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Valve Stiction Detection Using Multitimescale
Feature Consistent Constraint for

Time-Series Data
Kexin Zhang , Yong Liu , Yong Gu, Jiadong Wang , and Xiaojun Ruan

Abstract—Using neural networks to build a reliable fault
detection model is an attractive topic in industrial pro-
cesses but remains challenging due to the lack of labeled
data. We propose a feature learning approach for indus-
trial time-series data based on self-supervised contrastive
learning to tackle this challenge. The proposed approach
consists of two components: data transformation and rep-
resentation learning. The data transformation converts the
raw time-series to temporal distance matrices capable of
storing temporal and spatial information. The representa-
tion learning component uses a convolution-based encoder
to encode the temporal distance matrices to embedding
representations. The encoder is trained using a new con-
straint called multitimescale feature consistent constraint.
Finally, a fault detection framework for the valve stiction
detection task is developed based on the feature learning
method. The proposed framework is evaluated not only on
an industrial benchmark dataset but also on a hardware
experimental system and real industrial environments.

Index Terms—Hardware experimental system, industrial
time-series, practical application, self-supervised learning,
valve stiction detection.

I. INTRODUCTION

VALVE stiction detection has always been an essential issue
in the control loop performance assessment of process

industries [1], [2]. Strong stiction causes unexpected oscillations
that increase energy consumption and accelerate equipment
wear. Reliable detection results rely on the features extracted
from the industrial time-series data of control loops. Traditional
methods for feature extraction are based on prior knowledge or
the mechanism of a particular process. However, sometimes the
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full prior knowledge is not available in practice. In recent years,
intelligent factories have received increased attention, and it is
easier to collect industrial data than ever before [3]. Therefore,
using neural networks to learn features from time-series data
is a promising strategy to deal with various tasks in process
industries. It avoids the time-consuming and labor-intensive
process of manually extracting features using prior knowledge. It
also provides a potential opportunity to achieve stiction detection
using the neural-networks-based model.

According to the review [1], the traditional detection meth-
ods can be broadly classified into four categories, cross-
correlation-function-based [4], limit-cycle-patterns-based [5],
[6], nonlinearity-detection-based [7], and waveform-shape-
based [8], [9]. This article reviews valve stiction detection
methods from the perspective of the feature learning paradigm,
i.e., manual feature engineering (MFE) and automatic learning
representation (ALR). The MFE-based methods have advan-
tages in interpretability, but they tend to be time-consuming, and
reliable prior knowledge is required. Many MFE-based detection
methods have been developed, such as the features derived from
time-series data characterization [4], [10], [11], and the features
derived from the shape of the controller output (OP) and process
variable (PV) [6], [9], [12]. In contrast, ALR-based methods use
learning algorithms on the collected data without the interven-
tion of domain experts, directly extracting features [13], [14],
[15]. The above ALR-based methods utilize neural networks’
powerful feature representation capability and achieve higher
accuracy than MFE-based methods.

The ALR-based stiction detection approaches require massive
labeled data to train the networks. Our previous work used the
MATLAB simulation to generate more labeled data for training
the neural networks [15]. However, simulation is sometimes not
feasible because complex industrial processes are challenging
to model accurately. In practice, obtaining high-quality labeled
data is time-consuming and expensive. Moreover, industrial pro-
cesses are complex, and operators may not accurately understand
the mechanism, leading to an obstacle to obtaining reliable
labeled data. Moreover, the ALR-based approaches for control
valve stiction detection are still being developed, to the best of
our knowledge.

As one of the powerful techniques for feature learning, deep
learning (DL) directly extracts features from the data and re-
duces the efforts in the design of hand-crafted features. Several
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DL-based methods have already been developed for valve stic-
tion detection [13], [14], [16], but these approaches require lots
of labeled data to train networks, which is not easy and time-
consuming in practical control loops. As a potential technique,
self-supervised learning learns representations from unlabeled
data and is widely used in audio processing and computer vision
domains [17]. Inspired by experiences in unsupervised learning,
we focus on developing an ALR-based approach for industrial
time-series data in this article, which can be applied to the valve
stiction detection task.

Specifically, we first propose a data transformation method
for time-series, which converts the raw time-series data to tem-
poral distance matrices based on the dynamic time warping
(DTW) distance between different sliced windows of the raw
time-series. Second, a convolution-based encoder encodes the
temporal distance matrices to the embedding representations by
a new constraint: multitimescale feature consistent constraint
(MTFCC). This constraint encourages the encoder to learn the
consistent representations on distance matrices derived from
the same time-series. Then the representations are taken as the
inputs of a traditional classifier. Finally, a valve stiction detection
framework is developed based on the proposed methods. The
main contributions are as follows.

