to extract useful and informative features. In recent years,
Deep Learning (DL) has shown impressive performance in
extracting hidden patterns and features of the data. Generally,
the availability of sufficiently large labeled data is one of the
critical factors for a reliable DL-based feature extraction model,
usually referred to as supervised learning. Unfortunately, this
requirement is difficult to meet in some practical scenarios,
particularly for time series data, where obtaining labeled data
is a time-consuming process. As an alternative, Self-Supervised
Learning (SSL) has garnered increasing attention for its label-
efficiency and generalization ability, and consequently, many
latest time series modeling methods have been following this
learning paradigm.

SSL is a subset of unsupervised learning that utilizes pretext
tasks to derive supervision signals from unlabeled data. These
pretext tasks are self-generated challenges that the model solves
to learn from the data, thereby creating valuable representations
for downstream tasks. SSL does not require additional manually
labeled data because the supervisory signal is derived from the
data itself. With the help of well-designed pretext tasks, SSL
has recently achieved great success in the domains of Computer
Vision (CV) [7], [8], [9], [10] and Natural Language Processing
(NLP) [11], [12].

With the great success of SSL in CV and NLP, it is appealing
to extend SSL to time series data. However, transferring the
pretext tasks designed for CV/NLP directly to time series data

0162-8828 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 24,2024 at 02:58:01 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1968-8004
https://orcid.org/0000-0003-4516-2524
https://orcid.org/0000-0003-4059-8396
https://orcid.org/0009-0006-3424-6967
https://orcid.org/0000-0002-6833-4811
https://orcid.org/0000-0003-4822-8939
https://orcid.org/0000-0001-6519-676X
https://orcid.org/0000-0003-2817-7337
https://orcid.org/0000-0002-9877-2716
https://orcid.org/0000-0002-7027-7916
https://orcid.org/0000-0003-0794-527X
mailto:zhangkexin@zju.edu.cn
mailto:qingsongedu@gmail.com
mailto:chaolizcl@zjnu.edu.cn
mailto:rycai@zju.edu.cn
mailto:yongliu@iipc.zju.edu.cn
mailto:ming.jin@monash.edu
mailto:james.z@antgroup.com
mailto:yuxliang@outlook.com
mailto:gspang@smu.edu.sg
mailto:dongjin.song@uconn.edu
mailto:s.pan@griffith.edu.au
https://github.com/qingsongedu/Awesome-SSL4TS.
https://doi.org/10.1109/TPAMI.2024.3387317


6776 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 10, OCTOBER 2024

Fig. 1. Proposed taxonomy of SSL for time series data.

is non-trivial, and often fails to work in many scenarios. Here
we highlight some typical challenges that arise when applying
SSL to time series data. First, time series data exhibit unique
properties such as seasonality, trend, and frequency domain in-
formation [13], [14], [15]. Since most pretext tasks designed for
image or language data do not consider these semantics related
to time series data, they cannot be directly adopted. Second,
some techniques commonly used in SSL, such as data augmen-
tation, need to be specially designed for time series data. For
example, rotation and crop are the commonly used augmentation
techniques for image data [16]. However, these two techniques
may break the temporal dependency of the series data. Third,
most time series data contain multiple dimensions, i.e., multi-
variate time series. However, useful information usually only
exists in a few dimensions, making it difficult to extract useful
information in time series using SSL methods from other data
types.

To the best of our knowledge, there has yet to be a comprehen-
sive and systematic review of SSL for time series data, in contrast
to the extensive literature on SSL for CV or NLP [17], [18]. The
surveys proposed by Eldele et al. [19] and Deldari et al. [20]
are partly similar to our work. However, these two reviews
only discuss a small part of self-supervised contrastive learning
(SSCL), which requires a more comprehensive literature review.
Furthermore, a summary of benchmark time series datasets
needs to be included, and the potential research directions for
time series SSL are also scarce.

This article provides a review of current state-of-the-art SSL
methods for time series data. We begin by summarizing re-
cent reviews on SSL and time series data and then propose
a new taxonomy from three perspectives: generative-based,
contrastive-based, and adversarial-based. The taxonomy is sim-
ilar to the one proposed by Liu et al. [21] but specifically
concentrated on time series data. For generative-based meth-
ods, we describe three frameworks: autoregressive-based fore-
casting, auto-encoder-based reconstruction, and diffusion-based

generation. For contrastive-based methods, we divide the ex-
isting work into five categories based on how positive and
negative samples are generated, including sampling contrast,
prediction contrast, augmentation contrast, prototype contrast,
and expert knowledge contrast. Then we sort out and summa-
rize the adversarial-based methods based on two target tasks:
time series generation/imputation and auxiliary representation
enhancement. The proposed taxonomy is shown in Fig. 1. We
conclude this work by discussing possible future directions
for time series SSL, including selection and combination of
data augmentation, selection of positive and negative samples
in SSCL, the inductive bias for time series SSL, theoretical
analysis of SSCL, adversarial attacks and robust analysis on
time series, time series domain adaption, pretraining and large
models for time series, time series SSL in collaborative systems,
and benchmark evaluation for time series SSL.

Our main contributions are summarized as follows.
� New taxonomy and comprehensive review: We provide a

new taxonomy and a detailed and up-to-date review of time
series SSL. We divide existing methods into ten categories,
and for each category, we describe the basic frameworks,
mathematical expression, fine-grained classification, de-
tailed comparison, advantages and disadvantages. To the
best of our knowledge, this is the first work to compre-
hensively and systematically review the existing studies of
SSL for time series data.

� Collection of applications and datasets: We collect re-
sources on time series SSL, including applications and
datasets, and investigate related data sources, character-
istics, and corresponding works.

� Abundant future directions: We point out key problems
in this field from both applicative and methodology per-
spectives, analyze their causes and possible solutions, and
discuss future research directions for time series SSL. We
strongly believe that our efforts will ignite further research
interests in time series SSL.
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The rest of the article is organized as follows. Section II
provides some review literature on SSL and time series data.
Sections III to V describe the generation-based, contrastive-
based, and adversarial-based methods, respectively. Section VI
lists some commonly used time series data sets from the applica-
tion perspective. The quantitative performance comparisons and
discussions are also provided. Section VII discusses promising
directions of time series SSL, and Section VIII concludes the
article.

II. RELATED SURVEYS

In this section, the definition of time series data is first intro-
duced, and then several recent reviews on SSL and time series
analysis are scrutinized.

A. Definition of Time Series Data

1) Univariate Time Series: A univariate time series refers
to an ordered sequence of observations or measurements of
the same variable indexed by time. It can be defined as X =
(x0, x1, x2, . . . , xt), where xi is the point at timestamp i. Most
often, the measurements are made at regular time intervals.

2) Multivariate Time Series: A multivariate time series con-
sists of two or more interrelated variables (or dimensions) that
depend on time. It is a combination of multiple univariate time
series and can be defined as X = [X0, X1, X2, . . . , Xp], where
p is the number of variables.

3) Multiple Multivariate Time Series: Considering the sce-
nario where distinct sets of multivariate time series are con-
currently examined. Analyzing such datasets involves studying
each set independently and exploring the relationships between
different sets. For instance, if we study meteorological data from
different cities, each city’s data forms a multivariate time series,
collectively resulting in multiple multivariate time series. This
can be articulated as X = {X0,X1,X2, . . . ,Xn}, where n is
the number of multivariate time series.

