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Abstract—This paper proposes a valve stiction detection strat-
egy based on convolutional neural network (CNN). Considering
the commonly existed characteristics of industrial time series
signals, the strategy is developed to learn features on multiple
timescales automatically. Unlike the traditional approaches using
hand-crafted features, the proposed strategy can automatically
learn representative features on the time series data collected
from industrial control loops. The strategy is composed of
two complementary data conversion methods, a mixed feature
learning stage and a fusion decision stage, and it has the following
merits: 1) the interaction of different pairs of time series can be
effectively captured; and 2) the whole process of feature learning
is automatic, and no manual feature extraction is needed. The
effectiveness of the proposed strategy is evaluated through the
comprehensive data, including the International Stiction Data
Base (ISDB), and the real data collected from the real hardware
experimental system and the industrial environment. Compared
with four traditional methods and three deep learning (DL) based
methods, the experimental results demonstrate that the proposed
strategy outperforms the other methods. Besides performance
evaluation, we give the implementation procedure of practical
application of the proposed strategy and provide the detailed
analysis from the perspective of the data conversion methods
and the number of timescales.

Index Terms—Valve stiction detection, convolutional neural
network (CNN), feature learning, multiple timescale, hardware
experimental system.

I. INTRODUCTION

STICTION detection of a control valve has always been
an essential issue in control loop performance assessment

and fault diagnosis in the process industry [1], [2]. Strong
stiction results in the unexpected oscillations, which increase
variability in product quality, accelerate equipment wear and
increase energy consumption. The key to the successful de-
tection is to effectively extract the representative features in
the industrial time series data collected from the sensors. In
recent years, the smart factory has received increased attention,
and the industrial data can be collected much easier and faster
than ever before. These provide a new opportunity to achieve
an automatic stiction detection using the data-driven methods
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that are capable of automatically learning features from the
massive industrial data.

Different approaches have been developed to detect the
valve stiction over the past decades, which could be broadly
classified into two categories from the perspective of feature
learning, feature engineering (FE) based and representation
learning (RL) data-driven based. The FE-based methods have
great advantages in interpretability and effectiveness. However,
they tend to be time-consuming, and reliable prior knowl-
edge and a complete understanding of the actual process are
required. In contrast, RL-based data-driven methods employ
machine learning (ML) algorithms along with the collected
industrial data without the intervention of domain experts, ex-
plaining why RL-based methods have received great attention.

In recent years, Deep learning (DL) has emerged as a power-
ful technique to directly learning distinct and abstract features
from the data. DL reduces the efforts in the design of hand-
crafted features and provides a way to learn representative fea-
tures. Several DL-based methods had already been developed
for the industrial anomaly detection and diagnosis [3]–[5],
proving that the DL-based methods have better performance
and higher automation level than the traditional FE-based or
ML methods. However, to the best of our knowledge, a reliable
application of DL on valve stiction detection is still developing
in recent years. The representative literature about this topic
are [6], [7], but the representation models are simple and
the special input formats are required. The data conversion
methods are still hand-crafted processes because the domain
knowledge is needed. Therefore, it is necessary to develop a
new representation model for valve stiction detection.

Shape-based detection is one of the most effective methods,
it is intuitive and easy to understand. The basic idea behind
it is to manually extract features from the special diagram of
the process variable (PV) versus the controller output (OP)
[8], [9]. Nevertheless, the traditional shape-based method still
has some drawbacks. First, the detection still heavily relies on
the prior knowledge. Second, the feature extraction and the
final decision are separately designed and performed, both of
which affect the final detection accuracy. Third, the diversity
of the features is insufficient, which means the methods barely
adapt to a dynamically changing industrial environment.

Alternatively, to address the above drawbacks, DL pro-
vides a promising and effective solution. As one of the
most representative DL models, Convolutional neural network
(CNN) has achieved a breakthrough improvement on image
recognition and classification tasks, and the fundamental idea
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behind a CNN is to extract features using multiple stacked
convolutional layers with a hierarchical architecture that is
similar to the processes of the human recognizing object.
CNNs were initially proposed to extract features on images,
and the data format of an image is the same as that used in
the shape-based methods.

Inspired by the above works, a multiple timescale feature
learning strategy is proposed for valve stiction detection. First,
the raw time series data are converted to the 2-D format data
on the fixed and the unfixed timescales. Second, the mixed
data on multiple timescales are used to train two CNNs for
feature learning. Finally, an ensemble decision is made by
concatenating the features extracted by the trained CNNs on
different timescales. The main contributions of this paper are
summarized as follows.
1) A data preprocessing process involving two complementary

data conversion methods is proposed to capture the inter-
actions between the different industrial time series pairs on
multiple timescales. These two conversions can effectively
convert the raw time series to the 2-D format data without
any prior knowledge.

2) Three successive stages, the mixed feature learning stage,
the separate feature extraction stage, and the ensemble
decision stage, compose the complete multiple timescale
feature learning strategy for valve stiction detection. The
proposed strategy can learn representative features through
the CNN-based models, and no manual feature extraction
is needed.

3) An end-to-end strategy of valve stiction detection is devel-
oped and the procedure of practical application is given.
Moreover, the proposed strategy is evaluated through the
comprehensive data, including the International Stiction
Data Base (ISDB), and the real data collected from the
real hardware experimental system and the industrial envi-
ronment.

The rest of this paper is organized as follows. Section II
shows related techniques about valve stiction detection and
deep learning for fault diagnosis. Section III introduces the
proposed strategy. Section IV shows the experimental results
and presents the discussion. The conclusions and future work
are presented in Section V.

