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ABSTRACT
Self-supervised learning (SSL) shows impressive performance
in many tasks lacking sufficient labels. In this paper, we study
SSL in time series anomaly detection (TSAD) by incorporating
the characteristics of time series data. Specifically, we build an
anomaly detection algorithm consisting of global pattern learn-
ing and local association learning. The global pattern learning
module builds encoder and decoder to reconstruct the raw
time series data to detect global anomalies. To complement
the limitation of the global pattern learning that ignores local
associations between anomaly points and their adjacent win-
dows, we design a local association learning module, which
leverages contrastive predictive coding (CPC) to transform the
identification of anomaly points into positive pairs identifica-
tion. Motivated by the observation that adjusting the distance
between the history window and the time point to be detected
directly impacts the detection performance in the CPC frame-
work, we further propose a skip-step CPC scheme in the local
association learning module which adjusts the distance for
better construction of the positive pairs and detection results.
The experimental results show that the proposed algorithm
achieves superior performance on SMD and PSM datasets in
comparison with 12 state-of-the-art algorithms.

Index Terms— Time Series, Anomaly Detection, Self-
supervised Learning

1. INTRODUCTION

Time series anomaly detection (TSAD) is one of the chal-
lenging tasks in many real-world applications [1, 2, 3, 4, 5],
such as server monitoring, process control, influenza detection,
etc. Traditional methods usually use feature engineering to
generate features and then design feature-based detection algo-
rithms to achieve anomaly detection. As real systems become
more and more complex, feature engineering becomes more

†Corresponding author
This work was funded by Collective Intelligence & Collaboration Labo-

ratory (Open Fund Project No. QXZ23012301) and supported by the National
Key R&D Program of China under Grant 2021YFB2012300.

difficult and traditional methods fail to achieve good detection
performance. Deep learning (DL) is a powerful technique for
feature learning, which directly extracts features from the data
and reduces the efforts in the design of hand-crafted features.
Generally, building a successful deep learning model requires
a large amount of labeled data. Unfortunately, labeled anomaly
data is very limited for time series data, which motivates us
to seek a method for anomaly detection using unlabeled data
more effectively.

Recently, self-supervised learning (SSL), which allows
for learning representations without ground-truth labels, has
exerted great power in the fields of computer vision, natural
language processing, and signal processing [6]. Contrastive
learning (CL) is an important branch of SSL, and it has been
applied widely in image classification tasks [7]. The key idea
behind CL is to minimize the distance between similar samples
and maximize the distance between dissimilar samples, and it
has also been adopted in time series analysis [8].

In this paper, we investigate CL for time series anomaly de-
tection. We observe that due to the rarity of anomalies in time
series, it is difficult to use anomaly points to construct positive
pairs in the CL framework straightforwardly. In other words,
the contrastive loss will be large when the constructed positive
sample pairs contain anomaly points. Based on this observa-
tion, we introduce contrastive predictive coding (CPC) [9] to
the TSAD task. The CPC aims to learn representations by
predicting the future in latent space through a given history
window. The distance between history window and future
time points is an important factor affecting the detection re-
sults because different distances represent different positive
pairs.

Based on the previous analysis, we propose a new TSAD
algorithm consisting of two major modules: an autoencoder
(AE) global pattern learning module and a skip-step CPC-
based local association learning module. The global pattern
learning module tries to reconstruct the raw data through an
encoder and a decoder, in which the anomaly points have
significantly larger reconstruction errors. A limitation of the
global module is that it ignores local associations between
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anomaly points and their adjacent windows. To address this is-
sue, a local association learning module is designed to leverage
CPC to transform the identification of anomaly points into pos-
itive pairs identification tasks in CL. The final anomaly score
is then calculated by fusing the global anomaly score and local
anomaly score, where each time point is determined as nor-
mal or abnormal with a threshold. The main contributions are
summarized as follows:

• We propose a new framework for TSAD task, which
transforms the task of identifying anomalies into the
identification of positive and negative samples within
the CL framework.