B. Surveys on SSL

The surveys on SSL can be categorized by different criteria.
In this paper, we outline three widely used criteria: learning
paradigms, pretext tasks and components/modules.

1) Learning Paradigms: This category focuses on model
architectures and training objectives. The SSL methods can be
roughly divided into the following categories: generative-based,
contrastive-based, and adversarial-based methods. The charac-
teristics and descriptions of the above methods can be found in
Appendix A, available online. Using the learning paradigm as
a taxonomy is arguably the most popular among the existing
SSL surveys, including [20], [22], [23], [24], [25], [26], [27].
However, not all surveys cover the above three categories. The
readers are referred to these surveys for more details. In Table I,
we also provide the data modalities involved in each survey,
which can help readers quickly find the research work closely
related to them.

2) Pretext Tasks: The pretext task serves as a means to learn
informative representations for downstream tasks. Unlike the

TABLE I
OVERVIEW OF RECENT SSL SURVEYS ON DIFFERENT MODALITIES

learning-paradigm-based criterion, the pretext-task-based cri-
terion is also related to data modality. For example, Ericsson
et al. [28] provides a very comprehensive review of pretext
tasks for multiple modalities, including image, video, text, audio,
time series, and graph. The various self-supervised pretexts
are divided into five broad families: transformation prediction,
masked prediction, instance discrimination, clustering, and con-
trastive instance discrimination. Jing and Tian [18] summarize
the self-supervised feature learning methods on image and
video data, and four categories are discussed: generation-based,
context-based, free semantic label-based, and cross modal-
based, where cross-modal-based methods construct learning
task using RGB frame sequence an optical flow sequence, which
are unique features in the video. Gui et al. [30] explore four
kinds of pretext tasks in computer vision and natural language
processing, including context-based methods, contrastive learn-
ing methods, generative algorithms, and contrastive generative
methods. Essentially, the core of the pretext tasks is how to con-
struct pseudo-supervision signals. Generally speaking, ignoring
the differences in data modalities, existing pretext tasks can be
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roughly summarized into three categories: context prediction,
instance discrimination, and instance generation. The main dif-
ferences and examples are summarized in Table III. It should be
noted that here we only list some commonly used pretexts tasks,
and some special pretext tasks are not the focus of this article.
The details can be found in Appendix B.2, available online.

3) Components and Modules: The literature categorizing
SSCL methods according to their modules and components
throughout the pipeline is also an important direction. Jaiswal
et al. [17], Le-Khac et al. [29] and Liu et al. [33] sort out the
modules and components required in SSL from different per-
spectives. Specifically, Liu et al. [33] summarizes the research
progress of self-supervised contrastive learning on medical time
series data. In summary, the pipeline can be divided into four
components: positive and negative samples, pretext task, model
architecture, and training loss.

The basic intuition behind SSCL is to pull positive samples
closer and push negative samples away. Therefore, the first com-
ponent is to construct positive and negative samples. According
to the suggestions of Le-Khac et al. [29], the main methods can
be divided into the following categories: multisensory signals,
data augmentation, local-global consistency, and temporal con-
sistency. Additional descriptions regarding the characteristics of
these categories can be found in Appendix B.1, available online.

The second component is pretext tasks, which is a self-
supervised task that acts as an important strategy to learn data
representations using pseudo-labels [17]. Pretext tasks have
been summarized and categorized in the previous subsection,
so repeated content will not be introduced again. The details can
be found in Section II-B2 and Appendix B.2, available online.

The third component is model architecture, which deter-
mines how positive and negative samples are encoded during
training. The major categories include end-to-end [16], mem-
ory bank [34], momentum encoder [35], and clustering [36].
More details of these four architectures are summarized in
Appendix B.3, available online.

The fourth component is training loss. As summarized in [29],
commonly used contrastive loss functions generally include
scoring functions (cosine similarity), energy-based margin func-
tions (pair loss and triplet loss), probabilistic NCE-based func-
tions, and mutual information based functions. More details of
these loss functions are summarized in Appendix B.4, available
online.

C. Surveys on Time Series Data

The surveys on time series data can be roughly divided into
two categories. The first category focuses on different tasks, such
as classification [37], [38], forecasting [39], [40], [41], [42], and
anomaly detection [43], [44]. These surveys comprehensively
sort out the existing methods for each task. The second category
focuses on the key components of time series modeling based
on deep neural networks, such as data augmentation [33], [45],
[46], [47], model structure [33], [48], [49]. [45] proposed a
new taxonomy that divides the existing data augmentation tech-
niques into basic and advanced approaches. [46] also provides
a taxonomy and outlines four families: transformation-based

methods, pattern mixing, generative models, and decomposition
methods. Moreover, both [45] and [46] empirically compare dif-
ferent data augmentation methods for time series classification
tasks. [48] systematically reviews transformer schemes for time
series modeling from two perspectives: network structure and
applications. Liu et al. [33] provide a comprehensive summary
of the various augmentations applied to medical time series
data, the architectures of pre-training encoders, the types of
fine-tuning classifiers and clusters, and the popular contrastive
loss functions. The taxonomies proposed by Eldele et al. [19],
Deldari et al. [20] and Liu et al. [33] are somewhat similar
to our proposed taxonomy, i.e., three taxonomies involve time
series self-supervised contrastive learning methods. However,
our taxonomy provides more detailed categories and more liter-
ature in the contrastive-based approach. Although the taxonomy
proposed by Liu et al. [33] also focuses on time series data.
They emphasize discussion of medical time series data, while
we focus more on general time series SSL. More importantly, in
addition to contrastive-based approaches, we also thoroughly
review a large set of literature for the generative-based and
adversarial-based approaches.

III. GENERATIVE-BASED METHODS

In this category, the pretext task is to generate the expected
data based on a given view of the data. In the context of time
series modeling, the commonly used pretext tasks include using
the past series to forecast the future windows or specific time
stamps, using the encoder and decoder to reconstruct the input,
and forecasting the unseen part of the masked time series.
This section sorts out the existing self-supervised representation
learning methods in time series modeling from the perspectives
of autoregressive-based forecasting, autoencoder-based recon-
struction, and diffusion-based generation. It should be noted that
the autoencoder-based reconstruction task is also viewed as an
unsupervised framework. In the context of SSL, we mainly use
the reconstruction task as a pretext task, and the final goal is
to obtain the representations through autoencoder models. The
illustration of the generative-based SSL for time series is shown
in Fig. 2. In Appendix C.1–C.3, available online, the main advan-
tages and disadvantages of three generative-based submethods
are summarized. Furthermore, the direct comparison of the three
methods is shown in Appendix C.4, available online.