II. RELATED WORK

In this section, we provide a literature review related to
valve stiction detection and industrial fault diagnosis.

A. Valve Stiction Detection

A valve is the moving part in a process control loop.
The presence of control valve nonlinearities such as stiction,
backlash or deadband, is a major cause of oscillations in
control loops. Among the many types of nonlinearities in
control valves, stiction is the most common and one of the
long-standing problems in the process industry. From the
perspective of the physical principle, stiction in industrial
control valves has been defined, which differentiates it from
other similar nonlinear phenomenon in a control valve, such
as backlash, hysteresis, and dead-band [1], [6], [10].

M
an

ip
u
la

te
d

 v
ar

ia
b
le

 (
M

V
)

Controller output (OP)

J = Slipjump

Deadband
Stickband

A
B

C

D

E

S = Stickband+Deadband

Fig. 1. Typical behavior of valve stiction.

According to the definition, stiction is characterized by two
main parameters, namely S and J , where S = deadband +
stickband and J = slipjump [10]. The typical stiction in a
closed control loop is illustrated with the phase plot of OP and
manipulated variable (MV), as shown in Fig. 1. The whole
process involves four stages, deadband, stickband, slipjump,
and the moving phase.

Assuming a valve is in the position (A) and it sticks. As OP
increases, the valve’s position does not change because of the
deadband (AB) and the stickband (BC). When OP overcomes
the deadband and the stickband, the valve suddenly jumps to
the new position (D) because of the potential energy stored in
the actuator and starts to move. The same behavior occurs in
the opposite direction of the valve movement. S and J quantify
a stiction behavior in the two-parameters data-driven valve
stiction model.

The traditional methods for stiction detection within a
control valve rely heavily on the hand-crafted features and
are highly application-specific. The hand-crafted features are
extracted from raw industrial time series data based on the spe-
cific characteristics and mechanisms. Choudhury [11] designed
two higher-order statistics indexes, and Zakharov [12] pro-
posed four novel data feature indexes quantifying the presence
of oscillations, mean-nonstationarity, noise, and nonlinearities
in a given data sequence. A similar feature extraction strategy
was also adopted in [13]. Some methods were proposed to
simultaneously extract related features on time and frequency
domain through signal processing methods [14].

The typical stiction behavior results in a special shape
or pattern in the phase plot of OP, MV, and PV [8], [9].
Extracting the specific features from the image encoded with
raw time series data seems more intuitive, and it is easy
to implement. The methods based on observed features in
the images are summarized as shape-based methods [15],
[16]. Although the shape-based methods are more intuitive,
extracting features is essentially a manual process rather than
an automatic one. Therefore, inevitable limitations exist when
applying these methods to the control loops on the dynamic
changing environment.

A wide variety of problems can cause the failure of a
detection system. In cases where the prior knowledge of a
control loop is either unknown or too complicated, the use
of advanced pattern recognition approaches is becoming more
attractive as an alternative data-based strategy for valve stiction
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detection. Amiruddin [7] transformed the raw time samples
of PV-OP to D values and used an artificial neural network
(ANN) to detect stiction. Dambros [17] also employed simple
ANN but the inputs of the network are PV(OP) diagrams.
Kamaruddin [6] replaced ANN with CNN to learn features
on the designed “butterfly” shape images. The use of simple
learning networks on real industrial data is also susceptible to
noise and unexpected factors. For a more reliable application,
the feature extraction on multiple timescales with temporal
and spatial characteristics are necessary for advanced pattern
recognition approaches.

B. Deep Learning for Fault Diagnosis

As one of the representative DL methods, CNN is a special
feed-forward ANN that performs convolutional operations and
has a deep structure. It is one of the successful representative
algorithms of deep learning and has been widely used in
computer vision (CV) and natural language processing (NLP).
Compared to the traditional fully connected ANN, CNN is a
particular network that uses the hierarchical pattern in data
and assembles more complex patterns using simpler patterns.
Furthermore, local-connectivity characteristics with shared-
weights scheme reduce the number of network parameters and
prevent a CNN from over-fitting. CNNs initially show success
in CV problems like object localization, object classifications,
and image recognition. Lecun [18] designed LeNet-5 for the
real-life document recognition system. Krizhevsky [19] trained
a large, deep CNN to classify the 1.2 million high-resolution
images and the recognition results are better than the previous
state-of-the-art methods.

For the task considered in this paper, some simple models
using ANNs [7], [17] and CNN [6] were proposed for valve
stiction detection in control loop performance assessment.
Stiction detection is essentially a fault diagnosis and failure
prognosis task. Motivated by the success of deep learning
in various classification and recognition tasks, lots of DL-
based methods that applied to fault diagnosis tasks have
been proposed [20]. These methods achieved better results
than traditional data-driven methods because of the powerful
feature representation ability.

For example, Yuan [21] used multiscale CNN to extract the
features from the new transformed representation of the raw
data. Qiu [22] proposed a multi-fusion CNN (MFCNN) which
fused the original signal and its corresponding frequency infor-
mation. The above methods directly deal with the time series
data or its transformed variants, which ignore the interactions
between different pairs of variables. Therefore some works
transform the raw signals to two-dimensional data and then
feed the transformed data to a DL-based network. Wen [23]
proposed a signal-to-image conversion method for converting
the raw signals into two-dimensional images that are more
suitable for CNN processing. Xia [24] combined the raw from
multiple sensors into a 2-D matrix at the data level and em-
ployed a CNN-based model for rotating machinery diagnosis.
Besides CNNs, many effective ML and DL methods were
proposed for fault diagnosis, including the adaptive bayesian
algorithm for wind turbine bearings diagnosis [25], residual

learning algorithm for rotating machinery diagnosis [26], and
deep transfer learning strategy for machine health monitoring
[27]. These successful applications prove the effectiveness of
the DL in fault diagnosis especially the CNN-based strategies.