1) A temporal distance matrix transformation method for
time-series is developed. It converts the raw time-series
to temporal distance matrices capable of storing temporal
and spatial information and can be used without prior
knowledge.

2) A new self-supervised representation learning method
for time-series is proposed. It uses a convolution-based
encoder to encode the distance matrices to embedding
representations, and the encoder is trained by a new
constraint called MTFCC.

3) A general fault detection framework is introduced. It
consists of an unsupervised feature learning module and
a detection module. A particular industrial case (valve
stiction detection) is discussed and demonstrates the ef-
fectiveness of the proposed framework.

The rest of this article is organized as follows. Section II intro-
duces the data transformation method, the feature learning model
for industrial time-series data, and the practical implementation
of valve stiction detection task. The experiments are described
in both Sections III and IV. Finally, Section V concludes this
article.

II. METHODOLOGY

A. Notation

A summary of the notation used in this article is given in
Table I.

B. Problem Definition

Consider Xi ∈ RL×D, i = 1, 2, . . . , N to be a single time-
series sample of length L and dimension D, where N represents
the total number of samples, and yi ∈ R is the true label of the
time-series sample Xi. The set X = Xlabel ∪ Xunlabel contains

TABLE I
NOTATION

nonstiction samples and stiction samples. Xlabel denotes the
subset of time-series data with true labels and Xunlabel denotes
the subset without true labels. Here the number of samples in
Xlabel is denoted as M , where M < N . The goal is to build
an effective and practical detection framework based on DL. It
should not only avoid manual feature engineering but should
also require only a small number of labeled data to train the
model.

C. Detection Framework

The proposed detection framework consists of two main
modules: an unsupervised feature learning module to learn
representations for time-series data, and a detection module for
fault detection. The overall schematic is shown in Fig. 1.

1) Representation Learning Module: This module learns
useful representations in an unsupervised manner using all
available data, including labeled data and unlabeled data.
To achieve this goal, the raw time-series data X are first
transformed into temporal distance matrices under H pre-
defined time scales. The set of the transformed tempo-
ral distance matrices is denoted as X̂ = {X̂1, X̂2, . . . , X̂N}.
Each time-series sample is transformed H times, so X̂i =
{x1

i ,x
2
i , . . . ,x

H
i }, i ∈ 1, 2, . . . , N . The hth transformation for

Xi is xh
i ∈ RD×S×S , h ∈ 1, 2, . . . , H , where S is the size of

the temporal distance matrix. Then a convolution-based en-
coder fθ is trained to encode X̂ to the embedding features
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Fig. 1. Overall schematic of the proposed detection framework.

R = {R1,R2, . . . ,RN} by using the proposed MTFCC. Ri

denotes the set of representations of ith time-series sample at
all time scales and Ri = {r1

i , r
2
i , . . . , r

H
i }. rhi ∈ RZ is the em-

bedding vector for xh
i and Z is the dimension of the embedding

vector.
2) Detection Module: This module uses a small number of

labeled data Xlabel to train a fault classifier Clf . The input
to the classifier is the representations R that comes from the
feature learning module, and the output of the classifier is the
probabilities of possible outcomes Y , such as nonstiction and
stiction loop in stiction detection task.

D. Data Transformation for Time-Series

Data transformation is important since most data-driven ap-
proaches cannot directly deal with the raw data. For the stic-
tion detection task, the proper transformation methods are cru-
cial in recent DL-based approaches. For example, Kamaruddin
et al. [13] transform the OP and PV data to the butterfly-shape-
based images for valve stiction detection. Mohd Amiruddin
et al. [14] proposed a method called D-value transformation
and built a stiction detection network (SDN). The data trans-
formation is also a useful component for other fault detection
tasks, such as signal-to-image conversion method [18], multiple
sensors stack method [19], and 2-D compressed construction
method [20]. These approaches convert the raw time-series data
to 2-D matrices or images capable of storing temporal and spatial
features. Inspired by the above work, we develop a new data

transformation method that transforms the time-series data into
2-D temporal distance matrices.

The proposed data transformation method constructs tempo-
ral distance matrices based on the distance measures between
different time windows. The distance measure in time-series is
an important topic. Recent work categorized time-series distance
measure methods into two types, including lock-step measure
and elastic measure. Lock-step measure refers to those dis-
tances that compare the ith point of one series to the ith point
of another, while elastic measure aims to create a nonlinear
mapping in order to align the series and allow comparison
of one-to-many points [21]. The typical lock-step measure is
widely used in many domains, called Euclidean distance. To
address the issue of time-step alignment, elastic measure ap-
proaches were developed [22], such as DTW distance, derivative
DTW distance, weighted DTW distance, edit distance (ED), and
time warp edit distance (TWED). Based on the experimental
results in [22], the DTW distance is used as the measurement
method because it is relatively simple, and no significant per-
formance difference is observed in the above elastic measures.
Moreover, Euclidean distance is also a particular case of DTW
distance.

