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Abstract—In this paper, we present a novel learning frame-
work for traversable region detection. Firstly, we construct
features from the super-pixel level which can reduce the
computational cost compared to pixel level. Multi-scale super-
pixels are extracted to give consideration to both outline and
detail information. Then we classify the multiple-scale super-
pixels and merge the labels in pixel level. Meanwhile, we
use weighted ELM as our classifier which can deal with the
imbalanced class distribution since we only assume that a small
region in front of robot is traversable at the beginning of
learning. Finally, we employ the online learning process so that
our framework can be adaptive to varied scenes. Experimental
results on three different style of image sequences, i.e. shadow
road, rain sequence and variational sequence, demonstrate the
adaptability, stability and parameter insensitivity of our method
to the varied scenes and complex illumination.

I. INTRODUCTION

Vision-based traversable region detection is the key tech-
nique in driver assistance systems and autonomous navi-
gation systems. It uses images from camera mounted on
robots to extract traversable regions from current viewfield.
Although many successful traversable region detection meth-
ods [1], [2], [3], [4], [5], [6] have been proposed, vision
based traversable region detection is still a challenge due
to the diversity of traversable regions, limited geometrical
constraints!, variation of surfaces and complex illumination.

Generally speaking, the traversable region detection meth-
ods can be divided into three categories. The first catego-
ry [1], [7] tries to solve this problem by detecting vanishing
point and then estimating the edges of the road. Further
improved methods [5], [6], [8] extend the idea of vanishing
point detection by combining other cues such as color,
texture and detailed road shape models etc. to make the
result more stable and adaptive. The drawback of these
methods is obvious that they highly rely on the geometric
constraints of the road, such as the vanishing points, parallel
edges, boundaries of the roads etc. The methods [2], [3], [4]
in the second category try to employ probabilistic models
to represent the traversable possibility of the region. For
example, Dahlkamp H.et al. [3] detect the nearby traversable
region with lasers and represent the traversable region with a
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n our article, traversable region, e.g. the grassland in mountains, is not
equal to the road, which means the traversable region may not contain the
parallel edges in road and geometric characteristics in road detection.
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mixture of Gaussians (MOG)-model in RGB channels which
is used to predicte the far region. Similarly, the RPDM (road
probability density map) in pixel space [4] and Gaussian
model in super-pixel space [2] are also used to represent
the traversable regions. Although the above methods can
use an optimal model, controlled by a set of parameters, to
represent current traversable region, those parameters in the
models are quite sensitive to the scenes. The methods [9],
[10] in the third category try to transform the original image
features to an illumination-invariant image feature space
and then detect the traversable region in the new feature
space. Although these methods can be quite sensitive if a
single RGB channel is over-exposed or under-exposed [10].
Furthermore, the illumination-invariant mapping will change
the image features from RGB channel to intensity channel
which will also lose some discriminated information.

In this paper, we address on problems in the above meth-
ods and present a novel learning framework that can detect
the traversable region with less constraint, and is robust
against varied scenes and complex illumination conditions.
In our framework, we only need a weak assumption that a
small region in front of the robot is traversable, which can be
satisfied in most of situations [2]. We then generate feature
vectors from the images which are segmented into super-
pixels with similar size, each feature vector is corresponding
to a super-pixel. Then the traversable region detection can
be regarded as a classification problem, namely labeling
the super-pixels based on corresponding feature vectors. We
segment the same image with multiple-scale super-pixels,
the super-pixels in each scale are labeled independently,
and the final traversable region is combined by voting of
the multiple-scale labeled results. To provide our framework
the capability of adapting varied scenes, we also introduce
the online training process. Instead of obtaining the whole
traversable region from the weak assumption by Growcut
algorithm [2], our approach employs a weighed ELM [11]
based learning method to expand the traversable region from
the original assumption. By the above learning framework,
our method can be stable to adaptive the scene and illu-
mination changes, as it uses the prior traversable region
knowledge to train the classifier without reset the control
parameter manually.

The following sections are organized as follows. We show
our basic idea in Section II and detailed learning framework
in Section III. Experiments validate the contributions of
our learning framework in Section IV and then we present
conclusion in Section V.
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(a) (b)

Fig. 1. Weak assumption in our approach. (a) The basic traversable and
impassive regions assumption in our framework.where the bottom middle
region (green rectangle with width X and height Y1) is always traversable,
while the up left and right regions, the red rectangle with width Xo and
height Ya, are impassable. (b) The mask where white means traversable,
gray and black means impassable and unknown respectively.