A. Autoregressive-Based Forecasting

Given the current time step t, the goal of an autoregressive-
based forecasting (ARF) task is to forecast K future horizons
based on t historical time steps, which can be expressed as:

x̂[t+1:t+K] = f
(
x[1:t]

)
, (1)

where x̂[t+1:t+K] represents the target window, andK represents
the length of the target window. WhenK = 1, (1) is a single-step
forecasting model, and it is a multi-step forecasting model when
K > 1. x[1:t] represents the input series before time t (including
t), which is usually used as the input of the model. f(·) represents
the forecasting model. The learning objective is to minimize the
distance between the predicted target window and the ground
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Fig. 2. Three categories of generative-based SSL for time series data.

truth, thus the loss function can be defined as:

L = D
(
x̂[t+1:t+K], x[t+1:t+K]

)
, (2)

where D(·) represents the distance between the predicted fu-
ture window x̂[t+1:t+K] and the ground-truth future window
x[t+1:t+K], usually measured by the mean square error (MSE),
i.e.,

L =
1

K

K∑
k=1

(
x̂[t+k] − x[t+k]

)2
. (3)

In the time series modeling with autoregressive-based fore-
casting task as a pretext task, Recurrent neural networks (RNNs)
are widely used thanks to their strong capability in spatiotem-
poral dynamic behavior modeling or sequence prediction [41],
[42], [50], [51]. Therefore, it is also naturally applied in the
pretext task based on autoregressive forecasting. THOC [52]
constructs a self-supervised pretext task for multi-resolution
single-step forecasting called Temporal Self-Supervision (TSS).
TSS takes the L-layer dilated RNN with skip-connection struc-
ture as the model. By setting skip length, it can ensure that the
forecasting tasks can be performed with different resolutions
at the same time. In addition to RNNs, the forecasting models
based on Convolutional neural networks (CNNs) also have been
developed [53]. Moreover, STraTS [54] first encodes the time
series data into triple representations to avoid the limitations of
using basic RNN and CNN in modeling irregular and sparse time
series data and then builds the transformer-based forecasting
model for modeling multivariate medical clinical time series.
Graph-based time series forecasting methods can also be used
as a self-supervised pretext task. Compared with RNNs and
CNNs, Graph Neural Networks (GNNs) can better capture the
correlation among variables and constituent in multivariate time
series data, such as GDN [55] and GTS [56]. Graph-augmented

normalizing flow (GANF) is another graph-based approach that
can model the conditional dependencies among constituent time
series [57]. In order to choose a more appropriate model in
building time series SSL task, we further give the advantages and
disadvantages of these three commonly used models. The details
can be found in Appendix D, available online. Unlike the above
methods, SSTSC [58] proposes a temporal relation learning
prediction task based on the “Past-Anchor-Future” strategy as
a self-supervised pretext task. Instead of directly forecasting
the values of the future time windows, SSTSC predicts the
relationships of the time windows, which can fully mine the
temporal relationship in the data.

B. Autoencoder-Based Reconstruction

The autoencoder is an unsupervised artificial neural network
composed of an encoder and a decoder [59]. The encoder maps
the input x to the representation z, and then the decoder re-
maps the representation z back to the input. The output of the
decoder is defined as the reconstructed input x̃. The process can
be expressed as:

z = E(x), x̃ = D(z), (4)

where E(·) and D(·) represent the encoder and decoder, re-
spectively. The difference between the original input x and the
reconstructed input x̃ is called the reconstruction error, and
the goal of the self-supervised pretext task using autoencoder
structure is to minimize the error between x and x̃, i.e.,

L = ‖x− x̃‖2 . (5)

The model structure of (4) is defined as the basic autoencoder
(BAE). Most BAE-based methods jointly train the encoder E(·)
and the decoder D(·). Then removing the decoder D(·) and
leaving only the encoder E(·) that is used as a feature extractor,
and the representation z is used for downstream tasks [60], [61],
[62], [63]. For example, TimeNet [61], PT-LSTM-SAE [62],
and Autowarp [60] all use RNN to build a sequence autoencoder
model including encoder and decoder, which tries to reconstruct
the input series. Once the model is learned, the encoder is used
as a feature extractor to obtain an embedded representation of
time series samples, which can help downstream tasks, such
as classification and forecasting, achieve better performance.
Zhang et al. [64] build a CNN-based autoencoder model and
keep the encoder as a feature extractor after minimizing (5). The
experimental results show that using the encoded representation
is better than directly using the original time series data in
industrial fault detection tasks.

However, the representations obtained by (5) are sometimes
task-agnostic. Therefore, it is feasible to introduce additional
training constraints based on (5). Abdulaal et al. [63] focus
on the complex asynchronous multivariate time series data and
introduce the spectral analysis in the autoencoder model. The
synchronous representation of the time series is extracted by
learning the phase information in the data, which is eventually
used for the anomaly detection task. DTCR [65] is a tempo-
ral clustering-friendly representation learning model. It intro-
duces K-means constraints in the reconstruction task, making
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the learned representation more friendly to clustering tasks.
USAD [66] uses an encoder and two decoders to build an autoen-
coder model and introduces adversarial training based on (5) to
enhance the representation ability of the model. FuSAGNet [67]
introduces graph learning on the sparse autoencoder to model
relationships in multivariate time series explicitly.

Denoising autoencoder (DAE) is another widely used ap-
proach, which is based on the addition of noise to the input
series to corrupt the data, and then followed by the reconstruction
task [68]. DAE can be formulated as:

xn = T (x), Z = E(xn), x̃ = D(z), (6)

where T indicates the operation that adds noise. The learning
objective of a DAE is the same as that of a BAE, which is
to minimize the difference between x and x̃. In time series
modeling, more than one method can add noise to the input,
such as adding Gaussian noise [69], [70] and randomly setting
some time steps to zero [71], [72].

Mask autoencoder (MAE) is a structure widely used in lan-
guage models and vision models in recent years [11], [73]. The
core idea behind MAE is that in the pre-training phase, the model
first masks part of the input and then tries to predict the masked
part through the unmasked part. Unlike BAE and DAE, the loss
of MAE is only computed on the masked part. MAE can be
formulated as:

xm =M(x), z = E(xm), x̃ = D(z), (7)

L =M(‖x− x̃‖2), (8)

whereM(·) represents the mask operation, and Xm represents
the masked input. In language models, since the input is usually
a sentence, the mask operation masks some words in a sentence
or replaces them with other words. In vision models, the mask
operation will mask the pixels or patches in an image. For time
series data, a feasible operation is to mask part of the time steps
and then use the unmasked part to predict the masked time steps.
Existing masking methods for time series data can be divided
into three categories: time-step-wise masking, segment-wise
masking, and variable-wise masking.

The time-step-wise masking randomly selects a certain pro-
portion of time-steps in the series to mask, so the fine-grained in-
formation is easier to capture, but it is difficult to learn contextual
semantic information in time series. The segment-wise masking
randomly selects segments to mask, which allows the model to
pay more attention to slow features in the time series, such as
trends or high-level semantic information. STEP [74] divided the
series into multiple non-overlapping segments of equal length
and then randomly selected a certain proportion of the segments
for masking. Moreover, STEP pointed out two advantages of
using segment-wise masking: the ability to capture semantic
information and reduce the input length to the encoder. Different
from STEP, Zerveas et al. [75] performed a more complex mask-
ing operation on the time series, i.e., the multivariate time series
was randomly divided into multiple non-overlapping segments
of unequal length on each variable. Variable-wise masking was
introduced by Chauhan et al. [76], who defined a new time series
forecasting task called variable subset forecast (VSF). In VSF,

the time series samples used for training and inference have
different dimensions or variables, which may be caused by the
absence of some sensor data. This new forecasting task brings
the feasibility of self-supervised learning based on variable-wise
masking. Unlike random masking, TARNet [77] considers the
pre-trained model based on the masking strategy irrelevant to the
downstream task, which leads to sub-optimal representations.
TARNet uses self-attention score distribution from downstream
task training to determine the time steps that require masking.