1) Temporal Distance Matrix Transformation on Univariate
Time-Series: The transformation method for a univariate time-
series is first introduced, and then it is generalized to multivariate
time-series. Consider Xi ∈ RL×D to be a univariate time-series
sample when D = 1. For simplicity, the subscript i is removed
in the following description. Our goal is to transform this series
into a temporal distance matrix B, where B ∈ RS×S . S is the
size of temporal distance matrix.

First, the time-series X is sliced into S nonoverlapping win-
dows, and the length of each window is allowed to be different.
The set of the consecutive windows is defined as W , where...
Then, the temporal distance matrix is defined as

B(j, k) = DTW (Wj ,Wk) ·
1

|j − k| (1)

where the right side of (1) is the temporal distance between
jth window and kth window, and a total of S2 distance values
can be obtained. DTW (·) denotes DTW distance measure.
Although the first term can measure the similarity between
any two windows, their temporal information is not consid-
ered. Consider that the distance of two consecutive windows is
more likely to close, the second term 1

|j−k| provides a temporal
weighing mechanism between jth window and kth window.
This term is also consistent with the assumption widely used
in time-series data [23], [24], [25], i.e., given a window as an
anchor, the windows adjacent to it are more likely to be similar,
and the windows further away should be less similar. Similar-
ity indicates that two windows have more common patterns,
such as the same amplitude, the same periodicity, or the same
trend.

Because the window length is randomly determined, there
may be an extreme case, i.e., the length of a window is L− S +
1, while the length of the rest S − 1 windows is 1. Therefore, a
new window slicing method is employed to avoid the extreme
cases. Note that S windows require S + 1 sliced timestamps.
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Fig. 2. Temporal distance matrix transformation on univariate
time-series.

The first sliced timestamp is set to 0 and the last sliced timestamp
is set to L in this article. The rest S − 1 sliced timestamps are
calculated by

SPs = (s− 2)× Lavg + random(1, Lavg), s = 2, 3, . . . , S
(2)

where random(1, Lavg) is a random sampling operation that
randomly sample a positive integer between [1,Lavg]. Lavg is
defined as

Lavg =

⌊
L

S

⌋
(3)

where �·� is an operation that returns the largest integer not
greater than L

S .
An example of temporal distance matrix transformation for

univariate time-series is shown in Fig. 2. A univariate time-
series of length 500 is considered, and the size of the tem-
poral distance matrix is set to 5. First, the raw time-series is
sliced into five windows using points 0, 80, 145, 285, 355, and
500. Then, the temporal distance between any two windows
is calculated by (1). Finally, the temporal distance matrix is
formed by filling each distance value to the corresponding
position.

2) Extend to Multivariate Time-Series: The transformation
method mentioned in Section II-D1 is designed for univariate
time-series. However, multivariate time-series need to be pro-
cessed in most industrial tasks. Therefore, a simple extended
version of the transformation method is provided. Specifically,
(1) is redefined as

B(d, j, k) = DTW
(
W d

j ,W
d
k

)
· 1
|j − k| , d = 1, 2, . . . , D.

(4)
Specifically, the transformation method for multivariate time

series is divided into two steps. The first step is calculating
the temporal distance matrix in each dimension, and then all
matrices are stacked in the second step.

E. Feature Learning With MTFCC

Based on the proposed detection framework, an encoder
is required to encode temporal distance matrices to informa-
tive representations. As one of the successful DL models,
convolution-based neural networks (CNNs) models have made
breakthroughs in 2-D image recognition. At the same time, the
dimension of temporal distance matrices is also 2-D, so the
convolution-based encoder is preferred in this article. Moreover,
CNNs are widely used in industrial fault detection tasks, such
as identification of complex power quality disturbances [26],
bearing fault diagnosis [18], rotating machinery diagnosis [19],
and gearbox fault diagnosis [27]. These successful applications
show the effectiveness of the DL in industrial fault detection, es-
pecially the CNN-based approaches. Therefore, a convolution-
based encoder is adopted to encode the 2-D temporal distance
matrices to embedding representations in this article.

