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Abstract: Deep learning (DL) has been known as one of the effective techniques for building
data-driven fault detection methods. The successful DL-based methods require the condition
that massive labeled data are available, but this is sometimes an inevitable obstacle in real
industrial environments. As one of the solutions, autoencoders (AEs) are widely adopted since
AEs can extract features from unlabeled data. However, some challenges in AE-based fault
detection methods remain, such as the design of encoder architecture, the computational cost,
and the usage of the limited labeled data. This paper proposes a new industrial fault detection
method through learning instance-level representation of time-series based on the self-supervised
contrastive learning framework (SSCL). The proposed method uses dilated-causal-convolution-
based encoder-only architecture to extract the information from industrial time-series data.
A new data augmentation method for time-series data is proposed based on the temporal
distance distribution, which is used to construct positive pairs in SSCL. Moreover, the encoder
is alternately trained by the new weighted contrastive loss and the traditional classification loss.
Finally, the experiments are conducted on the industrial data set and a semi-physical system,

showing the effectiveness of the proposed method.
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Industrial fault detection is essentially a task extracting
underlying patterns from massive industrial data. Deep
learning (DL) has been known as one of the effective
techniques for building data-driven models. Unlike the
traditional knowledge-based models in which the mech-
anism or system structures are required, the DL-based
methods can extract information from the massive data
with relatively little prior knowledge or without domain
knowledge. Moreover, most DL-based methods deal with
time-series data because most industrial data are collected
from sensors that monitor process conditions at each time
step, such as temperature, pressure, and other process
variables. Therefore, DL-based fault detection methods for
time-series data have attracted more attention.

In recent years, many fault detection methods have been
developed based on DL techniques and their impressive
performance attracts more researchers Wen et al. (2018);
Qiu et al. (2020); Liu et al. (2020); Hu et al. (2020); Wen
et al. (2022); Zhang et al. (2022). Generally, the above
DL-based detection methods require to meet the condition
that massive labeled data with fault information are avail-
able. However, this condition is sometimes an inevitable
obstacle in practice because obtaining sufficient labeled
data is time-consuming. Moreover, the trained DL-based
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models with insufficiently labeled data tend to produce
unsatisfying detection results. Therefore, some unsuper-
vised DL-based fault detection methods have been pro-
posed. As one of the most representative unsupervised DL
models, autoencoders (AEs) have strong abilities of learn-
ing representation using unlabeled data, which are more
suitable for practical applications. For example, a denois-
ing autoencoder (DAE) constructed by a fully connected
neural network was proposed for fault detection of wind
turbines (Jiang et al., 2018), a one-dimensional residual
convolutional autoencoder (1-DRCAE) was developed for
gearbox fault detection (Yu and Zhou, 2020), and a sliding-
window convolutional variational autoencoder (SWCVAE)
was proposed for anomaly detection of industrial robots
(Chen et al., 2020).

Undoubtedly, these AE-based unsupervised methods re-
duce the dependence on labeled data. However, some
challenges in AE-based fault detection methods remain.
First, the encoders are not designed for time-series, thus
losing contextual information along the time dimension.
Especially in the AE based on the stacked fully connected
layers (Jiang et al., 2018), the data at each time-step is
assumed to be independent. Although the fully connected
layers are replaced with the convolutional layers in (Yu
and Zhou, 2020; Chen et al., 2020), the setup of the kernel
width and the network depth for 1D-CNN-based methods
and the inevitable time-series transformation for 2D-CNN-
based methods are still important issues. Second, the tradi-
tional AE-based model consists of an encoder network and
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Fig. 1. The overall architecture of the proposed detection framework

a decoder network. These two networks need to be jointly
trained using the reconstruction constraint, which causes
a high computational cost, and the reconstruction con-
straint may fail to produce useful representations. Third,
although collecting sufficient labeled data is difficult in real
industrial environments, a small number of labeled data is
accessible. Most AE-based methods drop the labeled data
entirely, but the limited labeled data are also helpful.

This paper seeks to develop an encoder-only fault detec-
tion method when the limited labeled data are available.
To this end, we propose a new industrial fault detection
method through learning instance-level representations of
time-series based on the contrastive learning framework.
The main contributions of this paper are:

(1) The temporal distance distribution of the time-series
data is first defined. It can be used as the data
augmentation technique in the time-series contrastive
learning framework.