Variational autoencoder (VAE) is a model based on variational
inference [78], [79]. The encoder encodes the inputx to the prob-
ability distribution P (z|x) instead of the explicit representation
z. When the decoder is used to reconstruct the input, a vector
generated by sampling from the distributionP (z|x)will be used
as input to the decoder. The process can be expressed as:

P (z|x) = E(x), z = S(P (z|x)), x̃ = D(z), (9)

where S(·) represents the sampling operation. Unlike (5), the
loss function of a VAE includes two terms: the reconstruction
item and the regularization item, i.e.,

L = ‖x− x̃‖2 + KL(N (μ, δ),N (0, I)), (10)

where KL(·) represents the Kullback-Leibler divergence. The
role of the regularization term is to ensure that the learned
distribution P (z|x) is close to the standard normal distribution,
thereby regulating the representation of the latent space. The
representation learning method based on VAE can model the
distribution of each time step to better capture the complex
spatiotemporal dependencies and provide better interpretability
in time series modeling tasks. For example, InterFusion [80]
is a hierarchical VAE that models inter-variable and temporal
dependencies in time series data. OmniAnomaly [81] combines
VAE and Planar Normalizing Flow to propose an interpretable
time series anomaly detection algorithm. In order to better cap-
ture the dependencies between different variables in multivariate
time series, GRELEN [82] and VGCRN [83] introduce the graph
structure and in VAE. In addition to modeling on regular time
series, the methods based on VAE have made progress in sparse
and irregular time series data representation learning, such as
mTANs [84], P-VAE [85] and HetVAE [86]. The latest work
attempts to extract seasonal and trend representations in time
series data based on VAE. LaST [87] is a disentangled variational
inference framework with mutual information constraints. It
separates seasonal and trend representations in the latent space
to achieve accurate time series forecasting.

C. Diffusion-Based Generation

As a new kind of deep generative model, diffusion models
have achieved great success recently in many fields, including
image synthesis, video generation, speech generation, bioinfor-
matics, and natural language processing due to their powerful
generating ability [88], [89], [90], [91], [92]. The key design of
the diffusion model contains two inverse processes: the forward
process of injecting random noise to destruct data and the
reverse process of sample generation from noise distribution
(usually normal distribution). The intuition is that if the forward
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process is done step-by-step with a transition kernel between
any two adjacent states, then the reverse process can follow a
reverse state transition operation to generate samples from noise
(the final state of the forward process). However, it is usually
not easy to formulate the reverse transition kernel, and thus
diffusion models learn to approximate the kernel by deep neural
networks. Nowadays, there are mainly three basic formulations
of diffusion models: denoising diffusion probabilistic models
(DDPMs) [88], [93], score matching diffusion models [94], [95],
and score SDEs [96], [97].

For DDPMs, the forward and reverse processes are two
Markov chains: a forward chain that adds random noise to
data and a reverse chain that transforms noise back into data.
Formally, denote the data distribution as x0 ∼ q(x0), the for-
ward Markov process gradually adds Gaussian noise to the
data according to transition kernel q(xt|xt−1). It generates a
sequence of random variables x1,x2, . . . ,xT . Thus the joint
distribution of x1,x2, . . . ,xT conditioned on x0 is

q(x1,x2, . . . ,xT |x0) =
T∏

t=1

q(xt|xt−1). (11)

For simplicity of calculation, the transition kernel is usually set
as

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (12)

where β1, β2, . . . , βT is a variance schedule of the forward
process (usually chosen βt ∈ (0, 1) ahead of model training)
and p(xT ) = N (xT ; 0, I). Similarly, the joint distribution of
the reverse process is

pθ(x0,x1, . . . ,xT ) = p(xT )
T∏

t=1

pθ(xt−1|xt), (13)

where θ is the model parameters and pθ(xt−1|xt) =
N (xt−1;μθ(xt, t),

∑
θ(xt, t)). The key to achieving the suc-

cess of sample generating is training the parameters θ to match
the actual reverse process, that is, minimizing the Kullback-
Leibler divergence between the two joint distributions. Thus,
according to Jensen’s inequality, the training loss is

KL(q(x1,x2, . . . ,xT )||pθ(x0,x1, . . . ,xT ))

≥ E[− log pθ(x0)] + const. (14)

For score-based diffusion models, the key idea is to perturb
data with a sequence of Gaussian noise and then jointly estimate
the score functions for all noisy data distributions by training a
deep neural network conditioned on noise levels. The motivation
of the idea is that, in many situations, it is easier to model and
estimate the score function than the original probability density
function. Langevin dynamics is one of the proper techniques.
With a step size α > 0, the number of iterations T , and an initial
sample x0, Langevin dynamics iteratively does the following
estimation to gain a close approximation of p(x)

xt ← xt−1 + α∇x log p(xt−1) +
√
2αzt, 1 ≤ t ≤ T, (15)

where zt ∼ N (0, I). However, the score function is inaccurate
without the training data, and Langevin dynamics may not

converge correctly. Thus, the key approach (NCSN, a noise-
conditional score network), perturbing data with a noise se-
quence and jointly estimating the score function for all the
noisy data with a deep neural network conditioned on noise
levels, is proposed [94]. Training and sampling are decoupled in
score-based generative models, which inspires different choices
in such two processes [95].

For score SDEs, the diffusion operation is processed accord-
ing to the stochastic differential equation (SDE) [97]:

dx = f(x, t)dt+ g(t)dw, (16)

where f(x, t) and g(t) are diffusion function and drift function
of the SDE, respectively, and w is a standard Wiener process.
Different from DDPMs and SGMs, Score SDEs generalize the
diffusion process to the case of infinite time steps. Fortunately,
DDPMs and SGMs also can be formulated with corresponding
SDEs. For DDPMs, the SDE is

dx = −1

2
β(t)xdt+

√
β(t)dw, (17)

where β( t
T ) = Tβt when T goes to infinity; for SGMs, the SDE

is

dx =

√
d[δ(t)2]

dt
dw, (18)

where δ( t
T ) = δt as T goes to infinity. With any diffusion process

in the form of (16), the reverse process can be gained by solving
the following SDE:

dx = [f(x, t)− g(t)2∇x log qt(x)]dt+ g(t)dw, (19)

wherew is a standard Wiener process when time flows reversely
and dt is an infinitesimal time step. Besides that, the existence
of an ordinary differential equation, which is also called the
probability flow ODE, is defined as follows.

dx = [f(x, t)− 1

2
g(t)2∇x log qt(x)]dt. (20)

The trajectories of the probability flow ODE have the same
marginals as the reverse-time SDE. Once the score function at
each time step is known, the reverse SDE can be solved with
various numerical techniques. Similar objective is designed with
SGMs.

Diffusion models have also been applied in time series analy-
sis recently. We briefly summarize them based on the designed
architectures and the main diffusion techniques used. Condi-
tional score-based diffusion models for imputation (CSDI) [98]
were proposed for time series imputation task. CSDI utilizes
score-based diffusion models conditioned on observed data. In
time series forecasting tasks, TimeGrad [99] takes an RNN
conditioned diffusion probabilistic model at some time step
to depict the fixed forward process and the learned reverse
process. D3VAE [100] is a bidirectional variational auto-encoder
(BVAE) equipped with diffusion, denoise, and disentanglement.
In D3VAE, the coupled diffusion process augments the input
time series and output time series simultaneously. ImDiffu-
sion [101] combines imputation and diffusion models for time
series anomaly detection. SSSD [102] combines diffusion mod-
els and structured state space models for time series imputation
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Fig. 3. Five categories of contrastive-based SSL for time series data.

and forecasting tasks. DiffLoad [103] proposes a diffusion-based
structure for electrical load probabilistic forecasting by consid-
ering both epistemic and aleatoric uncertainties. DiffSTG [104]
presents the first shot to predict the evolution of spatio-temporal
graphs using DDPMs.