1) Convolution-Based Encoder: The encoder is formed by
stacking multiple convolutional layers. In a single 2-D convolu-
tional layer, the input is convolved with a set of learnable kernels
to produce outputs (also known as feature maps) as the input to
the next layer [19]. The operation of �-th convolutional layer can
be expressed as

X
(�)
k′ =

K∑
k=1

W
(�)
k′,k ∗X(�−1)

k +C
(�)
k′ , k

′ = 1, 2, . . . ,K ′ (5)

where X
(�)
k′ is the k′th feature map in the output of the �th

convolutional layer, and X
(�−1)
k is the kth feature map in the

output of the (�− 1)th convolutional layer. K ′ and K are the
number of feature maps in the outputs of the �th layer and the
(�− 1)th layer, respectively.∗ is the convolution operator.W(�)

k,′k

is the k′th convolutional kernel that applied to X
(�−1)
k . C(�)

k′ is
a bias. Generally, a nonlinear activation function is applied to
feature maps for increasing the nonlinear property. In this article,
rectified linear unit (ReLU) function is used since it is widely
used and proved to work far better in most of the classification
tasks for its capacity to accelerate the convergence and alleviate
the vanishing gradient problem [28]. ReLU is an element-wise
operation and it is defined as

ReLU(Xk(i, j)) = max(0,Xk(i, j)) (6)

where Xk(i, j) is the element at ith row and jth column of kth
feature map.

Suppose the output of the last convolutional layer is Xout,
which contains K 2-D feature maps, and Xk ∈ RW×Q is the kth
feature map. The size a feature map is W ×Q. Then, the flatten
operation is applied to these feature maps for obtaining the 1-D
embedding vector Xflatten ∈ RKWQ. The flatten operation is
defined as

Xflatten(k ∗HW + i ∗W + j) = Xout(k, i, j) (7)

which means that the element at ith row and jth column of kth
feature map is assigned to the (k ∗HW + i ∗W + j)th element
of Xflatten. A linear transformation layer is further used to map
the embedding vectors into Z-dimensional vectors. The linear
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transformation is expressed as

r = WlinearXflatten +Clinear (8)

where r is the final representation of a given time-series sam-
ple, and Xflatten is the flattened feature maps. Wlinear ∈
RZflatten×Z is the learnable weights of the linear transformation
layer, where Zflatten is the dimension of the flattened feature
maps. Clinear ∈ RZ is a bias that makes representations more
informative. The encoder without training is defined as fθ in this
article.

2) Multitimescale Feature Consistent Constraint (MTFCC):
Suppose we have two representations rhi and rh

′
i , they come from

the same time-series sample but with time scale h and h′, respec-
tively. The consistent constraint expects that the representations
of the temporal distance matrices derived from one time-series
sample are consistent even if they are generated under the
different times scales. In contrast, the representations of the
temporal distance matrices derived from different time-series
are inconsistent. In other words, the goal is to maximize the sim-
ilarity between rhi and rh

′
i , and minimize the similarity between

rhi and rhi′ , where h, h′ = 1, 2, . . . , H and i, i′ = 1, 2, . . . , N . In
this article, the similarity is defined as the dot product between
the L2 normalized rhi and rh

′
i (or rhi and rhi′ ), i.e.,

Sim(rhi , r
h′

i ) = rhi
�
rh

′

i /‖rhi ‖‖rh
′

i ‖. (9)

At the training stage, we first randomly sample B tem-
poral distance matrices and split them into different groups
based on the following rule: the matrices in each group should
come from the same original time-series sample. Suppose
there are G groups and gth group is considered as an anchor,
the distance matrices in the gth group should be similar, and the
distance matrices in the rest G− 1 groups should not be similar
to those in the gth group. Specifically, the similarity of samples
in the gth group is defined as the positive similarity. Suppose
g′th group is any one of the rest G− 1 groups. The similarity
between gth group and the g′th group is defined as the negative
similarity. Two similarities are denoted as

S[g,g′] =

{
2
Ng

∑�Ng/2�
j=1 Sim(rjg, r

Ng−j
g ), g′ = g

Sim(r̃g, r̃g′), g′ 
= g
(10)

where Ng is the number of samples in the gth group. r̃g and r̃g′

denotes the average representation of all distance matrices in gth
group and g′th group, respectively. They are defined as

r̃g =
1
Ng

Ng∑
i=1

rig, r̃g′ =
1
Ng′

Ng′∑
i=1

rig′ . (11)

The loss for the gth group is defined as

Lg = − log
exp(S[g,g])∑G

g′=1 exp(S[g,g′])
. (12)

The final training loss is the average of the losses for each
group, which is defined as

LMTFCC =
1
G

G∑
g

Lg. (13)

Fig. 3. Typical behavior of valve stiction in a control loop and practical
implementation of stiction detection. (a) Real valve. (b) Typical behavior
of valve stiction. (c) Closed-loop control system. (d) Practical implemen-
tation of stiction detection.