Inspired by these works, we focus on exploring multiple
timescale feature learning strategy for valve stiction detection
in control loops in this paper. We present two complementary
data conversion methods for capturing the interactions between
different industrial time series pairs on multiple timescales,
and then develop a mixed feature learning and fusion decision
method to achieve the stiction detection of a control valve.

III. PROPOSED STRATEGY FOR VALVE STICTION
DETECTION

This paper focuses on the stiction detection of a control
valve and the running condition of a control loop is chang-
ing under multiple timescales. Therefore, we argue that the
information about multiple timescales is necessary for reliable
detection. In addition, the correlations between different time
series pairs are critical to characterize the system status. To
better extract features under multiple timescales and capture
interactions of the raw observation sequences, this paper
incorporates interactions of different pairs of signals under
multiple timescales into the traditional CNN-based network.
The proposed strategy is illustrated in Fig. 2.

A. Data Conversion

The raw industrial data collected from a control loop is
in sequence with time stamps, and in this paper the time
stamps are denoted by t1, t2, . . . , tT . In a typical control
loop, the main data are collected from two sensors, i.e., OP
and PV, which are denoted by xop =

{
xt1op, x

t2
op, . . . , x

tT
op

}
and xpv =

{
xt1pv, x

t2
pv, . . . , x

tT
pv

}
, respectively. Additionally,

this paper proposes to make predictions on a time span
rather than each time stamp, and the prediction outcomes
involve non-stiction and stiction classes. Thus, the problem
could be transformed into a binary time series classification
problem. The training data is represented as DTrain ={(

xs1
op,x

s1
pv, y1

)
, . . . ,

(
xsi
op,x

si
pv, yi

)
, . . . ,

(
xsN
op ,x

sN
pv , yN

)}
,

in which xsi
op and xsi

pv represent the i-th segment of xop

and xpv , respectively. yi represent the classification label of
i-th data sequence. The test data is represented as DTest ={(

xloop1
op ,xloop2

pv

)
, . . . ,

(
xloopm
op ,xloopm

pv

)
, . . . ,

(
xloopM
op ,xloopM

pv

)}
,

which means that given data xloopm
op and xloopm

pv of the m-th
loop, inferring the real class of this loop.

Data preprocessing is essential since most data-driven meth-
ods cannot directly handle raw industrial data. The primary
purpose of this process is to extract useful features from the
historical data. However, extracting the representative features
is exhausting work, and these features have significant effects
on the final results. This paper develops two complementary
data conversion methods to handle the sequence data on fixed
and unfixed timescales.

1) Fixed Timescale Conversion: The interactions between
different pairs of time series are critical to characterize the
system status [28]. To represent the inter-correlations between
xsi
op and xsi

pv , a n × n distance matrix Mi is constructed
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Fig. 2. Strategy of multiple timescale feature learning.

based on the pairwise Euclidean distance of two series within
segment si. Specifically, given xsi

op =
(
x0op, x

1
op, . . . , x

|si|
op

)
and xsi

pv =
(
x0pv, x

1
pv, . . . , x

|si|
pv

)
, where |si| denotes the

length of the segment si. The interaction term mi
uv ∈ Mi

is calculated with

mi
uv =

√√√√√√
|si|/n∑
j=1

(
xu←j
op − xv←j

pv

)2
(|si| /n)

(1)

where SN = |si| /n is a re-scale factor ensuring that the
segments of different lengths generate the distance matrices
with the same size, i.e., n × n. u ←

∑
j and v ←

∑
j

indicate that an element in M i is calculated through SN
sequential time stamps in xsi

op and xsi
pv . Obviously, the length

of the segment si is not arbitrary, which is limited to integer
multiples of the n. This is why this preprocessing method
is called fixed timescale conversion. Although the limitation
exists, it can not only capture the interactions between two
time series but also automatically adapt to the sequences of
specific lengths. The conversion is illustrated in Fig. 3, in
which ⊗ denotes the operation described in (1).

2) Unfixed Timescale Conversion: In order to remedy the
limitation of fixed timescale conversion method, we use an-
other conversion method to handle the sequences of arbitrary
lengths. Also given xsi

op =
(
x0op, x

1
op, . . . , x

|si|
op

)
and xsi

pv =(
x0pv, x

1
pv, . . . , x

|si|
pv

)
. We first construct an image with p× p

pixels, and then creates a 2-D line plot of the data in xsi
pv versus

the corresponding values in xsi
op. The process of converting raw

time series is similar to that of a human recognizing stiction.
This conversion method is regarded as a feature supplement
to the fixed timescale conversion method, especially for the
sequences of special shapes. The conversion is illustrated in
Fig. 4.