Fig. 2. The online training processing of the sequenced images. (e)-
(h) are four sequenced images obtained by the robot. (a) - (d) show the
labeling conditions and classification hyper-planes of the corresponding
image sequence (e) - (h). As the misclassification cost functions for two
categories are varied, the classification hyper-plane will move toward the
lower risk area, that is the area of negative sub-regions,during the iterative
training.

II. BASIC IDEA OF OUR LEARNING FRAMEWORK

To loosen the constraints used in our method, we only
assume a small region in front of the robot is traversable
and two small regions on the top of image are impassable,
shown in figure 1(a). And we can get a Fundamental Mask
(FM), shown in figure 1(b). We also assume that there is a
relatively clear boundary between the traversable region and
the impassable region.

The traversable region detection can be regarded as a bi-
nary classification problem. We define the problem formally
as follows:

Assume the image is segmented into n sub-regions (name-
ly super-pixels in our approach), which can be denoted as
an instance set F;, with labels:

(flel)v (f27L2)v T ’(fivLi)a T ’(fTHLTL)

where 1 < i < n, f; = [fi1, fie, -+, fip] is the feature
vector extracted from the ¢th image sub-region with length
D, and L, € {—1,+1} is the label corresponding to f; as
an indication of whether f; belongs to traversable region
(+1) or impassable region (-1). In the initialization, all the
unknown sub-regions are set as impassable for safety. So the
core task of our learning based framework is trying to get the
separation boundary shown in figure 2(d) with those labeled
sub-regions obtained from the assumption.
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Fig. 3. Diagram of our learning framework for traversable region detection.

As the unknown sub-regions are all assigned with negative
labels, there are much more negative instances than the
positive instances at the beginning of learning. To solve
this problem, we introduce the imbalanced learning ap-
proaches [11], [12], [13] into our learning framework, and
set different misclassification cost for the two categories.
Intuitively, the misclassification cost of the positive instances
are set to be larger than that of the negative instances with
respect to the quantity of these two categories.

The imbalanced learning approach is applied to our online
training model for adaptive learning. We evaluate the clas-
sification results of current image and update the training
dataset per frame. Then the classifier is retrained to predict
the next frame. With the online training model, we can
achieve an dynamically balanced classifier. If the number
of negative instances is much larger than that of the positive
instances, the misclassification cost of positive instances is
set to be larger, which means the risk of misclassifying the
negative instances is much less than that of the positive
instances. So the separation boundary will move toward the
negative instances during the online training process with
sequenced images as shown in figure 2, and an increasing
number of unknown sub-regions will be labeled as positive.
On the other hand, if the class distribution of our training
dataset is updated to be balanced, the separation boundary
won’t be influenced significantly by the quantity of different
categories. In our learning framework, we use an empirical
weighted scheme for each category to converge close to the
ground-true separation boundary and establish the boundary
in a dynamic balance during the online training.

III. LEARNING FRAMEWORK OF DETECTING
TRAVERSABLE REGION

Our learning framework for traversable region detection,
shown in figure 3, can be general divided into three modules,
i.e. feature construction, classification and training.

A. Feature Construction at Super-pixel Level

As mentioned in previous, our learning framework is
established on the feature space of the image sub-regions,
i.e. super-pixels. We segment each image with SLIC [14]
due to its real-time performance. The feature vector that
corresponds to each super-pixel is then constructed based
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Fig. 4. Two samples of the three scales of segmentation. Column (a) and
(c) are are the distributions of the super-pixels in varied scales, column (b)
and (d) are the are the corresponding classification results, the green color
area represents the traversable region.

on the color and texture information of the sub-region of the
image in statistics. We use HSV histogram to construct the
feature vector of color and the uniform LBP [15] descriptor
to construct the feature vector of texture. To reduce the
dimension of the feature vector, we divide the value of each
channel in HSV color space into several regions and calculate
the pixel-wise histogram upon those regions. Then the sub-
vectors from three color channels and the sub-vector from
the LBP descriptor are jointed and normalized to construct
a uniformed feature vector for each super-pixel.

B. Classification in multiple-scale

In the learning framework, the labeled results of the
super-pixels are highly depended on the size of the super-
pixel. Small size of super-pixel may contain more detailed
information of the scenes, but it also gives the risk of
containing more noise. While large size of super-pixel is
more stable and robust to noise, but lacks of details. So we
segment the same image into multiple-scale super-pixels to
combine both advantages of large size and small size of the
super-pixels, shown in figure 4.