LMTFCC is the loss in the training stage. Since it is designed
based on the principle of consistent constraint under multiple
time scales, LMTFCC is also called MTFCC in this article. The
whole training stage works in an unsupervised manner, and the
goal is to obtain the best encoder fθ that maps the temporal
distance matrices to the informative representations. The trained
encoder is defined as ftrained.

F. Practical Implementation

In this section, the practical implementation of valve stiction
detection is introduced. The overall schematic is shown in Fig. 3.

1) Valve Stiction Behavior: A valve is an actuator in a control
system and its stiction behavior has been described in [29].
Specifically, the typical stiction behavior is shown using the
phase plot of valve output [manipulated variable (MV)] and OP.
As shown in Fig. 3(b), when a valve comes to rest or changes the
direction at point A, the valve sticks. As the OP increases, MV
does not change because of the deadband AB and the stickband
BC. When OP overcomes the deadband and the stickband, the
value of MV suddenly jumps to the new position D because of the
potential energy stored in the actuator and starts to move. S and J
quantify the stiction behavior in the two-parameters data-driven
valve stiction model, where S = deadband + stickband and J =
slipjump. In this data-driven model, there is a linear look-up table
that translates the control signal (mA) to the percentage of valve
travel in this data-driven model. Therefore, S is the translated
percentage, measured as a %. In this data-driven model, J is also
measured as a %, accounting for the offset between the valve
input and output signals. For example, if S = J, there is no offset
between the input and output. Once the valve overcomes stiction,
valve output tracks the valve input exactly. The final output of
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this data-driven model is again converted back to a mA signal
using a lookup table based on the valve characteristics [5], [29].
In practice, MV is not available in some traditional valves, so
PV is selected as an alternative [9], [13], [14].

2) Stiction Detection: A classic closed-loop control system
is shown in Fig. 3(c) and the practical implementation is shown
in Fig. 3(d). In practice, each sample is a 2-D time-series data
containing two variables: OP and PV. The raw OP/PV data are in
sequence with time stamps denoted by t1, t2, . . . , tL, and OP and
PV can be denoted by xop =

{
xt1
op, x

t2
op, . . . , x

tL
op

}
and xpv ={

xt1
pv, x

t2
pv, . . . , x

tL
pv

}
, respectively.

The first step is to obtain the temporal distance matrices for all
available samples, here, the transformation operation mentioned
in Section II-D is defined as T (·), so

X̂ = T (X ). (14)

Then taking X̂ as the inputs, a convolution-based encoder
can be trained using the proposed constraint MTFCC. The
trained encoder is taken as the feature extractor and is defined
as ftrained.

Next the classifier for stiction detection is built using Xlabel

and the corresponding labels Ylabel. The inputs of the classifier
is defined as

R = ftrained(T (Xlabel)). (15)

Using R as the inputs and Ylabel as the outputs, the classifier
can be built as

Ylabel = Clf(R) (16)

where Clf is the final classifier to achieve stiction detection. In
our framework, the choice of classifier is flexible, such as neural
networks, support vector machines, and other machine learning
algorithms.

In practice, whether a new sample xnew is stiction can be
determined by the following process:

y = Clf(ftrained(T (xnew))) (17)

where y is the predicted label of the new sample xnew. In the
stiction detection task, it can be either 0 or 1, where 0 means
nonstiction class and 1 means stiction class.

III. EXPERIMENTS ON BENCHMARK DATASET

A. International Stiction Data Base (ISDB)

The international stiction data base (ISDB) is a well-known
benchmark for the validation of new techniques concerning
valve stiction detection. These loops were collected from various
process industries, including chemical plants (CHEM), pulp and
paper mills (PAP), buildings (BAS), mining (MIN), and power
plants (POW). Most stiction detection methods were evaluated
on this public industrial dataset.

B. Parameter Settings

The parameters for the convolution-based encoder are as
follows. The kernel size for all convolutional layers is set to
3. The number of convolutional layers is set to 3. Each layer

TABLE II
BENCHMARK INDUSTRIAL LOOPS

TABLE III
COMPARISON OF DIFFERENT STICTION DETECTION METHODS

of the encoder is a combination of a 2-D convolution layer,
a batch normalization layer, and an ReLU nonlinear function.
Zflatten is the dimension of the flattened feature map of the last
convolutional layer The size of a temporal distance matrix is
set to 28. 48 and 64 are also considered in the experiment, and
we found that the detection framework has shown satisfactory
performance when the matrix size is 28. Choosing 48 or 64 will
increase the model’s parameters and cause additional computa-
tional costs. Support vector machine (SVM) is used as the final
classifier because SVM and its extensions are one class of the
most successful machine learning methods in the past decades.

