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Abstract: This paper proposes an unsupervised feature learning approach on industrial time series data for detection of valve
stiction. Considering the commonly existed characteristics of industrial time series signals and the condition that sometimes
massive reliable labeled-data are not available, a new time series data transformation and augmentation method is developed.
The transformation stage converts the raw time series signals to 2-D matrices and the augmentation stage increases the diversity
of the matrices by performing transformation on different timescales. Then a convolutional autoencoder is used to extract the
representative features on the augmented data, these new features are taken as the inputs of the traditional clustering algorithms.
Unlike the traditional approaches using hand-crafted features or requiring labeled-data, the proposed strategy can automatically
learn features on the time series data collected from industrial control loops without supervision. The effectiveness of the pro-
posed approach is evaluated through the International Stiction Data Base (ISDB). Compared with the traditional machine learning
methods and deep learning based methods, the experimental results demonstrate that the proposed strategy outperforms the other
methods. Besides performance evaluation, we provide a visualization process of feature learning via principal component analy-
sis.
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1 Introduction

Stiction detection of a control valve has always been an

essential issue in control loop performance assessment and

fault diagnosis in the process industry [1, 2]. Strong stic-

tion results in the unexpected oscillations, which increase

variability in product quality, accelerate equipment wear and

increase energy consumption. The key to a successful de-

tection is to effectively extract the representative features in

the industrial time series data collected from the sensors. In

recent years, the smart factory has received increased atten-

tion, and the industrial data can be collected much easier and

faster than ever before. These provide a new opportunity to

achieve an automatic stiction detection using the data-driven

methods capable of automatically learning features in the

massive industrial data.

The traditional methods for stiction detection within a

control valve rely heavily on the hand-crafted features and

are highly application-specific. The hand-crafted features

are extracted from raw industrial time series data based on

the specific characteristics and mechanisms [3, 4]. A simi-

lar feature extraction strategy was also adopted in [5]. The

typical stiction behavior results in a special shape or pattern

in the phase plot of process variables [6, 7]. Extracting the

specific features from an image encoded with raw time se-

ries data seems more intuitive. The methods based on ob-

served features in an image are summarized as shape-based

method [8–12]. Although the shape-based methods are more

intuitive, extracting features is essentially a manual process

rather than an automatic one. Therefore, inevitable limita-

tions exist when applying these methods to the control loops

of dynamic changing characteristics.

In recent years, deep learning (DL) provides a promis-

ing and effective solution for feature representation due to

its powerful feature learning ability. For the task of valve
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stiction detection, Amiruddin [13] transformed the raw time

samples to D values and used an artificial neural network

(ANN) to detect stiction. Dambros [14] also employed sim-

ple ANN but the inputs of the network are process vari-

able diagrams. Kamaruddin [15] replaced ANN with CNN

to learn features on the designed “butterfly” shape images.

These approaches achieve the better results than the tradi-

tional handcrafted feature based methods.

However, some challenges in the usage of DL in valve

stiction detection still remain. On the one hand, the use

of simple learning networks on the real industrial data is

also susceptible to noise and the unexpected factors. For

a more reliable application, the feature extraction on multi-

ple timescales with temporal and spatial characteristics are

necessary for advanced pattern recognition approaches. On

the other hand, the above successful models need to satisfy

a critical condition: the massive reliable labeled data with

process information are available. However, this condition

is sometimes a highly constraint in practice since obtaining

high-quality data is time-consuming and expensive.

In this paper, we propose an unsupervised industrial time

series feature learning approach to distinguish the stiction

valves from the non-stiction valves. Considering the com-

monly existed characteristics of industrial time series signals

and the condition that sometimes massive reliable labeled-

data are not available, a new time series data transformation

and augmentation method is developed. The transformation

stage converts the raw time series signals to 2-D matrices

through calculating the dynamic time warping (DTW) dis-

tance between different segments of the raw time series. The

augmentation stage increases the diversity the matrices by

performing the transformation on different timescales, then

the augmented data are taken as the inputs of the feature

learning model.

