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ABSTRACT

With only set-level constraints, unpaired image translation is challenging in discovering the correct
semantic-level correspondences between two domains. This limitation often results in false positives
such as significantly changing color and appearance of the background during image translation.
To address this limitation, we propose the Spatial Attention-Aware Generative Adversarial Network
(SAAGAN), a novel approach to jointly learn salient object discovery and translation. Specifically,
our generator consists of (1) spatial attention prediction branch and (2) image translation branch.
For attention branch, we extract spatial attention prior from a pre-trained classification network to
provide weak supervision for object discovery. The proposed attention loss can largely stabilize the
training process of attention-guided generator. For translation branch, we revise classical adversarial
loss for salient object translation. Such a discriminator only distinguish the distribution of the object
between two domains. What is more, we propose a fake sample augmentation strategy to provide
extra spatial information for discriminator. Our approach allows simultaneously locating the attention
areas in each image and translating the related areas between two domains. Extensive experiments
and evaluations show that our model can achieve more realistic mappings compared to state-of-the-art

unpaired image translation methods.

1. Introduction

In this work, we consider the challenging task of un-
paired salient object translation [24, 6]. Namely, the goal is
to learn to transfer prominent objects and ignore the back-
ground during the image translating process. More specif-
ically, we consider this problem under the unpaired setting
where aligned samples or location annotations are not avail-
able. For instance, when translating horses into zebras, the
algorithm only draws the particular black-white stripes on
the horses while keeping everything else unchanged (see
Figure 1). Such ability holds promise to an abundance of ap-
plications, e.g., image colorization, video editing, data aug-
mentation and augmented reality. This model can also be
used as pre-training for supervised object translation with
few annotations.

Existing unpaired image translation approaches [21, 48,
15, 7] typically build upon Generative Adversarial Networks
(GANSs) [9], which encourages the distribution of generated
images close to the distribution of target domain. The lim-
itation in those algorithms is that the input image is viewed
as an entire and its spatial structure is ignored during the
translation process. In other words, each pixel in the in-
put image is equal when being fed to the discriminator and
generator, which disobeys the human intuition that an im-
age usually consists of meaningful objects and meaningless
background. As shown in Figure 1(c), the image translation
methods are agnostic to the objects in the input image and
bundle the objects together with the background as data dis-
tribution, significantly changing the color and appearance of
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(b) (c) (d)
Figure 1: Salient object translation in horse—zebra pair.
Given an image (a), our model simultaneously predicts a
spatial attention map (b) and translates image to the target
domain (c). In the final result (d), we fuse input image and
translated image through the predicted attention map. Best
viewed in color.

the background during translation.

Compared to the image translation task, salient object
translation faces an extra challenge, i.e., how to find the se-
mantic correspondence between two domains. In this work,
we decompose the salient object translation into two fun-
damental issues: (1) how to locate object areas in each im-
age with only domain/class annotations. (2) how to trans-
late images between domains with attention map. Overall,
we propose a novel attention-guided generator which con-
sists of a spatial attention branch and an image translation
branch to tackle the above issues simultaneously. The atten-
tion branch predicts the object attention map, whose value
means the probability that a pixel belongs to the foreground.
The translation branch converts the input image to target do-
main. To obtain the final result, the translated image and the
input image are fused by the estimated spatial attention map.

Very recently, some attention-based methods have been
proposed to tackle the unpaired object translation. Attention-
GAN [6] and AGGAN [24] add an auxiliary attention net-
work trained with the generator to locate the object areas.
Those methods have evaluated the effects of the spatial at-
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tention map on object translation task. However, a major
problem in those methods is the instability of attention net-
work. As discussed in [24], the mask from the attention net-
work is always zero if training is not performed carefully.
The training of attention-based framework suffers from two
main challenges: (1) the training of auxiliary attention net-
work is not stable due to the trade-off between the adversar-
ial loss and the cycle consistency loss. The generator can
take shortcuts to ‘cheat’ and not perform the task as desired.
(2) GAN training is notoriously unstable.