C. Results of Stiction Detection

The comparison results with other 15 stiction detection meth-
ods are listed in Table III. A total of 26 control loops were tested.
The primary information of the test loops is described in Table II,
where Tem, Fic, Pre, Lev, Con, Ana denote the temperature,

Authorized licensed use limited to: Zhejiang University. Downloaded on October 11,2023 at 06:49:42 UTC from IEEE Xplore.  Restrictions apply. 



1494 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 3, JUNE 2023

flow, pressure, level, concentration, and analyzer control loop,
respectively.

In Table III, it can be seen that only six methods apply to all test
loops. Most of the other established methods apply to a narrower
range of processes. It first shows that our framework applies to a
broader range of process loops. Moreover, the methods proposed
in [13] and [14], also used DL techniques to build detection
models. However, the detection method in [14] does not apply
to CHEM 4 and CHEM 5, and the accuracy is lower than our
method. Although the method proposed in [13] can be applied
to all test loops, the accuracy is also lower than our method.
Our method outperforms the recent DL-Based stiction detection
with a total detection accuracy of 22/26, which is the highest
one of the considered methods.

As shown in Table II, in 26 test control loops, 15 loops have
been identified to have some form of stiction (including likely
stiction loops), in which 13 loops are correctly identified in our
method, except CHEM 5 and CHEM 29. Eleven out of 26 control
loops are marked as no-stiction, and these loops are known
to have other types of nonlinearities rather than stiction. Our
method correctly identified nine out of 11 loops, except PAP 9
and CHEM 34. It can be concluded that the proposed method
has 86.7% (13/15) accuracy on stiction loops and 81.8% (9/11)
accuracy on no-stiction loops, and the overall detection accuracy
is 84.6% (22/26).

D. Discussion

This subsection uses more data to comprehensively evaluate
the proposed detection framework. First, 81 loops are selected
in the ISDB dataset, of which 30 loops are randomly selected
as the labeled loops, and the remaining 51 loops are unlabeled
test loops. Then, three base classifiers are considered, SVM,
Logistic regression (LR), and K-means clustering. Note that
K-means is an unsupervised algorithm, but SVM and LR are
supervised algorithms, so the different performance metrics
are adopted. When using K-means as the base classifier, the
clustering accuracy is defined as

Accu = max
perm∈P

1
n

n−1∑
i=0

1[perm(ŷi)=yi] (18)

whereP is the set of all permutations in [1, 2, . . . ,K]whereK is
the number of clusters. Alternatively, the classification accuracy
is used to evaluate the supervised algorithms, i.e.,

Accs=
1

n

n−1∑
i=0

1[ŷi=yi] (19)

where 1 ∈ {0, 1} is the indicator function evaluating to 1 if ŷi =
yi. ŷi is predicted label and yi is the true label of ith time-series
sample.

1) Effectiveness of MTFCC and Data Transformation: To
show the effectiveness of MTFCC and the series-time trans-
formation methods, the following experimental strategies are
considered: 1) classifier + transformation + MTFCC; 2) classifier
+ transformation; and 3) classifier + raw data. The classifier can
be set to one of SVM, LR, and K-means. We consider three

TABLE IV
STATISTICS UNDER THREE STRATEGIES

different numbers of labeled data for each strategy: 30, 20, and
10. Therefore, the experimental settings include the number of
labeled data, the classifier, whether to use data transformation,
and whether to use MTFCC. For each strategy, we conduct
50 experiments to obtain the intervals of detection accuracy.
For example, consider the following experimental setting: 30
labeled loops, SVM classifier, use data transformation, and use
MTFCC. A total of 50 experiments were conducted. For each of
the 50 experiments, the 30 labeled data are randomly selected
as the training data, and the remaining data are test data. The
detection results fall in interval [0.84, 0.98]. The results of
three experimental strategies are shown in Fig. 4. It can be seen
that the classifier combined with transformation and MTFCC
achieves the highest accuracy in the three strategies, the classifier
only combined with the transformation method gives moderate
accuracy, and the classifier just combined with raw data gives
the lowest accuracy. The results show that the transformed data
obtained by the proposed time-series transformation method are
more suitable for the classifier than the raw data, while the
MTFCC-based framework can further encode the data to more
informative representations. Although this article uses SMV, LR,
and K-means as the final classifiers, other classifiers are also
available in practice since the proposed MTFCC and time-series
transformation methods constitute a feature extractor.