As one of the most representative DL models, convolu-

tional neural network (CNN) has not only achieved a break-

through improvement on image recognition and classifica-

tion tasks in the past decade, but also shown promising de-
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Fig. 1: Typical behavior of valve stiction.

velopment prospects in the feature representation of indus-

trial TS data [16–18]. Moreover, Bai et al indicted that a

simple convolutional architecture outperforms canonical re-

current neural networks (RNN) which were originally de-

signed for processing sequence data [19]. Hence this paper

use convolutional autoencoder (CAE) to achieve the feature

learning on an unsupervised way. An autoencoder is a neural

network that is trained to reconstruct the input. Internally, it

has a hidden layer (or embedded layer) that defines a code to

represent the input. The code is representative and the tradi-

tional clustering algorithms use it as the features to achieve

final detection and classification.

The main insights and contributions of this paper are sum-

marized as follows.

• A new multivariate industrial time series data trans-

formation and augmentation methods are developed,

which code the temporal information of the raw time

series signals in the 2-D matrices.

• A CAE with augmented input data is used to capture

the interaction between the pairs of time series, which

learns the spatial information of the raw time series sig-

nals.

The rest of this paper is organized as follows. Section 2

gives the definition and characteristics of the typical valve

stiction. Section 3 describes the details of the proposed ap-

proach. And the experiment is shown in section 4. The con-

clusions and future work are presented in Section 5.

2 Definition of Valve Stiction

A valve is an actuator and stiction was formally defined

in [20], which is illustrated with the phase plot of controller

output value (OP) and manipulated variable (MV) in Fig. 1.

The typical behavior of valve stiction involves four stages, a

deadband, a stickband, a slipjump, and a moving. Assuming

a valve is in the position (A) and it sticks. As OP increases,

the valve’s position does not change because of the deadband

(AB) and the stickband (BC). When OP overcomes the dead-

band and the stickband, the valve suddenly jumps to the new

position (D) because of the potential energy stored in the ac-

tuator and starts to move. The same behavior occurs in the

opposite direction of the valve movement. S and J quantify

a stiction behavior in the two-parameters data-driven model

of valve stiction [20, 21], where S = deadband + stickband
and J = slipjump.

Fig. 2: Example of data conversion.

3 The Proposed Approach

3.1 Data Transformation and Augmentation
In the traditional data-driven approaches, the data trans-

formation method is important since most of the data-driven

methods cannot deal with the raw signals directly. One of

the main functions of the process is to extract the features of

the raw signals from the large volume of historic data. How-

ever, to extract the proper features is an exhausted work, and

these features have great effects on the final results. In this

paper, an effective data conversion stage is developed. The

basic idea is to convert the time-domain raw signals into C-

channel M ×M images.

As shown in Fig. 2, for a single series, in order to ob-

tain an M ×M size image, the time-domain raw signal is

divided into M segments with random lengths. Let L (i),
i = 1, 2, . . . ,M , denotes the i-th segment of the raw sig-

nal. P (j, k), j = 1, 2, . . . ,M ; k = 1, 2, . . . ,M denotes the

pixel value of the conversed image, as shown in the follow-

ing equation:

P (j, k) = DTW (L (j) , L (k)) (1)

where DTW (·) denotes dynamic time warping (DTW) dis-

tance that is calculated instead of the widely used Euclidean

distance. The advantage of the DTW distance is that the two

series to be of equal lengths are not necessary [22]. Hence,

the DTW distance is calculated by

DTW (Q,C) = argmin
W=w1,...,wk,...,wK

√√√√
K∑

k=1,wk=(i,j)

(qi − cj)
2

(2)

Note that each single series can be calculated by (1) and

a M ×M size image is obtained. Assume that the indus-

trial data have C series, the image with C ×M ×M size is

finally obtained. The advantage of the proposed data conver-

sion method is that the two segments to be of equal lengths

are not necessary, which means the complicated temporal in-

formation can be encoded on different timescales. Moreover,

this data transformation method can be used without any pre-

defined or pretrained parameters and can reduce the reliance

on expert experience as much as possible. Moreover, con-

sidering the commonly existed characteristics of industrial
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time series signals, we develop two different data augmen-

tation methods based on the different timescales, which are

called fixed-span augmentation and random-span augmenta-

tion, separately. The details are as follows.

Given a series ts = [x1, x2, . . . , xn] and the matrix size

m, which is also the number of segments of the raw series.