IV. CONTRASTIVE-BASED METHODS

Contrastive learning is a widely used self-supervised learning
strategy, showing a strong learning ability in computer vision
and natural language processing. Unlike discriminative models
that learn a mapping rule to true labels and generative models
that try to reconstruct inputs, contrastive-based methods aim to
learn data representations by contrasting between positive and
negative samples. Specifically, positive samples should have
similar representations, while negative samples have different
representations. Therefore, the selection of positive samples
and negative samples is very important to contrastive-based
methods. This section sorts out and summarizes the existing
contrastive-based methods in time series modeling according to
the selection of positive and negative samples. The illustration
of the contrastive-based SSL for time series is shown in Fig. 3.
In Appendix E.1–E.5, available online, the main advantages
and disadvantages of five contrastive-based submethods are
summarized.

A. Sampling Contrast

Sampling contrast follows a widely used assumption in time
series analysis that two neighboring time windows or time
stamps have a high degree of similarity, so positive and negative
samples are directly sampled from the raw time series, as shown
in Fig. 3(a). Specifically, given a time window (or a timestamp)
as an anchor, its nearby window (or the time stamp) is more
likely to be similar (small distance), and the distant window (or
the time stamp) should be less similar (large distance). The term
“similar” indicates that two windows (or two-time stamps) have
more common patterns, such as the same amplitude, the same
periodicity, and the same trend.

As mentioned in [105], suppose one anchor xref , one posi-
tive sample xpos, and K negative samples xneg

k , k∈1,2,...,K are

chosen, we expect to assimilate xref and xpos and to distinguish
between xref and xneg

k , i.e.,

L = − log(S(xref , xpos))−
K∑

k=1

log(−S(xref , xneg
k )), (21)

where S(·) denotes the similarity of the two representations.
However, due to the non-stationary characteristics of most time
series data, it is still a challenge to choose the correct positive
and negative samples based on contextual information in time
series data. Temporal neighborhood coding (TNC) was recently
proposed to deal with this problem [106]. TNC uses augmented
Dickey-Fuller (ADF) statistical test to determine the stationary
region and introduces positive-unlabeled (PU) learning to handle
the problem of sampling bias by treating negative samples as
unknown samples and then assigning weights to these samples.
The learning objective is extended to

L = − Expos[∈N logS(xref , xpos)]

− Exneg∈Ñ [(1− w)× log−S(xref , xneg)

+ w × logS(xref , xneg)], (22)

where w is the probability of sampling false negative sam-
ples, N denotes the neighboring area, and Ñ denotes the non-
neighboring area. Supervised contrastive learning (SCL) [107]
effectively addresses sampling bias, so introducing the super-
vised signal to identify positive and negative samples is a feasible
solution. Neighborhood contrastive learning (NCL) is a recent
time series modeling method that combines context sampling
and the supervised signal to generate positive and negative
samples [108]. NCL assumes that if two samples share some
predefined attributes, then they are considered to share the same
neighboring area.
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B. Prediction Contrast

In this category, prediction tasks that use the context (present)
to predict the target (future information) are considered self-
supervised pretext tasks, and the goal is to maximally preserve
the mutual information of the context and the target. Con-
trastive predictive coding (CPC) proposed by [109] provides
a contrastive learning framework to perform the prediction task
using InfoNCE loss. As shown in Fig. 3(b), the context ct and
the sample from p(xt+k|ct) constructs positive pairs, and the
samples from the ‘proposal’ distribution p(xt+k) are negative
samples. The learning objective is as follows:

L = −E
X

[
log

fk (xt+k, ct)∑
xj∈X fk (xj , ct)

]
, (23)

where fk(·) is the density ratio that preserves the mutual infor-
mation of ct and xt+k [109], and it can be estimated by a simple
log-bilinear model:

fk (xt+k, ct) = exp(zTt+kWkct). (24)

It can be seen that CPC does not directly predict future
observations xt+k. Instead, it tries to preserve the mutual in-
formation of ct and xt+k. This allows the model to capture
the “slow features” that span multiple time steps. Following the
architecture of CPC, LNT [110], TRL-CPC [111], TS-CP2[112],
and Skip-Step CPC [113] were proposed. LNT and TRL-CPC
use the same structure as the original CPC [109] to build a
representation learning model, and the purpose is to capture the
local semantics across the time to detect the anomaly points.
TS-CP2 and Skip-Step CPC replace the autoregressive model
in the original CPC structure with TCN [114], which improves
feature learning ability and computational efficiency. Moreover,
Skip-Step CPC points out that adjusting the distance between
context representation ct and xt+k can construct different posi-
tive pairs, which leads to different results in time series anomaly
detection.

In addition to the basic contextual prediction tasks mentioned
before, some more complex prediction tasks were constructed
and proved useful. CMLF [115] transforms time series into
coarse-grained and fine-grained representations and proposes
a multi-granularity prediction task. This allows the model to
represent the time series at different scales. TS-TCC [116] and
its extended version CA-TCC [117] designed a cross prediction
task, which uses the context of xT1 to predict the target in xT2,
and vice versa uses the context of xT2 to predict the target
in xT1.

C. Augmentation Contrast

Augmentation contrast is one of the most widely used con-
trastive frameworks, as shown in Fig. 3(c). Most methods utilize
data augmentation techniques to generate different views of
an input sample and then learn representations by maximizing
the similarity of the views that come from the same sample
and minimizing the similarity of the views that come from the
different samples. SimCLR [16] is a very typical multi-view
invariance-based representation learning framework, which has

been used in many subsequent methods. The objective function
based on this framework is:

L = − log
exp (sim (z1, z2) /τ)∑2 N

k=1 �[k 
=1] exp (sim (z1, zk) /τ)
, (25)

where τ is temperature parameter, sim(·) represents the sim-
ilarity between two representation vectors, and zk represents
the training samples in a batch. It can be considered that in
the feature learning framework based on multi-view invariance,
the core is to obtain different views of the input samples.
When handling images in computer vision, commonly used
data augmentation methods include cropping, scaling, adding
noise, rotation, and resizing [16]. However, compared with
augmentation methods for images, the augmentation methods
for time series needs to consider both temporal and variable
dependencies.

Since time series data can be converted to frequency domain
representations through Fourier transform, the augmentation
method can be developed from the time and frequency domains.
In the time domain, TS-TCC [116] and its extended version
CA-TCC [117] designed two time series data augmentation tech-
niques, one is strong augmentation (permutation-and-jitter), and
the other is weak augmentation (jitter-and-scale). TS2Vec [118]
generates different views through masking operations that ran-
domly mask out some time steps. Generally speaking, there is
no one-size-fits-all answer to the choice of data augmentation
methods. Therefore, some works comprehensively compare and
study the augmentation methods and further evaluate the per-
formance on different tasks [45], [119], [120], [121]. All the
above methods only need a single time series sample in the
augmentation operation, while Mixing-up [122] fuses two time
series samples to generate a newly augmented view, while the
pretext task is to correctly predict the proportion of two original
time series samples in augmented view.