A distinguishing feature and a core novelty of SAAGAN
compared to other attention-based methods is that we in-
troduce spatial attention prior into image translation frame-
work. To stabilize the training of attention branch, we bor-
row the class activation maps from some remarkable works
[46, 47, 45, 30, 19, 27] in weakly supervised object local-
ization community. They have shown that although the class
activation maps may not cover the entire target object, it pro-
vides strong visual cues related to the input image, i.e., ob-
ject prior. In this paper, we extract the class activation maps
from classification network and then discretize it to a ternary
mask to provide weak supervision for the attention branch.
With the supervision of the adversarial loss [9], the cycle
loss [48], and the attention loss, the attention branch is able
to produce attention map which can cover the most discrim-
inative areas and has a clear object boundary. Furthermore,
we revise the original adversarial loss which is designed for
image generation/translation. For the salient object trans-
lation task, we utilize the discretized class activation maps
to weight the discriminator’s output. Instead of minimizing
whole-image distribution, this discriminator only minimizes
the distribution of relevant parts between two domains. For
the second challenge, we propose fake sample augmenta-
tion, which samples images from the neighborhood of the
fake. It can stabilize the initial training of GAN since the
augmented images provide extra information in object dis-
covery.

In summary, our contributions can be presented as fol-
lows:

1) We propose a novel salient translation framework,
which can jointly learn salient object discovery and transla-
tion. Perceptive and quantitative experiments have demon-
strated that the proposed SAAGAN can generate photo re-
alistic images.

2) We introduce an attention loss to stabilize the training
of the attention branch. To the best of our knowledge, this is
the first time that spatial attention priors are applied to image
translation task. We also adapt the original adversarial loss
to object translation task. The discriminator therefore ignore
the background during translation.

3) We utilize the ternary mask to augment fake samples.
This simple but effective augmentation is used to stabilize
the initial training of GAN.

The rest of this paper is organized as follows. The re-
lated works of our method are discussed in Section 2. Sec-
tion 3 introduces the details of the proposed framework. The
experimental results and analysis are given in Section 4.

2. Related work

2.1. Image Translation

As a class of powerful generative model based on two-
player game: a discriminator learns to distinguish the gener-
ated samples from real ones while a generator learns to gen-
erate fake samples that can fool the discriminator, GANs [9]
have been successfully used for various computer vision
tasks such as enhancing the security of deep networks [43],
image generation [28, 26, 8], super-resolution imaging [17],
as well as image translation [48, 15, 21, 24].

Build upon GANs, many image translation systems have
achieved impressive results with paired training samples [12,
36]. For instance, imposing an L1 loss between the gener-
ated image and its ground-truth, pix2pix [12] achieves an
incredible result in the sketch to image task. Given the se-
mantic map of street, the cascaded refinement network pro-
posed by Chen and Koltun [5] can synthesis a real street
image. Later, many unsupervised image translation frame-
works [21, 48, 15, 42] have been proposed to alleviate the
problem of obtaining data pairs. For example, with the as-
sumption of shared low-dimensional latent space in cross
domains, Liu et al. propose UNIT [21] to learn the joint
distribution between the source and target domains by com-
bining variational autoencoders with CoGAN [22]. Further,
without such assumption, [48, 15, 42] introduce the cycle
consistency loss to preserve key attributes between the input
and the translated image. However, all these frameworks are
only capable of learning set-level relations between two do-
mains.

Recently, some attention-guided methods have also been
proposed for unpaired image translation. Ghislain ez al. [32]
reconstruct seen image with a generative adversarial net-
work conditioned on the brain activity. Ma et al. propose
DA-GAN [23] to translate image at instance-level in a highly-
structured latent space, which relies on the extra location
information to obtain meaningful correspondences between
samples. AGGAN [24] and attention-GAN [6] learn semantic-
level correspondences between two domains by leveraging
an auxiliary attention network to predict spatial attention
map. In contrast to those methods, we propose a more effi-
cient model to address object localization and image transla-
tion simultaneously and introduces a novel regularization to
stabilize its training process without additional annotations.

2.2. Weakly Supervised Object Localization
Weakly supervised object/saliency localization [3], as
a related domain of spatial attention estimation, encodes
the location of objects belonging to a given class. Jetley
et al. [13] propose a trainable soft attention mechanism to
get objects of interest during the training process, where
the global feature is used as the query vector for estimat-
ing attention map. Simonyan et al. [31] introduce a tech-
nique to estimate the class saliency map, based on comput-
ing the gradient of the class score with respect to the input
image. Shen et al. [46] propose the object-specific pixel
gradient (OPG) to perform weakly supervised object local-
ization, which performs in an iterative manner to localize
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Figure 2: Overview of our method to jointly learn spatial attention estimation and image translation. The feed-ward process
of attention-guided generators G and F. At first, x is fed into the source-to-target generator G, which consists of an attention
branch G, and a translating branch G;. We get the translated image G(x) by fusing x, G,(x) and G(x), as formulated in
Eqg. (2). Then, G(x) is fed into the target-to-source generator F to reconstruct the input image. Meanwhile, the attention-
guided discriminator D, takes the G(x) to discriminate its realistic. To stabilize the entire training process, the ternary mask
A(x) is introduced to constraint the attention map G ,(x) focusing on object areas.