• We design a novel skip-step contrastive scheme that
empowers the model to choose appropriate positive sam-
ples across varying temporal distances, thus leading to a
further enhancement in detection accuracy.

• The proposed method achieves performance comparable
or superior to state-of-the-art methods on three popular
benchmark datasets.

2. RELATED WORKS

Time series anomaly detection is a very vital and challenging
task in practice. Given the time-consuming and labor-intensive
nature of acquiring sufficient labeled data, most approaches
adopt an unsupervised learning framework. These approaches
can be broadly classified into categories, including clustering-
based, reconstruction-based, prediction-based, and association-
based methods.

The clustering-based methods detect anomalies by mea-
suring the distance between time points and normal pattern
cluster centers. THOC [10] uses the fused features from all
intermediate layers of dilated recurrent neural network by a
differentiable hierarchical clustering mechanism and detects
the anomalies by a novel score that measures the distance in
the multiple hyperspheres. The reconstruction-based meth-
ods typically use an AE architecture to reconstruct the raw
data and then detect anomalies based on the reconstruction
error [11, 12, 13]. For example, OmniAnomaly [11] captures
the normal patterns by learning their robust representations
with stochastic variable connection and planar normalizing
flow and uses the reconstruction probabilities to determine
anomalies. USAD [13] proposes an encoder-decoder architec-
ture within an adversarial training framework that allows it to
isolate anomalies while providing fast training. The prediction-
based methods employ an autoregressive model to predict the
future time points and calculate the prediction error [14, 15].
For example, LNT [15] applies CPC to produce good semantic
time series representations and makes predictions of the con-
text at different time horizons. The association-based method
is a new anomaly detection approach that learns associations
between a time point and its adjacent time points [16, 17].
AnomalyTrans [16] proposes the transformer-based model
with a newly designed anomaly-attention mechanism, which

Encoder (Conv1d + TCN)

Autoregressive layer Prediction layer

Decoder (MLP)

History window

Skip points

Fig. 1. Overview of the proposed detection framework.

can model the prior-association and series-association simulta-
neously to embody the association discrepancy, and the learned
association discrepancy is a criterion for detecting anomalies.

3. METHODOLOGY

Suppose the time series samples has C measurements with
length N , and we denote by X = (x1,x2, . . . ,xN ) ∈ RN×C ,
where xt ∈ RC is the observation at time t. In time series
anomaly detection, our goal is to determine whether xt is an
anomaly point. Fig. 1 shows the structure of the proposed time
series anomaly detection algorithm. First, a single 1-D convo-
lutional layer maps the input time point xt to embedding space
ht = Conv1d(xt), where ht ∈ Rd. Next, a temporal convo-
lutional network (TCN) [18] is used to further map ht to more
informative representation zt = TCN(ht). Then, the model
is divided into two branches. The first branch uses MLP as a
decoder to reconstruct the raw input xt, i.e., x̂t = MLP(zt).
This branch learns global information in the data, which makes
anomaly points exhibit large reconstruction errors. However,
this module ignores the local associations between anomaly
points and their adjacent windows, which is very useful for
determining whether a time point is normal or abnormal [16].
Therefore, we introduce another new branch, called Skip-Step
CPC, to capture the local association between a time point and
its adjacent time window. The second branch uses an autore-
gressive model to summarize the historical window Wt in the
new latent space and produces a context representation ct. Un-
like the original CPC, we found that keeping a certain distance
between Wt and xt can better capture local associations.

A simple illustration is shown in Fig. 2. We define Wd
t

to be a historical window with the distance d from xt, where
d represents the number of time points between the last time
point of Wt and xt. We expect that when xt is not an anomaly
point, this branch maximizes the mutual information between
the xt and the context representation of Wd

t . On the contrary,
if xt is an anomaly point, it is difficult to extract the underlying
patterns in common.

Both the AE-based and Skip-Step CPC-based branches are
trained to jointly optimize the final loss as

L = LAE + LCPC . (1)
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Fig. 2. The strategy of calculating local contrastive scores.