B. Convolutional Neural Network

CNN is composed of trainable multistage architectures
involving linear and nonlinear operations. CNNs extract local
features at lower layers and then combine them into more
abstract features at higher layers. A general feedforward
process is represented as follows

f (x) = fL (. . . f2 (f1 (x, θ1) , θ2) . . . , θL) (2)

x1 x15x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

z1 z15z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

X1-5 Z1-5

X1-5 Z6-10

X11-15 Z11-15

25 1 1

11 1
/ 5

i j j

j
m x x

25 1 2

12 1
/ 5

i j j

j
m x x

25 3 3

33 1
/ 5

i j j

j
m x x

Fig. 3. An illustration of fixed timescale conversion. (Considering i-th
timescale and a 3× 3 distance matrix)

t1 tNt2 t3 t4 t5

x

z

x

z

Unfixed time window

Fig. 4. An illustration of unfixed timescale conversion.

where x is the input data, and the input of the network is
usually 2-D format arrays or 3-D format images of shape
C × W × H . θ1, θ2, . . . , θL are learnable parameters such
as weights and biases at each layer. f = {f1, f2, . . . , fL}
represents a series of layers that are used to extract features.

1) Convolutional Layer: The convolutional layer usually
consists of a series of learnable kernels and biases. Considering
the k-th feature map in the l-th layer, it can be expressed as

Xl
k = Facti

(
K∑

k=1

Wl
k′k ∗Xl−1

k′ + blk

)
(3)

where k′ = {1, 2, . . . ,K ′} is the index of the input feature
map, and ∗ is the valid 2-D convolution operator. Xl−1

k′

denotes the input feature map and Wl
k′k is the weight matrix

that applied to k′-th feature map at l − 1-th layer. After a
convolutional operation, a nonlinear activation function Facti

is applied to increase the nonlinear property. Rectified Linear
Unit (ReLU) is widely used and proved to work far better in
most of the classification tasks for its capacity to accelerate
the convergence and alleviate the vanishing gradient problem
[29]. ReLU is expressed as

Facti (x) = ReLU (x) = max (0,x) . (4)
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2) Pooling Layer: Pooling operation is an important pro-
cess in a CNN. Pooling is a form of nonlinear down-sampling,
which reduces each map size and the network parameters,
achieving spatial invariance. The average (Avg (·))) and the
max (Max (·))) are two commonly used strategies for pooling
operation. Max pooling is generally used and the definition is

ypooli,j = max
m=0,...,kh−1;n=0,...,kw−1

(yi≤i′<i+m,j≤j′<j+n) . (5)

3) Fully Connected Layer: In a typical CNN, the feature
learned from the last convolutional layer is often mapped to a
vector, which is taken as the input of a fully connected network
with the Softmax function which estimates the probability of
each input sample belonging to each class. Specifically, the
last layer of a typical CNN is a fully connected layer, and
the number of neurons in this layer is usually the same as the
number of classes. Therefore, given N input samples and C
classes, the output of the network can be expressed as yN×C ,
each row of the output corresponds to the output of an input
sample, which is a C-dimensional vector. Then applying the
softmax function on this vector, the probabilities to each class
can be calculated by

pn,c = log

(
exp(yn,c)∑C
c=1 exp (yn,c)

)
. (6)

Given the target classes of N input samples, the loss can
be calculated by

loss (p, t) = − 1

N

∑N

i=1
ti log pi (7)

where t is a vector corresponding to the target classes. The
parameters in the network are updated by minimizing the loss
function over the training stage.

C. Strategy of Multiple Timescale Feature Learning

The architecture of the complete feature learning consists
of a mixed learning stage and a separate extraction decision
making stage. The architecture is shown in Fig. 2.

1) Mixed Learning: Through the fixed timescale con-
version and unfixed timescale conversion in section III-A,
two datasets, DFix =

{
D

(ts 1)
Fix , . . . , D

(ts i)
Fix , . . . , D

(ts NFix)
Fix

}
and DUnfix =

{
D

(ts 1)
Unfix, . . . , D

(ts j)
Unfix, . . . , D

(ts NUnfix)
Unfix

}
,

are generated. D
(ts i)
Fix represents the dataset generated

through the fixed timescale conversion method under the
i-th timescale, where i ∈ {1, 2, , . . . , NFix} and D

(ts j)
Unfix

represents the dataset generated through the unfixed timescale
conversion method under the j-th timescale, where j ∈
{1, 2, , . . . , NUnFix}.

Then based on the LeNet-5 [18], we construct two CNNs
to learn features on Dfix and DUnfix. The reason for using
LeNet-5 is that the basic structure of this network is relatively
simple but effective, and it does not require many computing
resources and can be trained only on a CPU. Two CNNs
are defined as NetFix and NetUnfix, respectively. In this
paper, we adopt a mixed learning strategy, which means that
the datasets under different timescales are used to train one
CNN. For achieving that, the same input format is required.

For Dfix, the re-scale factor SN is developed. For DUnfix,
we set the same pixel size for each image. On the one hand, the
mixed training can strengthen the learning and generalization
capabilities of the network since it is more diverse than a
single timescale input. On the other hand, compared to training
the different networks at each timescale, fewer parameters are
required to training a CNN under all timescales. The learning
stages for NetFix and NetUnfix can be expressed as

NetFix = Learning (CNN (DFix, LabelFix)) (8)

NetUnfix = Learning (CNN (DUnfix, LabelUnfix)) (9)

where Label∗ are the actual class sets corresponding to the
D∗. Like other DL-based networks, the whole feature learning
process uses training data to adapt its parameters (weights and
biases) to perform the desired task and the parameters of the
network are optimized using Adam optimizer [30].