potential objects. Zhou et al. [46] propose Class Activa-
tion Mapping (CAM) for identifying discriminative regions
based on a pre-trained image classification network. Sim-
ilarly, instead of using the last layer weight, Selvaraju et
al. [30] present a generalized CAM using the gradients of
class scores to get attention map. Wei et al. [41] and Zhang
et al. [44] introduce iterative adversarial learning into pre-
dicting attention map so that the generated map is able to
cover the whole object with only image level annotations.
Jiang et al. [14] propose a discriminative regional feature
integration approach to detect salient object. Recently, a
stage-wise approach, named SPG [45], incorporates high
confident object regions to learn attention mask.

Another closely related area is weakly supervised salient
object detection [38, 39]. Please refer to Wang et al. [37]
for a survey. Wang et al. [40] propose a pyramid attention
and salient edges module to discover saliency objects. Li et
al. [18] extract salient objects utilizing contour knowledge.
Inspired by those methods, we calculate the ternary mask
from class activation maps to provide weak supervision on
our attention estimation branch.

3. Method

In the task of unpaired salient object translation, we have
two domains X and Y with unaligned training samples {x; }fi |
and { y,—}i"i . Our goal is to learn mapping functions which
simultaneously locate object areas in each input image and
translate related areas between two domains. Figure 2 il-
lustrates the mapping process of SAAGAN from X to Y to
X. Since the inverse mapping from Y to X to Y is simi-
lar, for simplicity, we will only describe the former mapping
in following subsections. The full framework involves one

classification network to extract spatial attention prior, two
attention-guided generators and two discriminators to syn-
thesize realistic images. Below we present details of the five
parts:

* The classification network C takes real images and
extracts their class activation maps as spatial attention
prior. We utilize it to provide weak supervision for
generators’ attention branch.

* The attention-guided generators G : X — Y and
F : Y — X transfer the salient objects between
two domains. Each generator consists of a spatial
attention estimation branch and a image translation
branch. In mapping G, we denote G 4, with the atten-
tion branch, G with the translation branch. In map-
ping F, the same goes for F, and Fy.

* We introduce two discriminators Dy and Dy, where
Dy aims to distinguish between images {x} and gen-
erated images { F(y)}, while Dy aims to distinguish
between {y} and {G(x)}.

3.1. Spatial Attention Prior

Class activation maps play the spatial attention prior role
in our framework. They have been widely used in many
tasks [44, 47, 1], offering a promising way to extract object
localization information. We utilize it to provide weakly
constraint for the attention branch. Since original CAM [46]
can only visualize the class activation maps of the categories
contained in the pre-trained model, we slightly modify pre-
trained architecture by replacing the last fully connected
layer with a 1 X 1 convolution layer. The output is then fed
into a global average pooling followed by a softmax layer
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for classification. Given an image x, the spatial attention
prior is computed as

Cx¥) = f(x) Wies ey

where f(x) denotes the output feature maps of backbone
network and W, € RKXC denotes the weight matrix of
the 1 X 1 convolution layer. We adopt the ResNet50 [10]
pre-trained on the ImageNet [29] as the backbone network
and finetune the new layer with domain/class label in our
experiments.

3.2. Attention-Guided Generator

For simultaneous object discovery and image transla-
tion, we propose the attention-guided generator. We first
feed input image x into the source-to-target generator G,
which consists of a spatial attention estimating branch G 4
and a translation branch G. The attention branch G 4 pre-
dicts a foreground attention map G 4(x), which has the same
shape as the input image and has a continuous value between
[0,1] in each position. The higher the value, the more likely
the pixel belongs to the foreground. The translation branch
G converts the whole input image to a corresponding im-
age in the target domain Y, denoted as G (x). Our goal is to
translate the foreground object and keep the background un-
changed. Given x, G 4(x) and G(x), the final transformed
image G(x) is fused by

G(x) =G,(x) 0 Gr(x)+(1 — G4 (x) O x, 2
f ore;ound bac k;:ound

where © means element-wise product. Subsequently, G(x)
is fed into target-to-source generator F to get the recon-
structed image F(G(x)). In this mapping process, our ob-
jective contains four terms: adversarial loss [9], cycle con-
sistency loss [48], attention loss, and smoothness loss.