Assuming that the number of the super-pixels in the ith
scale is denoted as M; and each image is segmented into
0 scales, where 6 is an odd number. The number of super-
pixels decreases when moving to higher layers as:

My > My >---> My

Further define the amount ratio between two consecutive
scales as a constant number K:
M;

M1
By setting K as a constant, our learning framework can
control the size of the super-pixels in each scale and thus the
multiple-scale super-pixels can provide complete description-
s by setting proper size gap between two consecutive scales.

After we segment the same image into 6 layers with dif-
ferent scales, we construct the feature vector for each super-
pixel in its corresponding layer. Let’s denote the feature
vector of the mth super-pixel in ith layer as f;” and denote
the corresponding predicted label as L". It is to be noted
that all the pixels belonging to the mth super-pixel in ith

K =

Fig. 5. The merged results for these two images shown in figure 4, which
are much better than the results of single scale.

level are also labelled as Lj*. After labeling all the super-
pixels in every layers, we get 6 binary labeled maps of the
image in pixel level.

Then a voting strategy is applied to these # binary labeled
images to merge the results obtained by classifier of different
scales. Let’s denote the 6 layer of labeled maps as R =
[r1, 79,73, - ,7g], where 7;(h X w) is the ith labeled map
of the image contains only +1 and -1. The voting strategy
merges all the labels as:

0
Rsum = Sign(z Ti)
i=1
where R, is the eventual results voting by all the levels’
labels, shown in figure 5.

As the results voting by varied layers may still contain
some noises or mislabeled areas, we introduce a post-filter
processing by keeping the largest connected area and deleting
isolated small areas.

C. Online Training with Dynamic Dataset

To address with the constantly changing scenes, we pro-
pose an online learning method which is based on the
dynamic training dataset. In the context of online learning,
we first classify the new coming image with current model,
and then the training dataset is updated based on the results
of classification, which is called dynamic training database
(DTD) [4]. Finally we retrain our classifier with the updated
training dataset.

Since the online learning updates the classifier once receiv-
ing a new image, we employ the weighted extreme learning
machine (weighted ELM) [11] as our classification method
for its high efficiency. Weighted ELM was proposed for
dealing with imbalanced dataset which is simple and fast in
implementation. It aims to minimize the training errors and
maximize the marginal distance similar to SVM [16]. Given
the feature vector f; and label L;, i = 1,--- | N, define an
N x N diagonal weight matrix W with its elements w;;
corresponding to f;. Then the cost function can be written
as follow. Minimize:

N
1 1
Lwerm = 5“5”2 + 05 Zw”\|§z||2
i=1
Subject to:

where h(f;) is the randomly generalized hidden representa-
tion and &; is the training error corresponding to f;. 3 is the
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output weight which is calculated analytically using Moore-
Penrose “generalized” inverse. C' is a constant parameter
which governs the ratio between the maximization of the
marginal distance and the minimization of the training errors.

It can be seen that the imbalanced distribution can be well
perceived if we set large weight w;; to the feature vector
fi which belongs to the minority class. Denote n,,, and
Npeg as the number of the samples belonging to traversable
region and impassable region respectively. Thus the weights
are given as follow:

C, = (npos;vnneg) c (71’+1)
Cy = Asign(Cy)|Cql”
wi; = wo — sign(L;)(Cy — ¢)

where C; represents the divergence of quantity between the
two categories, and (Y is the non-linear balance coefficient
calculated based on C, with constants A and o. We set
o > 1 so that w;; varies gently when the class distribution is
nearly balanced. ¢ is the threshold for prioritizing traversable
region, which means we tend to label a feature as traversable
when it lies near the separation boundary. wy is the constant
value set artificially which represents the initial weight.
Besides, the w;; calculated as above is always non-negative
with appropriate setting of A and ¢.