2) Separate Extraction and Fusion Decision: Given the
trained networks NetFix and NetUnfix, the features on
each timescale can be extracted, and this process is called
a separate extraction stage since the operations performed on
each timescale. The extracted features can be expressed as

feat
ts i(l)
Fix = NetFix

(
Dts i

F ix

)
[l] (10)

feat
ts j(l)
Unfix = NetUnfix

(
D

(ts j)
Unfix

)
[l] (11)

where featts i(l)
Fix represents the features of the l-th layer in the

network under the i-th timescale, and feat
ts j(l)
Unfix represents

the features of the l-th layer in the network under the j-th
timescale. In Fig. 2, two illustrations of the position of the
features are provided, feat(3) and feat(4) are located in the
output of 3-rd and 4-th layer, respectively. The final features
are the concatenation of the features on different timescales,
which are denoted as

Feats = Concat

(
featts 1

Fix , . . . , feat
ts NFix

Fix ,

featts 1
Unfix, . . . , feat

ts NUnfix

Unfix

)
.

(12)
Feats contain the information of the raw time series and

interactions between series on the different timescales. Given
a classifier clf , it is easy to predict the class of the dataset. In
this paper, the classes are stiction and non-stiction. Therefore,
the decision result is expressed as

pred = clf (Feats) . (13)

The decision is essentially an ensemble learning strategy.
The features extracted on different timescales correspond to
the different characteristics of a control loop. Moreover, the
classifier can be set as a simple logistic regression (LR) or a
neural network. The complete process of feature learning and
decision is working automatically as long as the training data
is provided.

IV. EXPERIMENTS

In the experiments, first three DL-based methods were
compared on International Stiction Data Base (ISDB), and then
the proposed method was tested on a real hardware system
and a real industrial environment. Total seven real valves were
tested.
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TABLE I
SIMULATION PARAMETERS FOR TRAINING DATA GENERATION

Process Class Inputwave Kp Ki S J Stdnoise

G1 (s) Non-stiction sin (2πt) + 2 [4: 0.2: 8] [0.05: 0.02: 0.2] [0] [0] [0.005, 0.01]
G1 (s) Stiction sin (2πt) + 2 4 0.01 [0.1: 0.1: 0.7, 1.0: 0.5: 5.0] [0.0: 0.1: 1.0] [0]
G1 (s) Non-stiction ε (t− 0.05) [4: :0.2: 8] [0.05: 0.05: 0.2] [0] [0] [0.005, 0.01]
G1 (s) Stiction ε (t− 0.05) 6 0.2 [0.1: 0.1: 1.5] [0.00: 0.01: 0.05] [0]
G2 (s) Non-stiction sin (2πt) + 2 [4: 0.2: 8] [0.1: 0.1: 0.5] [0] [0] [0.005, 0.01]
G2 (s) Stiction sin (2πt) + 2 6 0.1 [0.1: 0.1: 0.7, 1.0: 0.5: 5.] [0.0: 0.1: 1.0] [0]
G2 (s) Non-stiction ε (t− 0.05) [4: 0.2: 8] [0.05: 0.05: 0.2] [0] [0] [0.005, 0.01]
G2 (s) Stiction ε (t− 0.05) 6 0.5 [0.1: 0.1: 1.5] [0.00: 0.01: 0.05] [0]

A. Experimental Settings

1) Training Data Generation Through Simulation: The
proposed method is working under the supervised learning
strategy, so the labeled data for training the network is neces-
sary. However, in most cases, obtaining industrial labeled data
is time-consuming or even impossible. Inspired by [6], [7],
we first generate the labeled data for model training through
the simulation of feedback control loops rather than the real
industrial data. In the simulation system, the following transfer
functions are considered

G1 (s) =
1

0.2s
e−0.05s (14)

G2 (s) =
1

0.2s+ 1
. (15)

Both simulation processes are controlled by PI controllers,
and the noise is also considered. In Kano’s stiction model, S
and J are used to control the stiction degree. When both S
and J are equal to zero, a valve is non-stiction and the data is
labeled with ”non-stiction”. Conversely, when S or J are not
equal to zero, the data is labeled with ”stiction”.

The simulation parameters for different transfer functions
are listed in Table I. Inputwave represents the input signals.
Two different input signals are considered because the patterns
are different under different input signals. Kp and Ki are
proportional and integral gains. S and J are valve stiction
parameters. Stdnoise represents the standard deviation of the
Gaussian white noise added to the processes. Because of the
fewer values in parameters S and J for non-stiction loops, we
set more values of Kp, Ki to ensure that the amount of data
in each class is roughly equal.

2) Comparison of Different Methods: In the experiments,
we compared the proposed method with other seven methods,
including Logistic Regression (LR), Random Forest (RF) [31],
Support Vector Machine (SVM) [32], Extreme Gradient Boost-
ing (XgBoost) [33], LeNet-5 [18], BSD-Convolutional Neural
Network (BSD-CNN) [6], Stiction Detection Network (SDN)
[7]. LR is a predictive analysis algorithm and based on the
concept of probability. Most importantly, LR maps predicted
values to probabilities through Sigmoid function, explaining
why the outcome could be interpreted as a probability.

SVM and its extensions are one class of the most success-
ful machine learning methods. It aims to seek the optimal
hyperplane with the maximum margin principle in a high- or
infinite-dimensional space. It has a solid theoretical foundation

and good generalization ability, which results in wide appli-
cations in various fields.

RF and XgBoost are both ensemble learning strategies.
Ensemble learning a commonly used technique in a data
science competition since model performance could always
benefit from various algorithms. RF consists of multiple ran-
dom decision trees. Two types of randomnesses are considered
in the whole process. First, each tree is built on a random
sample from the original data. Second, a subset of features is
randomly selected for the best split. A RF makes the prediction
by averaging the predictions from all the individual decision
trees. Xgboost is an efficient and scalable implementation
of the Gradient Boosting Machine (GBM). Compared to the
general GBM, The optimization of Xgboost takes the Taylor
expansion of the loss function up to the second-order, and the
model uses a more regularized model formalization to control
over-fitting, which provides better performance.