A new industrial fault detection framework is devel-
oped based on the convolution-based encoder, which
combines the weighted contrastive loss and the tradi-
tional cross-entropy loss to train the encoder, making
full use of the limited labeled data and the consider-
able unlabeled data.

The extensive experiments are conducted on the in-
dustrial benchmark data set and the semi-physical
system, demonstrating the effectiveness of the pro-
posed framework.

(2)

The rest of this paper is organized as follows. Section 2
introduces the details of the proposed method. Section 3
provides the comprehensive experiments. Section 4 gives
the experiments on the semi-physical system. Finally,
conclusions are drawn in Section 5.

2. METHODOLOGY
2.1 Problem definition and detection framework
Given a set of multivariate time series (MTS) X =
{X1,Xa,..., Xy} of N instances, containing normal in-

stances and faulty instances. The goal is to learn a non-
linear embedding function fy that maps each X; to its

instance-level representation h; € R¥ that best describes
itself, where K is the dimension of representation vectors.
Each time-series data is represented as X; € RT*P where
T is the number of measurements over time and D is the
number of features.

The overall detection framework is shown in Fig. 1. It con-
sists of three main components: (1) a new data transforma-
tion method for time-series data; (2) a convolution-based
encoder; and (3) a classification head and a contrastive
head. The data transformation component transforms the
raw time-series into a temporal distance distribution se-
ries. It is a new method to build positive pairs in the
contrastive learning framework. The convolution-based en-
coder maps the raw time-series and its augmented sample
to the more suitable representations for the downstream
detection tasks. The classification and contrastive heads
are the positions where the cross-entropy loss and the
improved contrastive loss are applied. The details of the
three components are described as follows.

2.2 Convolution-based encoder

CNN has been demonstrated to be performant on time-
series data. For example, combined with a conversion
method converting signals into two-dimensional images, a
new convolutional neural network (CNN) based on LeNet-
5 was proposed for motor bearing detection (Wen et al.,
2018). A multifusion CNN (MFCNN) that combines raw
signal information and physical features was developed for
intelligent identification of multiple power quality distur-
bances (Qiu et al., 2020). For motor fault detection, a mul-
tiscale kernel-based ResCNN (MK-ResCNN) architecture
is proposed (Liu et al., 2020). In this paper, a dilated-
causal-convolution-based encoder that is more suitable for
time-series data is used as the feature extractor.

The encoder is based on stacks of dilated causal convo-
lutions, which can map time-series of different lengths to
representations of the same dimension. The causal opera-
tor ensures that there can be no information leakage from
the future to the past, and the dilated operator is used
to deal with the time-series tasks requiring longer history
information. Following the work of (Yu and Koltun, 2016;
Franceschi et al., 2019), the dilated convolutions have an
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exponentially sizeable receptive field rather than a linear
receptive field, and the dilated convolution operation D on
time-step t is defined as

k—1
D(s) =Y f(i) Xt—a, (1)
i=0
where d is the dilation factor, k£ is the kernel size and
t — d - i accounts for the involved time-steps of the past.
Dilation is equivalent to introducing a fixed step between
two adjacent filter taps. In addition to the dilated causal
convolutions, each encoder layer includes weight normal-
izations and ReLUs. Residual connections are also used
for solving the convergence problem. The output is then
provided to a global max-pooling over the dimension of
time, which aggregates all temporal information in a fixed-
size representation vector, that is

h; = fo(X;). (2)

Then, h; is sent to the projection head g¢(-) and the
classification head c(-), which are denoted as

z; = g(h;) = WP ReLU((W " hy)), 3)

o; = c(h;) = (WVhy), (4)
where ¢(-) maps the h; to the space (z;) where the
contrastive constraint is applied. o; is the output of the
classification head. This paper builds both the projection
head and the classification head using a multi-layer per-
ceptron with one hidden layer. The predicted label of X;
is computed by

¥; = argmax(Softmax(o;)), (5)
where Softmax(-) is the Softmax function that normalize
the o; to a probability distribution over predicted output
classes. argmax(-) is an operation that returns the indices
of the maximum value of Softmax(o;).