First, we calculate the average length of the segments by

L = floor
( n

m

)
(3)

where floor (·) returns the largest integer not greater than
n
m . For the fixed-span augmentation, the initial and the end

indexes are calculated by

idxinit = [0 · L, 1 · L, 2 · L, . . . ,m · L]
idxend = idxinit + L

(4)

And for the random-span augmentation, the initial and the

end indexes are calculated by

idxinit = [0 · L, 1 · L, 2 · L, . . . ,m · L]
idxend = idxinit + random (L, μ · L) (5)

where μ is a integer that controls the range of the seg-

ment length. random (L, μ · L) returns m integers that are

greater than L but smaller than μ · L. Obviously, when m is

fixed, selecting a larger n means encoding larger-timescale

information of the raw signals, and a smaller n means that

the smaller-timescale information is considered. In this

study, we performed the data augmentation under different

timescales n simultaneously, which provides more informa-

tion about the raw signals.

3.2 Unsupervised Feature Learning
In this paper, we use a CAE to learn features. A CAE is

generally composed of two blocks, corresponding to encoder

FE (·) and decoder FD (·) respectively. The goal is to find a

representative features for each input sample by minimizing

the mean squared errors (MSE) between its input and output

over all samples, i,3.

min
1

n

n∑
i=1

‖FD (FE (xi))− xi‖22 (6)

For a fully connected autoencdoer,

FE (x) = σ (Wx) = h
FD (h) = σ (Ux) = x̂

(7)

where h is a vector and σ is activation function like ReLU,

sigmoid, Tanh. After training, the embedded features h re-

gards as the new representation of the input sample. Then

h can be fed into another autoencoder to build a stacked au-

toencoder (SAE). To exploit the spatial structure of images,

the convolutional layers replace the fully connected layers,

and a convolutional autoencoder is defined as

FConvE (x) = σ (x ◦W ) = h
FConvD (h) = σ (x ◦ U) = x̂

(8)

where x and h are matrices or tensors, and ◦ is convolu-

tion operator. The stacked convolutional autoencoder can be

construed in a similar way as SAE. In this paper, we use

Fig. 3: The structure of convolutional autoencoder (CAE).

a convolutional autoencoder that does not need layer-wise

pretraining, as shown in Fig. 3. Some convolutional layers

are stacked on the input images to extract hierarchical fea-

tures. Then flatten all units to form a vector, followed by a

fully connected layer which is called embedded layer. The

input 2-D image is thus transformed into a low dimension

feature space. In order to train it in the unsupervised way,

a decoder that consists of a fully connected layer and some

stacked convolutional layers is built, which map the embed-

ded layer to original image. The parameters of the encoder

and the decoder are updated by minimizing the reconstruc-

tion error:

Lr =
1

n

n∑
i=1

‖FD←w′ (FE←w (xi))− xi‖22 (9)

where n is the number of the samples.

Considering the dimension of the embedded layer is very

low compared to the original input. Learning such under-

complete representations forces the autoencoder to capture

the most salient features of the data. Note that the data

conversion method mentioned in 3.1 capture the temporal

information of a single series, and the inputs of CAEs are

C × M × M size images, thus stacked convolutional lay-

ers can capture spatial interactions between different pairs

of series.

3.3 Feature Concatenation and Clustering
In this paper, we concatenate the embedded layers of

CAEs on different timescales to form the final features.

Given the encoder of the trained CAE and the inputs with

k-th timescale, which are denoted as FConvD and xk, the

embedded layer is described as

hts = FConvD (xk) (10)

Given a set of timescales, TS = {ts1, ts2, . . . , tsk}. The

fused features are denoted as

H =
(
hT
1 , h

T
1 , . . . , h

T
k

)T
(11)

where hk denotes the embedded layer under the k-th

timescale. Then the fuzzy clustering algorithm with input

H is used to find different classes, the objective function is

Lc =
C∑

c=1

N∑
i=1

N∑
j=1

m2
icm

2
jcdij

2
N∑
j=1

m2
jc

(12)
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Table 1: Main Simulation Parameters

Process Class S J

G1 (s) Non-stiction [0] [0]

G1 (s) Stiction
[0.1: 0.1: 0.7,

1.0: 0.5: 5.0]
[0.0: 0.1: 1.0]

G1 (s) Non-stiction [0] [0]

G1 (s) Stiction [0.1: 0.1: 1.5] [0.00: 0.01: 0.05]

G2 (s) Non-stiction [0] [0]

G2 (s) Stiction
[0.1: 0.1: 0.7,

1.0: 0.5: 5.]
[0.0: 0.1: 1.0]

G2 (s) Non-stiction [0] [0]

G2 (s) Stiction [0.1: 0.1: 1.5] [0.00: 0.01: 0.05]