Data augmentation in the frequency domain is also feasible
for time series data. CoST [123] is a disentangled seasonal-trend
representation learning method, which uses fast Fourier trans-
form to convert different augmented views into amplitude and
phase representations, and then uses (25) to train the model.
BTSF [124] is a contrastive-based method based on a time-
frequency fusion strategy, which first generates an augmented
view in the time domain through the dropout operation and
then generates another augmented view in the frequency do-
main through Fourier transform. Finally, the bilinear temporal-
spectral fusion mechanism is used to achieve the fusion of
time-frequency information. However, CoST and BTSF do not
modify the frequency representation, while TF-C [125] directly
augments the time series data through frequency perturbations,
which has achieved better performance than TS2Vec [118] and
TS-TCC [116]. Specifically, TF-C implements three augmen-
tation strategies: low- versus high-band perturbations, single-
versus multi-component perturbations, and random versus dis-
tributional perturbations.

In addition to the above methods, many view generation meth-
ods are closely related to downstream tasks. Recently, DCdetec-
tor [126] proposes a dual attention contrastive representation
framework for time series anomaly detection. The in-patch and
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patch-wise representations are designed to gain two views of
the input samples, as normal samples behave differently from
abnormal ones in such two views. TimeCLR [127] proposed
DTW augmentation, which can not only simulate phase shifts
and amplitude changes but also retain the structure and charac-
teristics of the time series. CLOCS [128] is a self-supervised pre-
training method for medical and physiological signals, which
uses multi-view invariance contrast in the three perspectives
of time, space, and patient to promote higher similarity of
representations from the same source. CLUDA [129] introduces
multi-view invariance contrast in the time series domain adap-
tation problem, which captures the contextual representation of
time series data through intra-domain and inter-domain contrast.
MTFCC [130] is another view generation method based on
multi-scale characteristics, which samples time series samples
at multiple scales and considers that the views from the same
sample have similar representations, even if their scales are
different. Methods for constructing multiple contrastive views
based on multi-granularity or multi-scale augmentations also
include MRLF [131], CMLF [115], and SSLAPP [132].

D. Prototype Contrast

The contrastive learning framework based on (23) and (25)
is essentially an instance discrimination task, which encour-
ages samples to form a uniform distribution in the feature
space [133]. However, the real data distribution should satisfy
that the samples of the same class are more concentrated in
a cluster, while the distance between different clusters should
be farther. SCL [107] is an ideal solution when real labels are
available, but this is difficult to implement in practice, especially
for time series data. Therefore, introducing clustering constraints
into existing contrastive learning frameworks is an alternative,
such as CC [134], PCL [135], and SwAV [36]. PCL and SwAV
contrast the samples with the constructed prototypes, i.e., the
cluster centers, which reduces the computation and encourages
the samples to present a cluster-friendly distribution in the
feature space. An illustration of prototype contrast is shown in
Fig. 3(d).

In time series modeling based on prototypes contrast,
ShapeNet [136] takes shapelets as input and constructs a cluster-
level triplet loss, which considers the distance between the
anchor and multiple positive (negative) samples as well as
the distance between positive (negative) samples. ShapeNet is
an implicit prototype contrast because it does not introduce
explicit prototypes (cluster centers) during the training phase.
TapNet [137] and DVSL [138] are explicit prototypes con-
trast because explicit prototypes are introduced. TapNet in-
troduces a learnable prototype for each predefined class and
classifies the input time series sample according to the dis-
tance between the sample and each class prototype. DVSL
defines virtual sequences, which have the same function as
prototypes, i.e., minimize the distance between samples and
virtual sequences, but maximize the distance between virtual
sequences. MHCCL [139] proposes a hierarchical clustering
based on the upward masking strategy and a contrastive pairs
selection strategy based on the downward masking strategy. In

the upward mask strategy, MHCCL believes that outliers greatly
impact prototypes, so these outliers should be removed when
updating prototypes. The downward masking strategy, in turn,
uses the clustering results to select positive and negative samples,
i.e., samples belonging to the same prototype are regarded as true
positive samples, and samples belonging to different prototypes
are regarded as true negative samples.

E. Expert Knowledge Contrast

Expert knowledge contrast is a relatively new representation
learning framework. Generally speaking, this modeling frame-
work incorporates expert prior knowledge or information into
deep neural networks to guide model training [140], [141]. In the
contrastive learning framework, prior knowledge can help the
model choose the correct positive and negative samples during
training. An example of expert knowledge contrast is shown in
Fig. 3(e).

Here we sort out three typical works of expert knowledge
contrast for time series data. Shi et al. [142] used the DTW
distance of time series samples as prior information and believed
that two samples with a small DTW distance have a higher
similarity. Specifically, given the anchor xref and the other two
samples xi and xj , the DTW distance between xref and the
other two samples is calculated first, then the sample with a
small distance from xref is considered as the positive sample of
xref . This selection process is defined as

label =

{
1, DTW

(
xref ,xi

)
≥ DTW

(
xref ,xj

)
0, otherwise

. (26)

Based on pair-loss, ExpCLR [143] introduces expert features
of time series data to obtain more informative representations.
Given two input samples xi and xj and corresponding repre-
sentations fi and fj , ExpCLR defines the normalized distance
between two samples:

sij = 1− ‖fi − fj‖2
max ‖fk − fl‖ 2

, (27)

where fk and fl are the two representation vectors with the
largest distance among all samples. Compared with the original
pair-loss, the distance between samples xi and xj is changed
from a discrete value (0 and 1) to a continuous value sij ,
which enables the model to learn more accurately about the
relationship between samples, thus thereby enhancing the repre-
sentation ability of the model. In addition to the above two works,
SleepPriorCL [144] was proposed to alleviate the sampling
bias problem faced by (25). Like ExpCLR, SleepPriorCL also
introduces prior features to ensure the model can identify correct
positive and negative samples.

Actually, introducing more prior knowledge in contrastive-
based SSL can help the model extract better representations.
The trend of this family of methods can be summarized from
two perspectives: (i) Addressing sampling bias. Sampling bias
is caused by inappropriate selection of positive and negative
samples, so introducing prior knowledge useful for selecting
positive and negative samples can deal with this problem, such
as a clustering-based negative sample detection algorithm [145]
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Fig. 4. Three categories of adversarial-based SSL for time series data.

and sample identification strategy based on real labels [107],
[108]. (ii) Addressing representation bias. Representation bias
means that the extracted representations cannot be guaranteed to
be strongly related to the downstream task. The essential reason
is that there may be a big difference between the goals of the
pretext task and the downstream task. An interesting trend is
to fuse semi-supervised learning and contrastive-based SSL to
guide the training of the encoder through a small amount of
labeled data [146], [147].

V. ADVERSARIAL-BASED METHODS

Adversarial-based self-supervised representation learning
methods utilize generative adversarial networks (GANs) to
construct pretext tasks. GAN contains a generator G and a
discriminator D. The generator G is responsible for generating
synthetic data similar to real data, while the discriminator D is
responsible for determining whether the generated data is real
data or synthetic data. Therefore, the goal of the generator is
to maximize the decision failure rate of the discriminator, and
the goal of the discriminator is to minimize its failure rate [49],
[148]. The generator G and the discriminator D are a mutual
game relationship, so the learning objective is:

L = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))].
(28)

According to the final task, the existing adversarial-based rep-
resentation learning methods can be divided into time series gen-
eration and imputation, and auxiliary representation enhance-
ment. The illustration of the adversarial-based SSL for time
series is shown in Fig. 4. In Appendix F.1–F.2, available online,

the main advantages and disadvantages of two adversarial-based
submethods are summarized. Furthermore, the main differences
in characteristics and limitations between the adversarial-based
methods and the previous two methods (generative-based and
contrastive-based) are shown in Appendix G, available online.