2.8 Training encoder with weighted contrastive loss

Generally, the encoder is trained using the criterion called
cross-entropy (CE) loss that is widely used in supervised
classification. It is defined as

1 & 1 &
L= N ; yilog(pi) = N ; yilog(Softmax(0;)),
(6)
where y; is the true label and p; is the predicted prob-
ability. A well-trained encoder requires a large amount
of labeled training data. However, collecting such data is
difficult in some industrial environments. Therefore, the
additional contrastive constraint is added to the training
process in this paper. Contrastive learning is a widely used
method in a self-supervised context. It encourages learning
representations by maximizing agreement between positive
pairs via a contrastive loss in the latent space. The learning
objective is expressed as
LC = - ]Ezi,zfos [log(S(zi, Zfos))]

- ]Ezi,z;wg [log(]‘ - S(Zi7 Zneg))]7

i

(7)

where, S(+) is the similarity between instance-level repre-
sentation z; and its positive and negative representations

2% and z; Y. The similarity is measured by

1

S(u,v) = u'v/|uf|v], (8)
where u and v are {5 normalized representation vectors.
However, (7) suffer from the problem of sampling bias
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because randomly drawing negative examples from a batch
may be the samples that are similar to the positive
samples (Tonekaboni et al., 2021). In our context, this can
happen when the samples in a random batch belong to the
same class. Therefore, the improved learning objective is
expressed as

‘CC :EZi,Z,Ii)DS [_ IOg(S(Zi, ZPOS))]

—E,, prea[(1 — w) x log(1 — S(zi, z;%)  (9)
+w x log(S(z, z; %)),

i
where w is the hyperparameter that controls the proba-
bility of the negative samples belonging to the positive
samples. In this paper, the encoder is trained using L.
and L, the final loss is defined as

L=Ls+L.. (10)
2.4 Positive pairs construction using temporal distance
distribution transformation

Data augmentation is a widely used strategy for con-
structing positive pairs in contrastive learning. However,
the time-series augmentation is still a challenge because
the temporal information may be destroyed when using
the traditional augmentation methods, such as window
cropping or slicing (Wen et al., 2021). This paper proposed
a new time-series augmentation method to construct pos-
itive pairs.

For a MTS X; = {x;1,Xi2,...,X;r} with T measure-
ments, where x; ;, € RP is a D-dimensional vector. A tem-
poral distance matrix G is constructed and the elements
in matrix describe the temporally-weighted similarities
between time-steps. In other words, G is constructed by
first computing the distances in the feature space and then
modulating them by their temporal distance. The distance
in feature space is defined as

Gl k) =1 8(x; 1%, ), kK =1,2,...,T, (11)

where GZ (k, k‘/) represents the feature space distance be-
tween time-steps k and & . S(x; s, ) denotes the cosine
distance as shown in (8). Although (8) can measure the
similarity between any two time steps, the temporal posi-
tions of them is not considered. Based upon the intuition
that two consecutive (or very close) time steps are more
likely to be similar (a small distance), the temporal factor
is defined as

Gi(k, k) = exp(p- [k =k |/T), (12)
where 1 is a parameter to control the sensitivity of the
time difference between the time-steps, the term [k—k'| /T
provides a weighing mechanism relative to the time-series
length. Then the modulated distance between any two
time steps is computed as follows

Wik, k') = G (k, k) - GL(k, k), kK =1,2,...,T(13)

Wi (k, k') € RT*T is the temporal distance of time-step k
and k’. The temporal distance distribution of k-th time-
step is defined as

T
A 1 ,
Xin =7 kzzl Wik, k),

(14)
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where X, ; € RT>1, X, . 1s the average temporal distance
between time-step k and other time-steps in the same
series. Then the noise is added to the temporal distance
distribution, i.e.,

XM = X, + N1 (0,0.03), = X, + N>(0,0.03), (15)
where N, (mean, std) is the operator that produces the
noise drawn from normal distributions. In our method,
Xé\h and X;vz construct a positive pair. An example is
shown in Fig 2

X2

3. EXPERIMENTS ON BENCHMARK DATA SET
3.1 Benchmark data set

The data set for evaluating the proposed method is the In-
ternational Stiction Data Base (ISDB), which is supported
by (Jelali and Huang, 2010) and is a well-known bench-
mark for validation of novel techniques concerning control
loop performance assessment. These loops were collected
from various process industries, including chemical plants
(CHEM), pulp and paper mills (PAP), buildings (BAS),
mining (MIN), and power plants (POW). In this paper, we
select 59 loops as training data and 26 loops as test data,
and the length of time-series is 600 timesteps. The main
information of the test loops is described in Table 1, where
Tem, Fic, Pre, Lev, Con, Ana denote the temperature,
flow, pressure, level, concentration, and analyzer control,
respectively.