LeNet-5 was proposed to classify hand-written digits on
bank cheques automatically. It is a representative CNN be-
cause before it was proposed, character recognition was done
mostly using hand-crafted features. The LeNet-5 architecture
consists of two sets of convolutional and average pooling
layers, followed by a flattening covolutional layer, two fully-
connected layers, and a softmax classifier.

BSD-CNN and SDN are both the DL-based methods pro-
posed for stiction detection. BSD-CNN is based on a CNN,
but the inputs of the network are butterfly shape-based (BSD)
images derived from the manipulation of the standard PV and
OP data. SDN is based on a multi-layer feed-forward network
and the inputs are transformations of PV and OP data.

3) Parameters Setting: The experimental parameters
mainly include the values of timescales and the model pa-
rameters. The main parameters used in our experiments are
listed in Table II. In NetUnfix, we directly take images (.jpg)
as the training and test data, and in NetFix we use 2-D
matrices because the element in the matrices is calculated
through (1). Since we set the size of the matrix is 50 × 50,
the timescales of training data and test data are all multiples
of 50. Note that the timescales of training data and test data
are different because the training data comes from MATLAB,
and the test data is real industrial data. In our experiments,
we extract features on four different timescales. In Table II,
conv2d(*) represents a convolutional operation over the 2-D
format data, the parameters are the number of channels in the
input, number of channels produced by the convolution, kernel
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TABLE II
EXPERIMENTAL PARAMETERS

Model Main Settings

NetUnfix

Net:
Conv2d(3, 8, 5, 1)→ReLU()→Maxpool2d(2,2)→
Conv2d(8, 25, 5, 1)→ReLU()→Maxpool2d(2,2)→
Fc(625,120)→ReLU()→Fc(120,84)→ReLU()→Fc(82,2)

Data:
Format: .jpg
Image Size: 32 × 32 pixels
Training Timescale: 200, 300, 400, 600
Test Timescale: 50, 75, 100, 200

Netfix

Net:
Conv2d(1, 8, 5, 2)→ReLU()→Maxpool2d(2,2)→
Conv2d(8, 25, 5, 1)→ReLU()→Maxpool2d(2,2)→
Fc(225,120)→ReLU()→Fc(120,84)→ReLU()→Fc(82,2)

Data:
Format: 2-D matrix
Matrix Size: 50 × 50
Training Timescale: 200, 300, 400, 600
Test Timescale: 50, 100, 150, 200

size, and stride. Fc(*) denotes a fully connected layer, and the
parameters are the size of each input and output.

B. Experimental Evaluation

This paper uses the benchmark stiction dataset and a real
hardware experimental system to evaluate the performance of
the proposed strategy.

1) International Stiction Data Base: The International Stic-
tion Data Base (ISDB) was provided by [2] and it is a compre-
hensive process control dataset, including self-regulating and
integrating control loops. Most loops are flow, temperature,
level, and pressure loops. Sixty loops are chosen for testing
in this paper, in which 30 loops are stiction and 30 loops are
non-stiction. Note that non-stiction does not mean the loop
is normal. The non-stiction loops may exist other problems
such as disturbance. The main information of the test loops is
described in Table III, where Tem, Flo, Pre, Lev, Con, Gau
denote the temperature, flow, pressure, level, concentration,
and gauge control loops, respectively.

2) Hardware Experimental System: A real hardware ex-
perimental system with three control valves is used to verify
our proposed strategy. The system consists of a liquid level
loop and two flow loops. The process flow chart and the
experimental system are shown in Fig. 5 and Fig. 6. FIC201
and FIC202 are flow loops, and LIC201 is the level loop.
V201, V202, and V203 represent the valves, and M201, M202,
and M203 represent the magnetic flow meters. L201 represents
a pressure sensor that measures the bottom pressure of Tank
202, and then the pressure value is transformed to the liquid
level. V203 and V202 control the water flow into the Tank202,
and V201 controls the water flow out of the Tank202.

3) Evaluation Metrics: Three metrics, precision (P ),
recall (R), and F1 score (F1) were used to evaluate the
performance of the proposed strategy. These three metrics
are commonly used in classification problems. Generally, the
definitions of the metrics are

Fig. 5. The flow chart of the hardware experimental system.

V201

V202

V203

M201

M202

M203
Tank202

Tank203

Pump

(a) Hardware experimental system 

(c) Control software  

(b) Sensors and valves  

(d) A running valve 

Fig. 6. The real hardware experimental system.

P = TP/ (TP + FP ) (16)

R = TP/ (TP + FN) (17)

F1 = (2 · P ·R)/ (P +R) (18)

where TP is True Positive which represents the number of
test samples that both the predicted label and the actual
label are positive. FP is False Positive which represents the
number of test samples that the predicted labels are positive,
but the actual labels are negative. Contrary to FP , FN is
False Negative which denotes the number of samples that the
predicted labels are negative, but the actual labels are positive.
Generally, a high P means that the predicted positive samples
are correct and a high R means that most real positive samples
are recognized, so both P and R should be high. F1 is the
harmonic mean of precision and recall. Generally, the higher
the F1, the better the model performance.