Table 2: Experimental Parameters

Type Parameters

Matrix Size 28× 28

Training Timescales 200, 400, 600

Test Timescales 75, 125, 175

Encoder

X →ReLU(Conv2d(2, 32, 3, 2))

→ReLU(Conv2d(32, 64, 3, 2))

→ReLU(Conv2d(64, 128, 3, 2))

→Linear(*,5)

Decoder

Linear(*,5)

→ReLU(DeConv2d(128, 64, 3, 2))

→ReLU(DeConv2d(64, 32, 5, 2))

→DeConv2d(32, 2, 5, 2) → X

where mic represents the unknown membership of the object

i in cluster c and dij is the dissimilarity between object i and

j. The memberships are subject to constraints that they all

must be non-negative and that the memberships for a single

individual must sum to one.

4 Experiment

4.1 Experiment Settings
4.1.1 Model Training

In most cases, obtaining massive industrial data is time-

consuming. Inspired by [13, 15], we first generate the addi-

tional data for model training through simulation rather than

the real industrial data. The following transfer functions are

considered.

G1 (s) =
1

0.2s
e−0.05s, (13)

G2 (s) =
1

0.2s+ 1
. (14)

Both processes are controlled by PI controllers. In Kano’s

stiction model, S and J are used to control the stiction de-

gree [21]. When both S and J are equal to zero, a valve is

non-stiction and the data is labeled with ”non-stiction”. Con-

versely, when S or J are not equal to zero, the data is labeled

with ”stiction”. The main simulation parameters for differ-

ent transfer functions are listed in Table 1. After collecting

the training data, a CAE network is trained using stochas-

tic gradient descent algorithm. The training loss is shown in

Fig. 4.

Epoch

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

L
o

ss

Fig. 4: Training loss.

4.1.2 Model Test

We use a benchmark dataset, The International Stiction

Data Base (ISDB), to verify the effectiveness of our ap-

proach. ISDB is a comprehensive process control dataset,

including self-regulating and integrating control loops. Most

loops are flow, temperature, level, and pressure loops. In this

paper, 70 loops are selected, in which 30 loops are stiction

and 40 loops are non-stiction. The details of the loops are

not shown in this paper because of the space limitation, and

all information about the loops can be found in [2].

4.1.3 Model Parameters Setting

The experimental parameters mainly include the values

of timescales and the model parameters. The main param-

eters used in our experiments are listed in Table 2. X de-

notes the inputs of the CAE model, which are two-channels

28×28 matrices calculated through section 3.1. Note that the

timescales of training data and test data are different because

the training data comes from MATLAB, and the test data is

real industrial data. In our experiments, we extract features

on three different timescales. In Table 2, conv2d(*) repre-

sents a convolutional operation over the 2-D format data, the

parameters are the number of channels in the input, number

of channels produced by the convolution, kernel size, and

stride. Linear(*) denotes a fully connected layer, and the pa-

rameters are the size of each input and output.

4.1.4 Evaluation Metrics

We use clustering accuracy to evaluate the performance

of the proposed approach. It is commonly used in clustering

problems. Generally, the definition of the metric is

acc = max
perm∈P

1

n

n−1∑
i=0

1 (perm (ŷi) = yi) (15)

where P is the set of all permutations in [1, 2, . . . ,K] where

K is the number of clusters. Moreover, we use classification

accuracy to evaluate the comparison methods that belong to

supervised methods. The classification accuracy is defined

as

accclf=
1

n

n−1∑
i=0

1 (ŷi = yi) (16)

where x → 1 (x) is the indicator function: 1 (ŷi = yi) = 1
if ŷi = yi and 0 else.
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Table 3: Comparison Results on ISDB dataset

Method Ours BSD-CNN SDN −
Accuracy 0.84 0.76 0.77 −
Method LR SVM RF Xgboost

Accuracy 0.41 0.78 0.72 0.75

Method Kmeans FC HC −
Accuracy 0.78 0.80 0.75 −

4.2 Comparison Methods
In the experiments, we compare the proposed method with

other methods, including four traditional machine learn-

ing methods: Logistic Regression (LR), Random Forest

(RF), Support Vector Machine (SVM) , and Gradient Boost-

ing (XgBoost), two DL-based methods: BSD-Convolutional

Neural Network (BSD-CNN) [15], Stiction Detection Net-

work (SDN) [13], and four classic clustering algorithm, K-

means (KM), hierarchical clustering (HC), and fuzzy clus-

tering (FC).