The first term in Eq. (1) is the reconstruction loss, defined as

LAE =
1

NC

N∑
i=1

C∑
j=1

(xj
i − x̂j

i )
2, (2)

where xj
i is the ground truth and x̂j

i is the output of the AE-
based branch. The second term in Eq. (1) is the InfoNCE
loss LCPC , which can maximize a lower bound of mutual
information [9], defined as

LCPC = EX [− log
exp(zTt W

dcdt )∑
zj∈X exp(zTj W

dcdt )
], (3)

where X is a set of N random training samples. Each sam-
ple contains a history window and a time point. The loss
in Eq. (3) is the categorical cross-entropy of classifying the
positive sample correctly.

Finally, the output anomaly score for xt is calculated by
fusing global and local anomaly scores as

S(t) = Slocal(t) ∗ Sglobal(t). (4)

The global anomaly score for xt is calculated by reconstruction
error, defined as

Sglobal(t) = (xt − x̂t)
2. (5)

The local anomaly score for xt is computed by the cross
entropy loss, as shown in Fig. 3. Specifically, we first make a
prediction z̄t = Wdcdt , then the distribution for the time point
is computed based on the similarity between the prediction x̄t

and representations of all time points in predefined windows
Wp. Therefore, the local contrastive score is calculated as

Slocal(t) = − log
exp(zTt z̄t)∑

zj∈Wp
exp(zTj z̄t)

. (6)

Based on the anomaly score, a predefined threshold δ is
used to decide if a point is an anomaly (1) or not (0). The
output of xt is defined as

y(t) =

{
1, S(t) > δ
0, S(t) ≤ δ

. (7)

History window History window

Distance=0 Distance=4

Fig. 3. Illustration of the proposed skip-step CPC scheme.
(Constructing positive pairs with different distances)

4. EXPERIMENTS AND DISCUSSION

We evaluate our detection algorithm on three popular bench-
mark datasets with 12 DL-based baseline models. We evaluate
our method on three datasets. (1) SMD (Server Machine
Dataset) [11] is a new 5-week-long dataset and is collected
from a large Internet company with 38 dimensions. (2) MSL
(Curiosity) [14] is a spacecraft anomaly detection dataset and
it has 55 dimensions. (3) PSM (Pooled Server Metrics) [19]
is collected internally from multiple application server nodes
at eBay with 26 dimensions. We use random sampling to ob-
tain training samples, and each sample contains a historical
window and a future window. The historical window is with
a fixed size of 50 and the future window is set to 20 for all
datasets. The time points are labeled as anomalies if their
anomaly scores are larger than the predefined threshold δ. The
widely-used adjustment strategy [11, 16, 17] that an anomaly
segment is considered correctly detected as long as any point
in this segment is detected is adopted in this paper. We use
precision P , recall R, and F1-score F1 as evaluation metrics.
F1-score is the harmonic mean of precision and recall. A high
value indicates better performance. We compare our model
with 12 DL-based methods. The results of the baselines are
collected from [16, 17].

4.1. Comparison Results

It can be observed that detection methods that take into account
the contextual information of time series tend to yield more
favorable results, as seen in the case of AnomalyTrans, which
incorporates local associations. In summary, our proposed
method achieves better performance than all 11 baseline mod-
els on datasets SMD and PSM, and achieves results close to
the state-of-the-art on the MSL dataset. The superiority of our
model comes from incorporating both reconstruction-based
and prediction-based strategies from the global pattern and lo-
cal context information perspectives to make better decisions.

4.2. Skip-step Scheme Analysis

As aforementioned, adjusting the distance between the his-
tory window and the time point to be detected in the proposed
skip-step CPC scheme has a direct impact on the detection
performance in the proposed method. The underlying reason
behind this is that the adjustment of the distance essentially
changes the construction of the positive pairs in the CPC frame-
work. To illustrate it, we conduct experiments with different
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Table 1. Results of time series anomaly detection on three
popular benchmark datasets. The best results are highlighted.