3.2 Detection results

In the first experiments, the detection results that use all
training data are provided, which are also used for compar-
ison with other fault detection approaches. Specifically, 59

Kexin Zhang et al. / [FAC PapersOnLine 56-2 (2023) 3197-3202

Table 1. Test Loops in the ISDB Data Set

Loop Type Malfunction Loop Type Malfunction
CHEM 1 Fic Stiction CHEM 24 Fic Likely stiction
CHEM 2 Flic Stiction CHEM 26 Lev Likely stiction
CHEM 3 Tem Quantisation |CHEM 29 Fic Stiction
CHEM 4 Lev Tuning CHEM 32 Fic Likely stiction
CHEM 5 Fic Stiction CHEM 33 Fic Disturbance
CHEM 6 Fic Stiction CHEM 34 Fic Disturbance
CHEM 10 Pre Stiction CHEM 58 Fic Non-stiction
CHEM 11 Fic Stiction MIN1 Tem Stiction
CHEM 12 Fic Stiction PAP 2  Fic Stiction
CHEM 13 Ana Faulty sensor | PAP4 Con  Deadzone
CHEM 14 Fic Faulty sensor | PAP5 Con Stiction
CHEM 16 Pre Interaction PAP 7  Fic Disturbance
CHEM 23 Fic Likely stiction| PAP 9 Tem Non-stiction

Table 2. Detection results for 26 loops

Loop Result Loop Result Loop Result
CHEM 1 v CHEM 11 v CHEM 26 v
CHEM 2 v CHEM 12 CHEM 29 v
CHEM 3 v CHEM 13 v CHEM 32 v
CHEM 4 v CHEM 14 X CHEM 33 v
CHEM 5 v CHEM 16 v CHEM 34 X
CHEM 6 v CHEM 23 v CHEM 58 v
CHEM 10 v CHEM 24 v MIN 1 v

PAP 2 v PAP 4 X PAP 5 v

PAP 7 v PAP 9 X —

Table 3. Comparison with other stiction detec-
tion methods

Method Best accuracy NOT tested
Higher-order statistics 19/24 2
Statistics-based method 16/25 1
Relay-based method 17/26 0
Curve fitting method 12/25 1
Waveform shape analysis 11/26 0
PSD/ACF 18/26 0
Peak slope method 14/25 1
Zone segmentation 15/25 1
BSD-CNN 20/26 0
D-value ANN 19/24 2
Ours 22/26 0

loops (20 stiction and 39 no-stiction samples) are available
for training networks.

The detection results presented in Table 2. Our method
gives 22 correct detection out of 26 test loops, except
CHEM 14, PAP 4, PAP 9, and CHEM 34. The accuracy
score is 22/26=0.846. Therefore, the effectiveness of the
proposed fault detection method is initially shown. To
further highlight the capability of the proposed method,
the accuracy score of the proposed method with other
detection methods is presented in Table 3.

3.8 Comparison results

In our experiments, eight traditional methods and two
DL-based methods for the ISDB data set are collected
from (Jelali and Huang, 2010; Bacci di Capaci and
Scali, 2018; Mohd Amiruddin et al., 2019; Kamaruddin
et al., 2020). Eight traditional methods can be broadly
classified into four categories: cross-correlation-function-
based, limit-cycle-patterns-based, nonlinearity-detection-
based, and waveform-shape-based. Two DL-based meth-
ods were developed based on a convolutional network and



Kexin Zhang et al. / [FAC PapersOnLine 56-2 (2023) 3197-3202

"
TT o3

1o I ales o
:‘3% il

1B .
0.6
-
0.5
ISDB Dataset

0.5 07 08 09 10 03 04 05 06
Avallablllty of labels Availability of labels
(@) (b)

o
%

e
N

o
=N

4
n

= supervised
= contrastive

Classification accuracy

<
~

Fig. 3. Detection accuracy under different availabilities of
labels.

a multilayer perceptron. The comparison results are shown
in Table 3. It can be seen that only five methods can be
performed on all 26 test loops, which means our proposed
method applies to a wider range of processes. Besides,
the methods proposed in (Mohd Amiruddin et al., 2019;
Kamaruddin et al., 2020) are DL-based methods, and
the accuracy scores are lower than our method. It shows
that our proposed approach outperforms state-of-the-art
DL-based stiction detection methods. Our method has
the highest accuracy score compared with the considered
methods, i.e., 22/26 (0.846).