Once a new image is received, we employ the weighted
ELM for classification. The key point of online learning is
that soon after classifying the new image, we can get its true
label. This is hardly realistic in the road detection problem.
However, since we have the FM, we can still evaluate the
previous classification results and update our DTD. Here the
DTD is constructed similar to [4] that a training sample s; is
composed of three parts, i.e. feature vector f;, label L; and
weight w;;, which can be formulated as:

si = [fi, Li, wis)

With the FM, we assume the bottom middle region (white)
is always traversable while the up left and right regions
(gray) are always impassable. Then we can evaluate the
accuracy according to the super-pixels which are contained
in the FM. Denote the number of super-pixels of all layers
contained in the FM as Npj;, while the number of true
positive super-pixels contained in the white region is Ny p
and the number of true negative super-pixels contained in
the gray regions is Ngrn. Then the accuracy is given as:

e — Nwrp + Norn
cCc=———"—"
Nrym

If Ace > 0.9, we consider that existing DTD is suitable for
current scene, the labeled super-pixels of current image are
also added to the DTD. Otherwise, the existing DTD might
be no more suitable for the changing scene, so we clear all of
the samples in DTD and only use the results of current image
to train a new classifier for next classification. Note that when
adding new samples to DTD, super-pixels contained in the
FM are always labeled consistent with the label of FM for
training, while the rest super-pixels are labeled with the voted
results.

For the new samples added to DTD, the weight W is also
calculated corresponding to the ratio of samples belonging to
the two classes. As for the pre-existing samples, we decrease
their original weight when adding the new samples, which
can be formulated as:

W =W — AW

where W denotes the original matrix and W denotes the new
weight matrix, AW is the constant matrix for decreasing
the weight. Therefore, the weights on training errors of
pre-existing samples are lightened with the receiving of
new frames. This is intuitive since the scene is constantly
changing and the new samples are more effective to the
future classification than the pre-existing samples. When
updating lasts for several frames, the weights of earlier
samples will be less than zero. Then these samples will be
discarded, which means the number of the samples in DTD
is limited to a constant. It combines the high efficiency and
generalization ability at the same time.

IV. EXPERIMENTS

In this section, we carry out experiments on three chal-
lenging datasets to evaluate the proposed method (Learning
Framework for Traversable region Detection, abbreviated as
LFTD in the following experiments), one is a subset of
rain sequence dataset? with 425 frames, where 217 frames
are labeled. The other two datasets, i.e. shadow road and
variational road are captured by our autonomous robot
system. Please visit our website for more details of our
datasets®. Some samples of all datasets have been displayed
in the first row of figure 7.

These datasets are typical scenes in daily life. The rain
sequence dataset is a relatively simple scene with consistent
appearances on roads, the vanishing point and relatively
straight edges can always been detected in each frame.
The shadow road dataset contains many shadows caused
by the trees which will bring some troubles to the road
detection, because the shadows may introduce confusions
in the edge detection or model based road representation.
Variational road is a challenging dataset containing image
blur, barriers, varied illumination and significant texture-
color changes on road surfaces. In our experiments, we
choose these three datasets with varied styles to evaluate the
robustness and adaption our method, as our method uses the
same parameters on all those three varied datasets.

In our comparative experiments, we compare our LFTD
with three state-of-art approaches. Growcut is a road detec-
tion algorithm proposed by Lu K et al [2]. VP is based on
vanishing point and edges detection proposed by H. Kong et
al [1]. Gaussian is a Gaussian mixture model(GMM) based
road detection method proposed by H. Dahlkamp et al [3].

We use three pixel-wise quantitative metrics [17], [18],
i.e. FPR(false positive rate), FNR(false negative rate) and

Zhttps://rsu.forge.nicta.com.au/people/jalvarez/research bbdd.php.
3The databases can be download in our
http://www.nlict.zju.edu.cn/yliu/Visual.html

website
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TABLE I
QUANTITATIVE PERFORMANCE METRICS OF FOUR METHODS IN THREE
VARIED DATASETS

Metrics Growcut VP Gaussian  LFTD
Shadow ErrorRate 6.6 12.3 4.66 3.93
Road FPR 4.09 2.48 4.61 0.85
FNR 9.88 25.73 4.7 7.87
Rain ErrorRate 7.2 4.14 12.36 5.46
Sequence FPR 3.29 7.81 0.99 1.64
FNR 9.61 1.96 19.21 7.77
Variational ErrorRate 11.66 12.14 15.21 7.8
Road FPR 13.62 9.64 22.51 2.1
FNR 14.51 16.62 13.08 14.92
Overall ErrorRate 8.19 8.55 10.91 5.63
performance FPR 6.21 6.77 7.64 1.53
FNR 10.97 12.55 13.47 9.67

ErrorRate, to evaluate the accuracy of the detection. The
metrics are calculated as follows:

FPR=Z8EE x100% FNR = TEX % 100%
P N

_ Npp+N
Error Rate = ~FETEN x 100%

where Npp is the amount of pixels being wrongly classified
as traversable region; Npy is the amount of pixels being
wrongly classified as impassable region; Np and Ny are
the amounts of traversable and impassable pixels in ground-
truth respectively.