A. Time Series Generation and Imputation

The generator in the GAN can generate synthetic data close
to the real data, so adversarial representation learning has a
wide range of applications in the data generation field [149],
especially in image generation [150], [151], [152], [153]. In
recent years, many scholars have also explored the potential
of generative representation learning in time series generation
and imputation, such as C-RNN-GAN [154], TimeGAN [155],
TTS-GAN [156], and E 2 GAN [157]. It should be emphasized
that although Brophy et al. [49] have reviewed the GAN-based
time series generation methods in the latest survey, it differs
from the proposed taxonomy. We sort out the two aspects of
complete time series generation and missing value imputation,
while Brophy et al. sorted out from the perspective of discrete
and continuous time series modeling.

Complete time series generation refers to generating a new
time series that does not exist in the existing data set. The new
sample can be a univariate or multivariate time series. C-RNN-
GAN [154] is an early method of generating time series samples
using GAN. The generator is an RNN, and the discriminator
is a bidirectional RNN. RNN-based structures can capture the
dynamic dependencies in multiple time steps but ignore the
static features of the data. TimeGAN [155] is an improved time
series generation framework that combines the basic GAN with
the autoregressive model, allowing the preservation of temporal
dynamic characteristics of the series. TimeGAN also emphasizes
that static features and temporal characteristics are crucial to the
generation task.

Some recently proposed methods consider more complex time
series generative tasks [156], [158], [159], [160]. For example,
COSCI-GAN [158] is a time series generation framework that
considers the correlation between each dimension of the multi-
variate time series. It includes Channel GANs and Central Dis-
criminator. Channel GANs are responsible for generating data
in each dimension independently, while Central Discriminator
is responsible for determining whether the correlation between
different dimensions of the generated series is the same as the
raw series. PSA-GAN [159] is a framework for long-time series
generation and introduces a self-attention mechanism. It further
presents Context-FID, a new metric for evaluating the quality
of generated series. Li et al. [156] explored the generation of
time series data with irregular spatiotemporal relationships and
proposed TTS-GAN, which uses a Transformer instead of an
RNN to build the discriminator and the generator and treats the
time series data as image data of height one.

Different from generating a new time series, the task of time
series imputation refers to that given a non-complete time series
sample (for example, the data of some time steps is missing),
and the missing values need to be filled based on the contextual
information. Luo et al. [161] treat the problem of missing value
imputation as a data generation task and then use GAN to learn
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the distribution of the training data set. In order to better capture
the dynamic characteristics of the series, the GRUI module was
proposed. The GRUI uses the time-lag matrix to record the time-
lag information between effective values of incomplete time
series data, which follow the unknown non-uniform distribution
and are very helpful for analyzing the dynamic characteristics
of the series. The GRUI module was also further used in E
2 GAN [157]. SSGAN [162] is a semi-supervised framework
for time series data imputation, which includes a generative
network, a discriminative network, and a classification network.
Unlike previous frameworks, SSGAN’s classification network
makes full use of label information, which helps the model
achieve more accurate imputations.

B. Auxiliary Representation Enhancement

In addition to generation and interpolation tasks, an
adversarial-based representation learning strategy can be added
to existing learning frameworks as additional auxiliary learning
modules, which we call adversarial-based auxiliary represen-
tation enhancement. The auxiliary representation enhancement
aims to promote the model to learn more informative representa-
tions for downstream tasks by adding adversarial-based learning
strategies. It can be defined as:

L = Lbase + Ladv, (29)

where Lbase is the basic learning objective and Ladv is the
additional adversarial-based learning objective. It should be
noted that whenLadv is not available, the model can still extract
representations from the data, soLadv is regarded as an auxiliary
learning objective.

USAD [66] is a time series anomaly detection framework
that includes two BAE models, and two BAE are defined as
AE1 and AE2, respectively. The core idea behind USAD is to
amplify the reconstruction error by adversarial training between
two BAEs. In USAD, AE1 is regarded as the generator, and
AE2 is regarded as the discriminator. The auxiliary goal is to
use AE2 to distinguish real data from reconstructed data from
AE1, and train AE1 to deceive AE2, the whole process can be
expressed as:

Ladv = min
AE1

max
AE2

‖W −AE2(AE1(W ))‖2 , (30)

where W is the real input series. Similar to USAD, Anoma-
lyTrans [163] also uses an adversarial strategy to amplify the
anomaly score of anomalies. But unlike (30), which uses re-
construction error, AnomalyTrans defines prior-association and
series-association and then uses the Kulback-Leibler divergence
to measure the error of the two associations.

DUBCNs [164] and CRLI [165] are used for series retrieval
and clustering tasks, respectively. Both methods adopt RNN-
based BAE as the model, and the clustering-based loss and
adversarial-based loss are added to the basic reconstruction loss,
i.e.,

L = Lmse + λ1Lcluster + λ2Ladv. (31)

where λ1 and λ2 are the weight coefficients of the auxiliary
objective.

TABLE II
SUMMARY OF TIME SERIES APPLICATIONS AND WIDELY USED DATASETS

The adversarial-based strategy is also effective in other time
series modeling tasks. For example, introducing adversarial
training in time series forecasting can improve the accuracy
and capture long-term repeated patterns, such as AST [166] and
ACT [167]. BeatGAN [168] introduces adversarial representa-
tion learning in the abnormal beat detection task of ECG data
and provides an interpretable detection framework. In modeling
behavior data, Activity2vec [169] uses adversarial-based train-
ing to model target invariance and enhance the representation
ability of the model in different behavior stages.

VI. APPLICATIONS AND DATASETS

SSL has many applications across different time series tasks.
This section summarizes the most widely used datasets and
representative references according to the application area, in-
cluding anomaly detection, forecasting, classification, and clus-
tering. As shown in Table II, we provide useful information,
including dataset name, dimension, size, source, and useful
comments. For each task, we summarize from the following
aspects: task description, related methods, evaluation metrics,
examples, and task flow. Due to space limitations, relevant
descriptions of evaluation metrics, examples, and task flow
can be found in Appendix H, available online. In addition, we
provide performance comparison results of different methods on
the same dataset and further summarize the correlation between
methods and tasks, the details can also be found in Appendix I,
available online.

A. Anomaly Detection
� Task description: The anomaly detection problem for time

series is usually formulated as identifying outlier time
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points or unexpected time sequences relative to some norm
or usual signal.

� Related methods: Most time series anomaly detection
methods are constructed under an unsupervised learn-
ing framework because obtaining labels for anomalous
data is challenging. Autoregressive-based forecasting and
autoencoder-based reconstruction are the most commonly
used modeling strategies. To be concrete, THOC [52]
and GDN [55] employ autoregressive-based forecasting
SSL framework, which assumes that anomalous sequences
or time points are not predictable. RANSynCoders [63],
USAD [66], AnomalyTrans [163], and DAEMON [184]
employ autoencoder-based reconstruction SSL framework.
Furthermore, VGCRN [83] and FuSAGNet [67] combine
two frameworks to achieve more robust and accurate re-
sults. It is beneficial to introduce an adversarial-based
SSL, which can further amplify the difference between
normal and anomalous data, such as USAD [66] and DAE-
MON [184].

B. Forecasting
� Task description: Time series forecasting is the process of

analyzing time series data using statistics and modeling to
make predictions of future windows or time points.