2) Stabilization for Limited Training Loops: As mentioned
before, obtaining sufficient and high-quality data is time-
consuming and expensive in practice. Therefore, the stabiliza-
tion of the proposed MTFCC and time-series transformation
methods for limited training loops is also important. Therefore,
the experiments using 10, 20, and 30 training loops are imple-
mented. The experimental results and statistics under different
training loops are shown in Table IV. It can be seen that the pro-
posed methods are useful for different numbers of training data.
For SVM and LR, the proposed MTFCC and transformation
methods provided the highest accuracy and the lowest standard
deviation.

3) Parameter Study: The proposed framework has three im-
portant parameters, including the number of time scales, the size
of the temporal distance matrix, and the size of the convolutional
kernel. Some experimental results are provided to show the effect
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Fig. 4. Detection accuracy under three experimental strategies. Number of training loops. (a) 30. (b) 20. (c) 10.

Fig. 5. Parameter study. (a) Different number of time scales are discussed in MTFCC. (b) Detection accuracy under different size of temporal
distance matrix (28, 48, and 64). (c) Influence of different convolutional kernels on the detection accuracy.

of these parameters on the detection results, which are shown in
Fig. 5.

The number of time scales is important for learning rep-
resentations using MTFCC, the detection accuracy under the
different number of time scales is summarized as Fig. 5(a). The
results show that MTFCC benefits from the number of time
scales, which means selecting more time scales make obtaining
higher accuracy easier. We argue that more time scales provide a
stronger contrastive constraint, which allows the model to learn
more representations. However, as the number increases, the
accuracy maintains a stable range.

The size of the temporal distance matrix is a parameter for
the data transformation method. We considered three sizes,
including 28, 48, and 64. The detection results are shown in
5(b). It can be seen that the detection accuracy decreases as the
size of the temporal distance matrix increases. We argue that a
larger distance matrix contains more useless information, such
as noise. The nuisance information leads to the performance
deterioration of the detection framework. Therefore, the size 28
is adopted in the final detection framework.

The kernel size is a parameter for the convolution-based
encoder. Three values are considered, including 2, 3, and 4.
On the one hand, it is difficult for a small convolutional kernel
to extract global information unless increasing the depth of
the model, which results in more computational cost. A large
convolutional kernel is an alternative but it requires a larger input
matrix. On the other hand, the detection results in Fig. 5(c) show
that the size of the convolutional kernel has little effect on the
detection accuracy. Therefore, the convolutional size is set to
3 in the detection framework.

Fig. 6. Visualization of the features using t-SNE. (a) MTFCC + trans-
formation. (b) Only data transformation. (c) Using raw data.

4) Visualization: The high-dimensional representations of
test loops under three strategies: 1) MTFCC + transformation; 2)
only transformation; and 3) raw data; are mapped to a 2-D space
using the t-distributed stochastic neighbor embedding (t-SNE)
technique. Fig. 6 shows the feature distribution. Class 1 is related
to nonstiction loops, and Class 2 is related to stiction loops. It can
be seen that in the Fig. 6(a), the samples of Class 1 are mostly
located on the right and upper side and the samples of Class
2 are distributed on the lower left side, which means the most
discriminate representations are obtained using our proposed
MTFCC learning and time-series transformation methods, and
even the linear classifier can achieve high accuracy. Moreover,
although the samples in the Fig. 6(b) and (c) are difficult to be
identified using a linear classifier, the representations shown in
Fig. 6(b) are also better since the samples of Class 2 are not
mixed with samples of Class 1. The visualization results also
show the effectiveness of our proposed method.
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Fig. 7. Real hardware experimental system.

IV. PRACTICAL APPLICATION

In the practical application, the control loops collected from
the hardware experimental system and the real industrial envi-
ronments are used to verify our detection framework.

The hardware system consists of a liquid level loop and two
flow loops. The flowchart and the experimental system are shown
in Fig. 7. FIC201 and FIC202 are flow loops, and LIC201 is the
level loop. V201, V202, and V203 represent the valves, and
M201, M202, and M203 represent the magnetic flow meters.
L201 represents a pressure sensor that measures the bottom
pressure of Tank 202, and then the pressure value is transformed
to the liquid level. V203 and V202 control the water flow into the
Tank202, and V201 controls the water flow out of the Tank202.
The four other control loops, PIC23002, FIC3107, FIC2228,
and F6304, are collected from real industrial environments, in
which PIC23002 is a pressure control loop, and it is affected by
unknown external disturbances, FIC3107 is a flow control loop
and its state is normal, FIC2228 and F6304 are flow control
loops, and they were recorded as stiction. The raw time-series
recordings of these loops are shown in Fig. 8, in which the
X-axis represents time (in seconds), and the Y-axis represents
the relative value after normalizing the original data to the
range [0,1]. For flow control loops FIC201, FIC202, FIC3017,
FIC2228, and F6304, the unit is m3/h. For loop LIC201 and
PIC23002, the units are cm and kPa, respectively. Moreover, the
temporal distance matrices are provided for each loop under two
random time scales.