These three metrics are calculated for each single frame,
and then we average the metrics of all the image sequences in
the same dataset to obtain the average performance on each
dataset. Furthermore, we calculate the overall performance
of each method by weighted average on the metrics on all
the three datasets, here the weight of each dataset is positive
corresponding to its image frames used in the experiments.

The experimental results of these four methods in three
varied datasets are given in Table I, which includes the
metrics on each dataset and the overall performances on
those three datasets. Table I suggests that our method has
superior performances on all the three datasets with the
same parameter setting comparing with other methods, which
validates the adaptability of our method. Although the Grow-
cut also gives good results on these datasets, it needs to
search optimal parameters for each specific dataset since it
is sensitive to the variation.

A further analysis on the experimental results in Table I,
the results in shadow road dataset show our method out-
performs the other three state-of art methods on most of
the quantitative metrics, which indicates our method may
be better adapted to the complicated lighting and shadow
conditions. The rain sequence dataset has relatively stable
geometric structure in the images so the VP performs best.
However, the adaptivity of VP is limited by its relying on
the strictly constrains, that’s why the overall performance of
VP is not so good. In addition, the FPR of our method is
slightly larger than that of the Gaussian method on the rain
sequence, the reason may be that the Gaussian method has
over-optimized the metric of FPR, thus its metric on FNR
is the worst in all the four methods and leads to the worst

ErrorRate in rain sequence dataset. As for the variational
road dataset, LFTD gives a relative large FNR compared
to the Gaussian method which gives the best result. The
reason is that the scenes of variational road dataset change
frequently, once the change occurs, LFTD needs to clear the
DTD and start training with the FM of current image. Thus
many traversable regions will be labeled as impassable in
the beginning of the training and the FNRs of those re-
training frames will increase the average FNR of LFTD.
This condition can also be reflected by figure 6(c), which
contains several peaks in the curve of LFTD. On the other
hand, the results also show that our method is relatively
conservative. This may be good for autonomous navigation
since it won’t lead a robot to impassable regions when
entering new environments.

In figure 6, we present the ErrorRate curves of consec-
utive frames in all datasets. All these figures show that
LFTD outputs high error rates in the initial frames when
our online training is mainly based on the FM. With the
frames increasing, the error rates of LFTD will converge
fast and become lowest among all the methods. In addition,
figure 6(c) also shows that LFTD will output high error rate
when the scene changes significantly. Similarly, the error rate
converges fast and remains stable within the minimal range,
which means our LFTD can provide an adaptive solution to
the significantly changed scenes for autonomous navigation.

We also illustrate the detection results of all these four
methods, shown in figure 7. For each dataset, we sample the
frames at a regular interval. These frames of each dataset are
listed from left to right in the order of timing. In figure 7(a),
LFTD cannot detect all the road due to the shadow region
at the first frame. With the online training framework, LFTD
will learn to label the shadow regions correctly and achieve
best performances in the rest frames. Besides, it is obvious
to find that VP tends to regard the straight shadow, which
is actually projected by the tree trunk, as the edges of
road. Thus VP can’t find the correct vanishing point and its
performance is severely affected. It is also worth to mention
that there is a dynamical pedestrian in the sixth frame of
figure 7(c) and only our LFTD can detect the right traversable
region in this frame. In this frame, the Growcut labels most
part of the pedestrian as traversable region, which indicates
that Growcut may perform bad on the variational scenes,
especially when there are dynamical pedestrians. As for the
other two methods, VP and Gaussian, there are also some
false negative results labeled to the pedestrian. It further
shows our LFTD is able to handle the situation with dynamic
objects as it learns from recent frames. In conclusion, our
LFTD can perform well with only one set of parameters.
It will converge fast and remain stable when facing new
environments, thus it is adaptive to the lighting, shadows
and other variational road conditions.

V. CONCLUSION

In this paper, we present a novel learning framework to
detect travelable region, which is robust to varied challenged
environments, such as varied illuminations, color and texture
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7. Consecutive frames sampled from all methods’ results in all datasets. We select four frames in one dataset sequentially at regular intervals. In
second row, traversable region is represented with red color setting by Kongs code, traversable regions in other rows are represented with green color.

changing in road surface, shadows, image blur and dynamic

obj

ects. The experimental results comparing with state-of-art

methods show that our approach can provide adaptive and
stable traversable region detecting performances.
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