C. Experimental Results and Discussions

1) Experimental Results on ISDB: We use seven methods
to compare with the proposed detection strategy on the ISDB
dataset in the experiments. Besides, we deploy the model on
a real hardware system, which has three valves. Table IV
presents the experimental results with our proposed detection
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TABLE III
MAIN INFORMATION OF TEST LOOPS

Loop Type Ts[s] Comment Loop Type Ts[s] Comment Loop Type Ts[s] Comment
BAS 6 Tem 1 Stiction CHEM 26 Pre 12 Stiction CHEM 64 Flo 60 No− stiction
BAS 7 Tem 1 Stiction CHEM 28 Tem 12 Stiction CHEM 71 Lev 1 No− stiction

CHEM 1 Flo 1 Stiction CHEM 29 Flo 60 Stiction CHEM 72 Lev 1 No− stiction
CHEM 2 Flo 1 Stiction CHEM 30 Flo 15 Stiction CHEM 74 Lev 1 No− stiction
CHEM 5 Flo 1 Stiction CHEM 31 Flo 15 No− stiction CHEM 76 Tem 1 No− stiction
CHEM 6 Flo 1 Stiction CHEM 32 Flo 10 Stiction MET 1 Gau 0.05 No− stiction

CHEM 10 Pre 1 Stiction CHEM 33 Flo 12 No− stiction MET 3 Gau 0.05 No− stiction
CHEM 11 Flo 1 Stiction CHEM 34 Flo 10 No− stiction MIN 1 Tem 60 Stiction

CHEM 12 Flo 1 Stiction CHEM 35 Flo 10 Stiction POW 1 Lev 5 Stiction

CHEM 14 Flo 20 No− stiction CHEM 37 Lev 12 No− stiction POW 2 Lev 5 Stiction

CHEM 15 Pre 20 No− stiction CHEM 38 Pre 10 No− stiction POW 3 Lev 5 No− stiction
CHEM 16 Pre 20 No− stiction CHEM 43 Tem 60 No− stiction POW 4 Lev 5 Stiction

CHEM 18 Flo 12 Stiction CHEM 45 Pre 60 No− stiction PAP 1 Flo 1 Stiction

CHEM 19 Flo 12 Stiction CHEM 46 Pre 60 No− stiction PAP 2 Flo 1 Stiction

CHEM 20 Flo 1 Stiction CHEM 52 Lev 60 No− stiction PAP 4 Con 1 No− stiction
CHEM 21 Flo 12 No− stiction CHEM 53 Lev 60 No− stiction PAP 5 Con 0.2 Stiction

CHEM 22 Flo 12 Stiction CHEM 54 Lev 60 No− stiction PAP 6 Lev 1 No− stiction
CHEM 23 Flo 12 Stiction CHEM 56 Flo 60 No− stiction PAP 9 Tem 5 No− stiction
CHEM 24 Flo 12 Stiction CHEM 60 Flo 60 No− stiction PAP 12 Lev 15 Stiction

CHEM 25 Pre 12 No− stiction CHEM 61 Flo 60 No− stiction PAP 13 Lev 15 Stiction

TABLE IV
COMPARISON RESULTS ON ISDB DATASET

Method
Stiction Non-stiction

P R F1 P R F1

Ours 0.87 0.90 0.89 0.90 0.87 0.88
LR 0.57 0.53 0.55 0.56 0.60 0.58

RF [31] 0.74 0.47 0.57 0.61 0.83 0.70
SVM [32] 0.68 0.70 0.69 0.69 0.67 0.68

Xgboost [33] 0.63 0.40 0.49 0.56 0.77 0.65
LeNet-5 [18] 0.80 0.80 0.80 0.80 0.80 0.80

BSD-CNN [6] 0.75 0.73 0.74 0.77 0.79 0.78
SDN [7] 0.80 0.80 0.80 0.73 0.73 0.73

Only NetFix 0.76 0.63 0.69 0.69 0.80 0.74
Only NetUnfix 0.96 0.77 0.85 0.81 0.97 0.88

TABLE V
EXPERIMENTAL RESULTS ON REAL HARDWARE SYSTEM AND INDUSTRIAL

ENVIRONMENTS

Loop Stic? Ours LR RF SVM Xgboost LeNet-5
V201 0 0 1 1 1 1 0
V202 0 0 0 1 0 0 1
V203 0 0 0 0 0 0 0

PIC23002 0 0 0 0 0 0 1
FIC3107 0 1 0 0 0 0 1
FIC2228 1 1 0 0 1 0 1

F6304 1 1 0 1 0 1 1

strategy on ISDB dataset. In the experiments, the DL-based
methods (LeNet-5, BSD-CNN, SDN, and the proposed strat-
egy) achieve better performance than the traditional methods
(LR, RF, SVM, Xgboost). SVM shows the most balanced
performance and relatively high metrics over the traditional
methods in both classes, proving SVM is still a good classier.
The traditional ensemble methods show unbalanced results
since RF and Xgboost achieve the higher F1 in class non-
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Fig. 7. Metrics on different number of timescales.

stiction than that in class stiction.
The DL-based methods achieve better performance since

they can learn effective and representative features. BSD-
CNN and SDN are relatively simple networks proposed for
valve stiction detection, and LeNet-5 has been proposed for
about two decades. However, The LeNet-5 achieves better
performance than the networks dedicated to valve stiction.
We argue that two factors contributed to this result. The first
factor is the diversity of the training data. The training data
for LeNet-5 are generated on multiple timescales, but the data
for BSD-CNN and SDN are generated on a single timescale.
The second factor is the different representation ability, BSD-
CNN and SDN use the relatively simple networks of fewer
layers than the LeNet-5. The proposed strategy derives the
best performance from combining the two complementary data
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Fig. 8. Procedure for practical application and the typical input spectrum on
four different timescales through the proposed data conversion methods.

conversion methods, the mixed feature learning stage and the
fusion decision stage. In other words, two data conversion
methods enhance the diversity of the data, mixed feature learn-
ing makes the model have better generalization ability, fusion
ensemble decision-making method provides more robust and
reliable results. The proposed strategy combines the advan-
tages of traditional ML methods and DL-based methods to
achieve the best performance, and the experiments confirmed
the effectiveness of our strategy.