3.2.1. Adversarial Loss
To make the generated images indistinguishable from
real images, we adopt an adversarial loss [9]

L,4,(G, Dy) = E y [log Dy(»)]|+

3)
E,ex [log(l = Dy(G(x)))].

where G tries to generate images G(x) that look similar to
images from domain Y, while Dy aims to distinguish be-
tween translated samples G(x) and real samples y.

3.2.2. Cycle Consistency Loss

By minimizing the adversarial loss, the generator G is
enforced to generate realistic images. However, without
ground-truth supervision, there is no constraint to guaran-
tee that the translated images preserve the content of its in-
put images. Leveraging the cycle consistency loss [48], we
force the reconstructed images F(G(x)) to be identity of its
input, i.e., F(G(x)) ~ x. Meanwhile, as introduced in [6],
the regions of interest in the original image and the trans-
formed image should be the same, i.e., G4(x) & F4(G(x)).

@ (b) ©

Figure 3: (a) Input image. (b) class activation maps. (c)
Ternary mask. It is obtained by discretizing the class activa-
tion maps to three regions: the foreground, the background
and the uncertain.

Thus, we define an enhanced cycle consistency loss as

‘C’cyc(Gv F) = [ExeX[”F(G(x)) - x“] +

4)
|GA(x) = FA(G))|,]-

3.2.3. Attention Loss

The estimated attention map plays a key role in Eq. (2).
If G4(x) is all zeros, the translated images would be iden-
tical to the inputs. If the attention map G 4(x) is filled with
one, we will map the entire image to the target domain as
what CycleGAN [48] does. In theory, by minimizing the
adversarial loss and cycle consistency loss, we could get the
attention map that focuses on the discriminative areas of the
input. There are two reasons: (1) the adversarial loss en-
courages the attention map to cover the discriminative areas
in the input otherwise the discriminator could easily found
the drawback of the generated image; (2) the cycle consis-
tency loss encourages the entire attention map to be zero
as the loss of unattended areas would always be zero. In
equilibrium, the attention map focuses on the discriminative
areas and ignores the background. However, the attention
map would easily collapse to zero [24] because the cycle
consistency loss is always zero in this case.

To stabilize the entire training process, we extract the
class activation maps from a pre-trained classification net-
work as spatial attention prior. As shown in Figure 3, we
discretize the class activation maps C(x) into three regions:
the foreground, the background and the uncertain. Partic-
ularly, in each class activation maps, the regions with very
low response are considered as background, while the high
activated regions are foreground and the rest regions are un-
certain. This discretized mask is a lower bound of the object
segmentation map. we assign different value for these three
regions to provide weak supervision on the attention branch.
We donate the ternary mask as A(x), calculated as:

0 ifC(x)<$
AX) =11 ifC(x)> &, ®)]

where 6, and &, are thresholds to identify regions in class
activation maps as background and foreground. The atten-
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Discriminator /

Figure 4: We leverage the ternary mask to augment fake
images. Those images are sampled from the neighborhood
of the fake, providing extra information for discriminator to
learn object discovery. We assign them a smooth label.

tion loss is defined as

£attn(GA) == [ExeX [A(x) 10g GA(x)+

6)
(I = A(x))log (1 = G 4(x))],

where only the positions labeled as 0 or 1 in the ternary
mask are served as pixel-level supervision. The pixels with
values of 0.5 are temporarily ignored. The ignored pixels
do not contribute to the loss and their gradients do not back-
propagated.

3.2.4. Smoothness Loss

Since the attention map is used for combining the input
and the translated image, we add a Total Variation Regular-
ization on G 4(x) to increase its smoothness. The smooth-
ness term penalizes quickly-changing in attention map to
avoid local salt and pepper noise. In particular, it decreases
the total variation of attention map horizontally and verti-
cally, denoted as

L, (Ga) =Erex [[VuGA®|, + [VoGa@] . D

3.3. Guiding the Discriminator for Further
Stability

The original discriminator faces two difficulties in the
salient object translation task. Firstly, the attention-guided
generator only transform the attended regions. The discrim-
inator constrained by Eq. (3) takes the whole image into
consideration when distinguishing generated and real im-
ages. It creates an inconsistency between generator and dis-
criminator. Secondly, with only real/fake labels, it is hard
for discriminator learning locating discriminative areas.