The primary hyperparameters of the proposed MTFCC in-
clude the size of the temporal distance matrix and the number
of time scales. The matrix size is set to 28, the number of time
scales is set to an integer in the range of [2,10], and the final
detection result is the optimal result under the different number
of time scales. In a practical application experiment, the ISDB

Fig. 8. Raw recordings and visualization of temporal distance matrices
for seven real control loops.

benchmark dataset is used as training data, and the test data
consists of seven real loops.

In the experiments, we compare the proposed MTFCC
method with other seven methods, including LR, random for-
est (RF), support vector machine (SVM), extreme gradient
boosting (XgBoost), LeNet-5, supervised convolutional network
(supervised-Conv) [15], and modified stiction detection network
(mSDN) [14]. LR and SVM are well-known machine learning
algorithms that are simple, effective, and interpretable. Both
have a solid theoretical foundation, resulting in wide applica-
tions in various fields. RF and XgBoost are ensemble learning
algorithms, commonly used techniques in a data science com-
petition since model performance could always benefit from
various algorithms. Supervised-Conv, LeNet-5, and mSDN are
three DL-based on neural networks. Supervised-Conv is a fully
supervised multiscale CNN, which was proposed for valve
stiction. LeNet-5 consists of two sets of convolutional and
average pooling layers, followed by a flattening convolutional
layer, two fully connected layers, and a softmax classifier. mSDN
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TABLE V
EXPERIMENTAL RESULTS ON REAL HARDWARE SYSTEM AND INDUSTRIAL ENVIRONMENTS

TABLE VI
DETECTION RESULTS ON REAL HARDWARE SYSTEM AND INDUSTRIAL

ENVIRONMENTS WITH DIFFERENT NUMBER OF TIME SERIES

is a modified SDN that uses the same model structure but uses
a different data transformation method.

The comparison results are shown in Table V and the false
detections are underlined. The first three rows of Table V are the
experimental results of our methods applied to the real hardware
experimental system. These three valves in this hardware system
are relatively new, so there are no stiction records. The detection
result made by our method is no-stiction for Loops FIC201 and
FIC202, which are consistent with the real conditions. However,
the inconsistent detection result is given for loop LIC201. The
detection results of the other four collected industrial loops are
shown in the last four rows. Six comparison methods contain
false detection(s), but our method gives the correct detection on
these four control loops. Although loop PIC23002 was affected
by unknown external disturbances, our method also provides a
reliable detection. Overall, our proposed method successfully
detects 6 out of 7 loops and achieves high accuracy among all
comparison methods.

Another experiment is about the number of time scales. For the
benchmark dataset ISDB, the proposed MTFCC benefits from
the number of time scales, which means selecting more time
scales make obtaining higher accuracy easier. In the practical
application, we also present the detection results under the
different number of time scales in Table VI. It can be seen that
the detection results are optimal at time scales 3, 5, and 6. As
the number of time scales increases, the detection results may
change from correct to incorrect, such as FIC201 and PIC23002.
In other words, the number of time scales is essential to our

model. We believe that a reasonable number of time scales
will achieve optimal results. The too large or too small number
will lead to insufficient or redundant information, respectively.
However, automatic selection of reasonable timescales is a chal-
lenging topic, which we will explore more in the future.

The last decade has witnessed the great success of DL, and
this article proposes a feature learning approach for industrial
time-series data based on self-supervised contrastive learning.
Then we develop a valve stiction detection framework that
enables reliable detection when a small number of labeled data
are available. The experimental results on the benchmark dataset
and the real industrial environments indicate that the proposed
framework is comparative in this monitoring task.

V. CONCLUSION

This article developed a data transformation method and an
unsupervised feature learning method for industrial time-series.
The key idea is to transform the raw time-series into tempo-
ral distance matrices under multiple times scales and encode
the distance matrices to the embedding representations by a
convolution-based encoder. A general fault detection framework
was introduced based on the above methods, and it can be
applied to the practical applications in which the raw data are
time-series data. Moreover, the proposed framework alleviates
the problem of requiring a large number of labeled data under
traditional supervised learning frameworks. The valve stiction
detection task was considered, and the comprehensive exper-
iments on the industrial benchmark dataset, the experimental
hardware system, and the real industrial environments showed
the effectiveness of our proposed detection framework. Future
work will focus on interpretable representation learning methods
for industrial time-series data.
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