� Related methods: The pretext task based on autoregressive-
based forecasting is essentially a time series forecast-
ing task. Therefore, various models based on forecasting
tasks are proposed, such as Pyraformer [185], FilM [15],
Quatformer [186], Informer [173], Triformer [187], Scale-
former [188], Crossformer [189], and Timesnet [190].
Moreover, we found that decomposing the series (sea-
sonality and trend) and then learning and forecasting on
the decomposed components will help improve the final
forecasting accuracy, such as MICN [191] and CoST [123].
Besides, introducing an adversarial SSL is viable when
missing values are in the series. For example, LGnet [192]
introduces adversarial training to enhance the modeling of
global temporal distribution, which mitigates the impact of
missing values on forecasting accuracy.

C. Classification and Clustering
� Task description: The goal of classification and clustering

tasks is similar, i.e., to identify the real category to which
a certain time series sample belongs.

� Related methods: Contrastive-based SSL methods are the
most suitable choice for these two tasks since the core
of contrastive learning is identifying positive and negative
samples. Specifically, TS-TCC [116] introduces temporal
contrast and contextual contrast in order to obtain more
robust representations. TS2Vec [118] and MHCCL [139]
perform a hierarchical contrastive learning strategy over
augmented views, which enables robust representations.
Similar to anomaly detection and prediction tasks, an
adversarial-based SSL strategy can also be introduced into
classification and clustering tasks. DTCR [65] propose a
fake-sample generation strategy to assist the encoder in
obtaining more expressive representations.

VII. DISCUSSION AND FUTURE DIRECTIONS

In this section, we point out some critical problems in current
studies and outline several research directions worthy of further
investigation.

A. Selection and Combination of Data Augmentation

Data augmentation is one of the effective methods to gen-
erate augmented views in SSCL [47], [193]. The widely used
methods for time series data include jitter, scaling, rotation,
permutation, and warping [45], [119], [120], [121], [194]. In
SimCLR [16], nine different augmentation methods for image
data were discussed. The experiments show that “no single
transformation suffices to learn good representations” and “the
composition of random cropping and random color distortion is
the most effective augmentation method”. This naturally raises
the question of which one or composition of data augmentation
methods is optimal for time series. Recently, Um et al. [195]
show that the combination of three basic augmentation methods
(permutation, rotation, and time warping) is better than that of a
single method and achieves the best performance in time series
classification task. Iwana et al. [121] evaluate twelve time series
data augmentation methods on 128 time series classification
datasets with six different types of neural networks. Different
evaluation frameworks give different recommendations and re-
sults. Therefore, an interesting direction is to construct a rea-
sonable evaluation framework for time series data augmentation
methods, then further select the optimal method or combination
strategy.

B. Inductive Bias for Time Series SSL

Existing SSL methods often pursue an entirely data-driven
modeling approach. However, introducing reasonable inductive
bias or prior is helpful for many deep neural networks-based
modeling tasks [140], [196], [197]. On the one hand, although a
purely data-driven model can be easily extended to various tasks,
it requires much data to train it. On the other hand, time series
data usually has some available characteristics, such as seasonal,
periodic, trend, and frequency domain biases [198], [199], [200].
Thus one future direction is to consider more effective ways
to induce inductive biases into time series SSL based on the
understanding of time series data and characteristics of specific
tasks.

C. SSL for Irregular and Sparse Time Series

Irregular and sparse time series also widely exist in various
scenarios. This data is measured at irregular time intervals, and
not all the variables are available for each sample [201]. The
straightforward approach to deal with irregular and sparse time
series data is to use interpolation algorithms to estimate miss-
ing values [161], [162], [202]. However, interpolation-based
models add undesirable noise and extra overhead to the model
which usually worsens as the time series become increasingly
sparse [54]. Moreover, irregular and sparse time series data is
often expensive to obtain sufficient labeled data, which motivates
us to build time series analysis models based on SSL in various
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tasks. Therefore, building SSL models directly on irregular
and sparse time series data without interpolation is a valuable
direction.

D. Pretraining and Large Models for Time Series

Nowadays, many large language models have shown their
powerful perception and learning capability for many different
tasks. A similar phenomenon also appears in computational
vision [203]. It is naturally an interesting question, how about
the time series analysis field? As far as we know, there is limited
work on pretraining models in large-scale time series. Exploring
the potentiality of pretraining and large time series models is a
promising direction.

E. Adversarial Attacks and Robust Analysis on Time Series

With the widespread use of deep neural networks in time
series forecasting, classification, and anomaly detection, the
vulnerability and robustness of deep models under adversarial
have become a significant concern [204], [205], [206], [207]. In
the field of time series forecasting, Liu et al. [205] study the indi-
rect and sparse adversarial attacks on multivariate probabilistic
forecasting models for time series forecasting and propose two
defense mechanisms: randomized smoothing and mini-max de-
fense. Wu et al. [206] propose an attack strategy for generating
an adversarial time series by adding malicious perturbations to
the original time series to deteriorate the performance of time
series prediction models. Zhuo et al. [208] summarize and com-
pare various recent and typical adversarial attack and defense
methods for fault classifiers in data-driven fault detection and
classification systems, including white-box attack (FGSM [209],
IGSM [210], C&W attack [211], DeepFool [212]) and gray-box
and black-box attack (UAP [213], SPSA [214], Random noise).
The research on adversarial attacks and defenses against time
series data is a worthwhile direction, but there is much less
literature on this topic. Existing studies mainly involve forecast-
ing and classification tasks. However, the impact of adversarial
examples on time series self-supervised pre-training tasks is still
unknown.

F. Benchmark Evaluation for Time Series SSL

SSL has many applications in time series classification, fore-
casting, clustering, and anomaly detection. However, most cur-
rent research seeks to achieve the best performance on specific
tasks and needs more discussion and evaluation of the self-
supervised technique. One interesting direction is to pay more
attention to SSL, analyze its properties in time series modeling
tasks, and give reliable benchmark evaluation.

G. Time Series SSL in Collaborative Systems

Distributed systems have been widely deployed in many
scenarios, including intelligent control systems, wireless sen-
sor networks, network file systems, etc. On the one hand, an
appropriate collaborative learning strategy is fundamental in
these systems, as users can train their own local models without
sharing their private local data and circumventing the relevant
privacy policy [215]. On the other hand, time series data is

also widely distributed in various places in the system, and
obtaining sufficient labeled data is also difficult, so time series
SSL has great deployment potential [216], [217]. In recent
years, federated learning has been the most popular collaborative
learning framework and has been used successfully in various
applications. Combining time series self-supervised learning
and federated learning is a valuable research direction that
can provide additional modeling tools for modern distributed
systems.

VIII. CONCLUSION

This article concentrates on time series SSL methods
and provides a new taxonomy. We categorize the exist-
ing methods into three broad categories according to their
learning paradigms: generative-based, contrastive-based, and
adversarial-based. Moreover, we sort out all methods into
ten detailed subcategories: autoregressive-based forecasting,
autoencoder-based reconstruction, diffusion-based generation,
sampling contrast, prediction contrast, augmentation contrast,
prototypes contrast, expert knowledge contrast, generation and
imputation, and auxiliary representation enhancement. We also
provide useful information about applications and widely used
time series datasets. Finally, multiple future directions are sum-
marized. We believe this review fills the gap in time series SSL
and ignites further research interests in SSL for time series data.
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