3.3.1. Revised Adversarial Loss

Since the generator’s gradient comes from the discrimi-
nator, the whole-image discriminator encourages the atten-
tion map to cover the entire input image. To overcome that
limitation, we utilize the ternary mask to weight the adver-
sarial loss and train the discriminator to ignore the back-
ground. Thus, we update the adversarial loss L, of Eq. (3)

to

£, (G, Dy) = E,ey [AG) log Dy ()] +

®)
Erex [A(x)log(1 — Dy(G(x)))].

Notice that we use PatchGAN [12] as the discriminator, which
aims to classify whether the overlapping image patches are
real or fake. We interpolate the weight mask to the same
size as the discriminator’s outputs and then leverage it as
the weighting factor.

3.3.2. Fake Sample Augmentation

Since the real/fake labels contain too little information,
it is hard for discriminator to learn locating salient object.
Actually, the attention branch always predicts a zero atten-
tion map at early training phase. To stabilize initial train-
ing, we replace the estimated attention map G 4(x) with the
ternary mask A(x) in Equation 2 to artificially augment fake
samples. In other words, those fake samples are created by
fusing G(x) and x with A(x). In this way, there are some
inputs that help training the discriminator on object discov-
ery. Figure 4 illustrates the training processing of discrim-
inator. We assign those fake samples with a smooth label
which is 0.3 in our experiments.

3.4. Optimization

We optimize two attention-guided generators (G, F) and
two attention-guided discriminators (D y, Dy ) during the train-
ing process. Especially, the weight of the classification net-
work is fixed as we only utilize the pre-trained model to
get the class activation maps. During the training process,
we alternate optimizing between generator and discrimina-
tor. When two generators (G, F) are fixed, the discrimina-
tors Dy and Dy are optimized to distinguish the fake pho-
tographs from the real ones. The corresponding objective
functions of discriminator are written as follows:

!

(G, Dy)

max L(G,F, Dy, Dy) = X Loav
= Eex [A(X) log(1 — Dy (G(x)))]
+E, ey [A() log Dy ().

©))

!
I%E)i(x L(G,F,Dy,Dy)= IIll)E)l(X L, . (F,Dy)

= Eyey [A®) log(1 = Dy (F(»))]

+ Eyex [A(x) log Dy (x)].
(10)

After one step of optimizing discriminator, we train the
generator G and F to generate fake images that aims at fool-
ing the discriminator. As the cycle consistency loss couples
two generators together, we optimize them in one full ob-
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jective:
rgl}l L(G,F,Dx,Dy)=L_, (G,Dy)+ L , (F,Dyx)

+ lcyc(ﬁcyc(G’ F)+ Ecyc(F7 G)) (11)

+ j'attn([“attn(GA) + Eattn(FA))
+ ’ls([’s(GA) + ['s(FA)),

where 4., A4, and A are the hyper-parameters that con-
trol the relative importance of every loss term. Finally, we
can define the following mini-max problem:

G*, F* = i L(G,F,Dy, Dy). 12
arg min max ( x> Dy) (12)

Additionally, we constrain our discriminator D, F to lie in
D, which represents the set of 1-Lipschitz functions. The

training procedure of the proposed SAAGAN method is shown

in Algorithm 1.

Algorithm 1 Training procedure of the proposed SAAGAN.

Input: Initialized networks G, F, Dy, and Dy; hyper-
parameters A.,., 4.y, and A;; a pre-trained classifica-
tion network C; total training steps K.

Output: Optimized networks G, F, Dy, and Dy.

1: fori=1to K do

2:  Sample a data point x from X and y from Y.

3:  Get class activation maps C(x) and C(y) by feed-
ing real images to the pre-trained image classification
network C.

4:  Generate fake images G(x) and F(y) by feeding x to
Gandyto F.

5:  Reconstruct input images, denoted as F(G(x)) and
G(F(y)), by feeding G(x) to F and F(y) to G, .

6:  Calculate weight masks A(x), A(y) from C(x), C(y).
Then optimize Dy and Dy by solving Eq. 9 and
Eq. 10.

7. Fix the parameters of Dy, Dy and optimize G, F by
solving Eq. 11

8: end for

3.5. Network Architecture

We next introduce architecture details of the proposed
SAAGAN, which consists of two attention-guided genera-
tors, two attention-guided discriminators.