3.4 Fault detection with the limited labeled data

The performance of the DL-based fault detection methods
depends on the number of labeled training data. The
following experiments show that the proposed method
achieves higher accuracy scores than the purely supervised
training manner when only the limited training data are
available.

Availability of labels  In this part, the model is first
trained with different availability of training data, and only
classification loss is considered. The results and statistics
are presented in Fig. 3(a) and Table 4. For the ISDB data
set, we set 0.3, 0.4, 0.5, and 0.6 as the proportion of the
labeled data, and the corresponding numbers of training
samples are 17, 23, 29, and 35. It is easy to see that the
accuracy scores improve with the increased labeled data.
Based on the statistics results in Table 4, the standard
deviations decrease at the same time. We argue that for
the ISDB data set, when the availability of labels is equal
to 0.3, 0.4, 0.5, and 0.6, it is difficult to achieve acceptable
accuracy scores through a single classification loss.

Effectiveness of weighted contrastive loss In order to
show the effectiveness of the additional contrastive con-
straint, the experiments were conducted when the limited
training data were available. The classification results and
the statistics are shown in Fig. 3(b) and Table 4. It demon-
strates that the additional contrastive constraint improves
the accuracy scores when the limited labeled data are
available.

4. EXPERIMENTS ON SEMI-PHYSICAL SYSTEM

A semi-physical system is further used to show the effec-
tiveness of our method. The hardware system consists of
a liquid level loop and two flow loops. The flow chart and

3201
Table 4. Statistics of the full supervised train-
ing mode and the supervised-contrastive train-
ing mode with different proportion of labeled
data
Mode Stat Availability of labels
0.3 0.4 0.5 0.6
CE only mean | 0.5539 0.6846 0.6807 0.7461
std | 0.1309 0.1006 0.0811 0.0371
CE + Contrastive mean | 0.6538 0.7153 0.7230 0.7615
std | 0.1087 0.0729 0.0720 0.0436
Table 5. Experimental Results on semi-
physical system and Industrial Environments
Loop Malfunction Detection Correct?
FIC201 Normal Non-stiction YES
FIC202 Normal Non-stiction YES
LIC201 Normal Stiction NO
PIC23002 | External disturbance  Non-stiction YES
FIC3107 Normal Non-stiction YES
F6304 Stiction Stiction YES

the experimental system are shown in Figure. 6. FIC201
and FIC202 are flow loops, and LIC201 is the level loop.
V201, V202, and V203 represent the valves, and M201,
M202, and M203 represent the magnetic flow meters. L.201
represents a pressure sensor that measures the bottom
pressure of Tank 202, and then the pressure value is
transformed to the liquid level. V203 and V202 control the
water flow into the Tank202, and V201 controls the water
flow out of the Tank202. Moreover, three real control loops,
PIC23002, FIC3107, and F6304, are collected from the real
industrial environments, in which PIC23002 is a pressure
control loop, and it is affected by the unknown external
disturbances, FIC3107 is a flow control loop, and its state
is normal, and F6304 are flow control loops, and they
were recorded as stiction. The raw time-series recordings
of these loops are shown in Fig 5.

The experimental results on the semi-physical system and
the real industrial environments are shown in Table 5. The
three valves in this hardware system are relatively new, so
there are no stiction records. The detection results made
by our method are stiction for two flow control loops,
which are consistent with the real conditions. However,
false detection occurs on loop LIC201. The detection
results of the other three collected industrial loops are
shown in the last three rows of Table V. It can be seen
that our method gives the correct detection on these three
control loops. Although loop PIC23002 was affected by
unknown external disturbances, our method also provides
a reliable detection.

5. CONCLUSION

This paper developed a new industrial fault detection
framework based on the proposed instance-level feature
learning method, which can be added to the traditional
supervised detection framework. The feature learning
method is based on the contrastive learning framework,
but the temporal distance distribution transformation was
proposed to construct positive pairs for time-series data.
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(c) The flow chart of the hardware experimental system

AL

Fig. 4. The semi-physical system.

Black line: OP; Red line: PV

(RN

FIC201 FIC202 LIC201
PIC23002 FIC3107 F6304

Fig. 5. Raw recordings for six real loops.

Additionally, the weighted contrastive loss was used to
alleviate the sampling bias problem. The proposed detec-
tion framework is performed on the benchmark data set
ISDB, the semi-physical system, and three real industrial
control loops. The extensive experimental results indicated
that the proposed framework achieves better results than
state-of-the-art methods and improves the detection re-
sults when labeled data are insufficient.
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