LR is a machine learning algorithm used for classification

problems. It is a predictive analysis algorithm and based on

the concept of probability. SVM and its extensions are one

class of the most successful machine learning methods. It

aims to seek the optimal hyperplane with the maximum mar-

gin principle in a high- or infinite-dimensional space. It has

a solid theoretical foundation and good generalization abil-

ity, which results in wide applications in various fields. RF

and XgBoost are both ensemble learning strategies. Ensem-

ble learning a commonly used technique in a data science

competition since model performance could always benefit

from various algorithms.

BSD-CNN and SDN are both the DL-based methods that

were proposed for stiction detection. BSD-CNN is based on

a CNN, but the inputs of the network are butterfly shape-

based (BSD) images derived from the manipulation of the

standard PV and OP data. SDN is based on a multi-layer

feed-forward NN and the inputs are transformations format

of PV and OP operational data.

KM is one of the simplest and popular unsupervised algo-

rithm, which identifies k number of centroids, and then allo-

cates every data point to the nearest cluster. Each data point

only belong to one cluster. FC is a soft form of clustering

in which each data point can belong to more than one clus-

ter, and memberships are introduced and indicate the degree

to which data points belong to each cluster. In HC, initially

each data point is considered as an individual cluster. At

each iteration, the similar clusters merge with other clusters

until on cluster or K clusters are formed.

4.3 Experimental Results and Visualization
4.3.1 Clustering Results

We use ten comparison methods to compare with the pro-

posed detection strategy on the ISDB dataset in the experi-

ments. Table 3 and Fig. 5 present the experimental results

with our proposed detection strategy on ISDB dataset.

Overall, the DL-based methods (BSD-CNN, SDN, and the

proposed strategy) achieve higher accuracy than the most

traditional supervised methods (LR, RF, Xgboost), even RF

and Xgboost are ensemble methods. However, SVM shows

0.900.800.700.600.500.400.300.200.100.00

LR

Ours

SVM

RF

Xgb

KM

FC

HC

SDN

BSD

Fig. 5: Comparison Results on ISDB dataset.
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Fig. 6: Visualization of features in different stages.

the most performance and relatively high metric over the tra-

ditional methods and two DL-based methods (BSD-CNN,

SDN), proving SVM is still a good classier. And simple KM

and FC algorithms achieve relatively high accuracy than the

most comparison methods, which means the data transfor-

mation method mentioned in section 3.1 has captured the

DDCLS'21
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representative features.

Compared to the DL-based methods, BSD-CNN and SDN

are supervised networks proposed for valve detection in re-

cent years, and our unsupervised approach is not limited to

valve stiction detection but achieve the higher accuracy. We

argue that two factors contributed to this result. The first

factor is the diversity of the training data. The training data

for our approach are generated via a developed transforma-

tion and augmentation method on multiple timescales, but

the data for BSD-CNN and SDN are generated on a single

timescale. The second factor is the different representation

ability, BSD-CNN and SDN use the relatively simple net-

works of fewer layers than our CAE network. We use a CAE

model to further extract the features from the transformed

data, which results in a higher accuracy.

4.3.2 Visualization

In this section, we provide a visualization of feature learn-

ing process using principal component analysis, which is

shown in 6. It can be seen that in the initial stage, both

stiction and non-stiction loops have a dispersed distribution

in the two-dimensional space. After a period of training,

the most non-stiction loops lie on the left side of the feature

space, and the stiction loops lies on the right side of the two-

dimensional feature space. In the final stage, the distribution

of non-stiction loops are gathered in a small area, and most

data points of the stiction loops lie on the right and the top

area. As a result, the clustering accuracy increases from 0.74

to 0.84. This visualization process proves the effectiveness

of the proposed unsupervised approach.

5 Conclusions

This paper focused on unsupervised feature representa-

tion of industrial valve stiction in a control loop. We pro-

pose a learning strategy combining a new data transforma-

tion and an augmentation method and a CAE model to detect

the stiction of control valves. Comparing the proposed ap-

proach with the traditional methods and DL-based methods,

it showed that the proposed approach could achieve higher

accuracy. In our future work, the quantification evaluation

of stiction will be further discussed. And the authors will try

to extend the proposed approach to general industrial multi-

variate time series data.
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