The generator builds upon CycleGAN [48], whose gen-
erator composes of three stride 2 convolutions, nine residual
blocks, and two stride 2 transposed convolutions. We mod-
ify it by adding an attention branch after the forth residual
block. The new attention branch composes of two resid-
ual blocks and two stride 2 transposed convolutions, aim at
locating the objects of interest in the input image. Follow-
ing [34], we also use instance norm and ReL.U after each
convolution layer.

Following [48], we adopt the PatchGAN architecture
of [12] to classify whether local image patches are real or

fake. Specifically, we stack the modules of convolution-
BatchNorm-LeakyReLU 3 times, where the stride of con-
volution is 2 to increase filter’s receptive field. Then, an-
other convolution-BatchNorm-LeakyReLU block with one
stride is added. After the last layer, a convolution operation
is applied to map the features to a 2-D output, followed by
a sigmoid function.

4. Experiments

This section provides a thorough experimental evalua-
tion of our approach. We first compare our model against re-
cent unpaired image translation methods both qualitatively
and quantitatively. Then, we evaluate the effect of proposed
attention loss, which is able to stabilize the training of the
attention branch. Furthermore, We compare our full method
against several ablations to study the effects of terms in our
loss function. Finally, we conduct a comparison to super-
vised results for a more convincing experiment.

4.1. Setup and Evaluation Metrics
4.1.1. Datasets

We evaluate the proposed SAAGAN on four different
tasks: horse < zebra, apple < orange, tiger < lion and
bird transforms. The images for horse, zebra, apple and or-
ange are provided by CycleGAN [48], and the images for
tiger and lion are obtained from the corresponding classes in
the ImageNet [29]. Besides, we use images of four classes
from the CUB-200-2011 [35] dataset—Cardinal, Summer
Tanager, Cape Glossy Starling and Indigo Bunting, to per-
form bird transform. These images contain objects at dif-
ferent scales across various backgrounds, which makes im-
age translation task challenging. In supervised experiment,
we perform the horse <> zebra task where the segmentation
map is manually annotated. As a common convention, the
samples are first scaled to 286 X 286, and then randomly
flipped and cropped to 256 X 256 in the training process
while the input images are directly scaled to 256 X 256 in
the inference phase.

4.1.2. Implementation Details

For all the experiments, we use Adam solver with g; =
0.5, f, = 0.999 and batch size 1. All networks are trained
for 200 epochs except those on the bird transform task, where
the networks are trained for 2000 epochs. We train all net-
works from scratch with an initial learning rate of 0.0002,
keeping the same learning rate for the first half epochs and
linearly decaying the rate to zero over the next half epochs.
In the full loss function, the weight coefficients in Eq. (11)
are set as gy, =8, A4, = 1, and A; = 5. We set the thresh-
olds in Eq. (5) as 6; = 0.2 and 6, = 0.7. Following [16], we
apply spectral normalization [25] for the discriminators to
improve the training stability of generative adversarial net-
works.

4.1.3. Metrics
We use the Fréchet Inception Distance (FID) [11] and
Kernel Inception Distance (KID) [2] to quantitatively evalu-
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(a) Input (b) Attention (c) Ours

(d) CycleGAN [48] (e) DiscoGAN [15] (f) AGGAN [24]

" (9) UNIT [21]

Figure 5: Salient object translation results and comparisons with baselines. We evaluate all the methods on three tasks:
from top to bottom is horse « zebra, apple < orange and lion « tiger (every two rows compose an experiment pair). Our
method can learn a meaningful attention map from the class activation map. The predicted spatial attention map has a sharp
object boundary and can cover the salient objects. Benefited from that, our method can generate more realistic results than

all baselines.

ate our image translation framework and the Mean Absolute
Error (MAE) [4] to assess the attention map predicted by our
attention branch. FID has been shown to be consistent with
human evaluation in assessing the realism and variation of
the generated samples. It computes the Fréchet distance be-
tween feature representations of real and generated images.
Such representations are extracted from the last hidden layer
of the Inception architecture [33]. Lower FID value means
a closer distance between synthetic and real data distribu-
tions. The Fréchet distance between the Gaussian with mean
and covariance (1, C) obtained from p rake @nd the Gaussian

(m,,, éw) obtained from p,,,, is given by:

FID = || — ni,, || + Tr(C + C,, - 2ACC,)"%). (13)