Dataset SMD PSM MSL

Metric P R F1 P R F1 P R F1

Deep-SVDD 78.54 79.67 79.10 95.41 86.49 90.73 91.92 76.63 83.58
LSTM 78.55 85.28 81.78 76.93 89.64 82.80 85.45 82.50 83.95

CL-MPPCA 82.36 76.07 79.09 56.02 99.93 71.80 73.71 88.54 80.44
ITAD 86.22 73.71 79.48 72.80 64.02 68.13 69.44 84.09 76.07

LSTM-VAE 75.76 90.08 82.30 73.62 89.92 80.96 85.49 79.94 82.62
BeatGAN 72.90 84.09 78.10 90.30 93.84 92.04 89.75 85.42 87.53

OmniAnomaly 83.68 86.82 85.22 88.39 74.46 80.83 89.02 86.37 87.67
InterFusion 87.02 85.43 86.22 83.61 83.45 83.52 81.28 92.70 86.62

THOC 79.76 90.95 84.99 88.14 90.99 89.54 88.45 90.97 89.69
TS-CP2 87.42 66.25 75.38 82.67 78.16 80.35 86.45 68.48 76.42

AnomalyTrans 89.40 95.45 92.33 96.91 98.90 97.89 92.09 95.15 93.59
DCdetector 83.59 91.10 87.18 97.14 98.74 97.94 93.69 99.69 96.60

Ours 91.75 97.34 94.46 98.36 98.74 98.55 90.84 94.73 92.75
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Fig. 4. Anomaly detection results at different distances in the
proposed skip-step CPC scheme.

Distance=0 Distance=19

Time Time

Fig. 5. Case 1 of the distance studies in the proposed skip-
step CPC scheme. Left figure: false negative around time
index 110 and false positive around time index 180 under
distance=0. Right figure: the correct results are obtained under
distance=19.

distances on the three benchmark datasets and depict the re-
sults in Fig. 4. It can be observed that as the distance increases,
the F1-score of SMD also increases, and better detection per-
formance is achieved when the distance is greater than 8. The
best detection performance for the MSL is obtained when the
distance is 8. The F1-score of PSM increases first and then
remains stable, and it is least sensitive to distance. The re-
sults in Fig. 4 show that we need to set different distances to
construct reasonable positive pairs under different datasets for
better anomaly detection results.

Distance=0 Distance=19

Time Time

Fig. 6. Case 2 of the distance studies in the proposed skip-step
CPC scheme. Left figure: false positive around time indices 15,
35, 190, and 210 under distance=0. Right figure: the correct
results are obtained under distance=19.

4.3. Case Analysis

We take the most distance-sensitive dataset as an example, i.e.,
SMD. The distances are set to 0 and 19, respectively. The first
is the false negative and false positive detection case as shown
in Fig. 5. We observe that local contrastive scores exhibit dif-
ferent patterns at anomaly locations when different distances
of positive samples are given. Although the reconstruction
error score is correct when the distance is 0, the wrong local
score leads to false negative detection. On the contrary, the
local score is correct when the distance is 19, which means the
model learns the correct pattern. If we only use the global re-
construction score, it would result in a false positive detection
(a spike with right circles in Fig. 5). Therefore, the correct
local contrastive score and correct global reconstruction score
amplify the final anomaly score, making the anomalous time
points easier to detect. The second is a case that contains both
true detection and false positive detection, as shown in Fig.
6. In this case, we observed that although the local detection
module provides the correct score at distance 0, it also leads to
excessively large scores (spikes with right circles) elsewhere,
detecting some normal points as anomaly points. However, the
local anomaly score only shows a larger value at the location
of the anomaly when the distance is 19.

5. CONCLUSION AND FUTURE WORK

This paper investigates the application of SSL for TSAD and
we propose a new detection method that combines the AE-
based global pattern learning module and the skip-step CPC-
based local association learning module. The proposed method
achieves superior performance to the state-of-the-art results on
two datasets. In future, we plan to extend the current research,
including the adaptive construction of positive and negative
samples and the introduction of adversarial training to enhance
the robustness of the detection model.
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