2) Discussion of Data Conversion: The discussion about
the usage of data conversion methods is shown in Table
IV. Netfix and NetUnfix represent the network with single
fixed timescales conversion (III-A1) and the network with
single unfixed timescales conversion (III-A2). The metrics of
NetUnfix are better than those of Netfix, and the proposed
ensemble method achieves the best results. Compared to the
results of NetUnfix in class non-stiction loops, the proposed
ensemble method maintains the F1 and achieves a higher
F1 in class stiction loops, proving the effectiveness of the

complementary strategy of data conversion.
3) Discussion of number of Timescales: Considering fea-

ture fusion is an essential stage and the number of features
is determined by the number of selected timescales in our
proposed strategy, we discuss the influence of the number
of timescales on the recognition accuracy. Intuitively, the
more timescales we selected, the higher accuracy will achieve
because more features are collected. The results are shown
in Fig. 7. Through our experiments, we found that increasing
the number of timescales is conducive to the improvement of
recognition accuracy when the number of selected timescales
is less than 4, but as the number of timescales continues to in-
crease, the decrease in F1-score indicates that the performance
of the approach will degrade. We argue that the diversity of
features increases significantly when the number changes from
1 to 4, which is conducive to the model performance. When
the number changes from 4 to 5 the redundant features are ex-
tracted, which leads to the deterioration of model performance.
Overall, the multiple features ensemble strategy on industrial
data is effective, but too many features will cause degradation
of model performance due to feature redundancy.

D. Practical Application

The first three rows of Table V are the experimental results
on the real hardware experimental system. In Table V, 0
and 1 represent non-stiction and stiction respectively. The
valves within the experimental system are relatively new, and
no stiction situations are reported from the operators. The
decision results made by our strategy are non-stiction, which
are consistent with the real labels.

In addition to the benchmark dataset and the real hard-
ware experimental system, we further tested our proposed
strategy in the real industrial environments. We provide the
procedure for practical application, as shown in Fig 8. The
whole application consists of a closed-loop system and the
diagnosis procedure. OP and PV data are collected from the
closed-loop system and they are taken as the inputs of the
diagnosis framework. Through two data conversion methods
mentioned in section III-A, the raw data are convert to
images and matrices on different timescales. Then the trained
feature learning networks are used to extract features from
the transformed images and matrices. Finally, concatenating
the features from different networks and using a traditional
classifier, which achieving the final diagnosis of the closed-
loop system. Moreover, we provide the typical input spectrum
that includes the raw signals and the transformed signals via
the proposed data conversion methods. The images in the
columns on the left are the typical input spectrum of stiction
loops, and the images on the right belong to non-stiction loop.

We collected industrial data from four valves and compared
with five other methods, including LR, RF, SVM, Xgboost,
and LeNet-5. We did not compare with BSD-CNN and SDN
since the implementation codes of these two methods are not
available. The results are shown in the last four rows of Table
V. It can be seen that our strategy and LeNet-5 can correctly
recognize the two stiction control loops (FIC2228 and F6304),
but LeNet-5 give also two additional false positives (PIC23002

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:42:36 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3087503, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 10

and FIC3107), so its global performance is worse. And our
proposed strategy correctly recognizes the condition of six
valves, which is better than other methods.

The last decade has witnessed the great success of DL,
and this paper proposes two complementary data conversion
methods along with a DL-based feature learning architecture
to tackle industrial time series data for valve stiction detection.
The experimental results on the benchmark dataset and the real
industrial environments indicate that the proposed framework
is comparative in this monitoring task.

V. CONCLUSION

This paper focused on multiple timescale feature learning
of industrial control loop data and proposed a learning strat-
egy for valve stiction detection. The key to the proposed
strategy is combining two complementary data conversion
methods, the mixed feature learning stage, and the fusion
decision stage. Comparing the proposed CNN-based strategy
with the traditional methods and DL-based methods showed
that the proposed strategy could achieve higher and more
reliable decision results. Moreover, the experiments on the
real hardware system and actual industrial environment proved
the effectiveness of the proposed strategy in practice. In our
future work, the quantification evaluation of valve stiction
will be further discussed. Additionally, the authors will try
to extend the learning paradigm toward unsupervised learning
since obtaining reliable industrial labeled data is not very easy
in some industrial cases.
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Jounela, “An autonomous valve stiction detection system based on data
characterization,” Control Engineering Practice, vol. 21, no. 11, pp.
1507–1518, 2013.

[13] O. Pozo Garcia, A. Zakharov, and S. Jämsä-Jounela, “Data and reliability
characterization strategy for automatic detection of valve stiction in
control loops,” IEEE Transactions on Control Systems Technology,
vol. 25, no. 3, pp. 769–780, May 2017.

[14] L. Xie, X. Lang, A. Horch, and Y. Yang, “Online oscillation detection
in the presence of signal intermittency,” Control Engineering Practice,
vol. 55, pp. 91–100, 2016.

[15] A. Horch, “A simple method for detection of stiction in control valves,”
Control Engineering Practice, vol. 7, no. 10, pp. 1221–1231, 1999.
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