KID computes the squared maximum mean discrepancy
(MMD) between feature representations of real and gener-
ated images, denote ad P, and Pg. The kernel MMD be-
tween P, and P, for some fixed characteristic kernel func-
tion k is given by:

KID (P P;) =E,.p [k (x.x)] = 2Ec.p yup, [K(x. )]

+Eyyp, [k ()]
(14)

3
We use a polynomial kernel, k(x, y) = <%xT y+ 1) where
d is the representation dimension.
As formated in Eq. (2), the generated attention map is
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Table 1
The FID (lower is better) for our method and baselines. Abbreviations: (H)orse, (Z)ebra, (A)pple, (O)range, (T)iger, (L)ion,
(C)ardinal, (I)ndigo Bunting, (S)ummer Tanager, (Ca)pe Glossy Starting.

Algorithm H->Z Z-H A-0O O-A L->T T->L C-I I-C S—->CA CA-S

UNIT 98.82 136.84 132.98 123.40 140.17 138.21 127.81 140.12 123.17 124.56

AGGAN 100.35 79.17 106.08  96.34 66.22 98.74 84.06 81.75 90.24 82.94

DiscoGAN 46.05 71.72 98.07 93.05 70.44 93.16 76.21 75.39 81.87 85.56

CycleGAN 44.61 55.79 98.77 98.26 68.05 77.87 83.19 66.49 80.07 68.83

Ours 38.73 53.80 88.68 87.64 4291 68.97 62.79 61.67 52.49 50.37
Table 2

The KID x 100 for different image translation algorithms. Lower is better. Abbreviations: (H)orse, (Z)ebra, (A)pple, (O)range,
(T)iger, (L)ion, (C)ardinal, (I)ndigo Bunting, (S)ummer Tanager, (Ca)pe Glossy Starting.

Algorithm H-Z2 Z-H A-0 O-A L->T T—-L C->I I-C S—->CA CA-S
UNIT 18.97 22.91 18.48 20.79 21.59 21.35 19.24 16.63 16.32 15.38
AGGAN 12.62 8.27 14.88 9.96 10.47 9.25 9.80 10.98 12.82 13.28
DiscoGAN 9.09 9.83 9.24 11.98 10.88 13.73 14.62 15.85 14.79 8.25
CycleGAN 8.17 8.80 10.25 10.13 10.49 13.93 9.67 13.67 11.25 13.68
Ours 6.78 6.69 6.52 9.38 9.39 7.37 7.75 5.99 542 5.75

continuous to fuse generated images and inputs. Therefore,
we calculate MAE between the continuous attention map S
and the ground truth T, to evaluate the accuracy of predicted
attention map. MAE score is defined as:

H W
1 5 .
MAE = E E 1S;; =Tl (15)
HxW =3

4.2. Image Translation Results
4.2.1. Results on ImageNet

In this study, we compare some state-of-the-art image
translation methods with our method. They are UNIT [21],
CycleGAN [48], DiscoGAN [15] and AGGAN [24]. The
UNIT model is an unsupervised image-to-image translation
work consisting of two VAE-GANs with an assumption of
fully shared latent space. CycleGAN consists of two resid-
ual translation networks, which is trained with an adver-
sarial loss to learning the mapping between two different
domain and regularizes the mapping via cycle consistency
loss. DiscoGAN is a contemporaneous unsupervised im-
age translation work with CycleGAN while DiscoGAN uses
a standard GAN loss and CycleGAN uses a least-squared
GAN loss. We also compare with Mejjati et al’s unsuper-
vised attention-guided image translation method, which also
learns the attention map for image translation through com-
bining adversarial loss and cycle loss. For all the baselines,
we compare our results to the images generated by the offi-
cial released models.

As illustrated in Figure 5, for each input image, we show
the predicted attention map, the translated image and the
baselines’ output. It can be seen at Figure 5(b) that our
approach is able to locate the area of objects and ignore
the background. Among competing approaches, AGGAN is
most similar to our approach since it also predicts an atten-
tion map to preserve the background. However, the results

of AGGAN are bright-colored, which causes a distortion
in image color and reduces the realness of generated im-
ages. For instance, the generated horse and orange are over
flashy in the Figure 5(f). For the other baselines without
attention mechanism, CycleGAN produces the best results
in visual appearance. It is able to translate objects between
two domains but fall in preserving the background. For in-
stance, CycleGAN generates a realistic zebra image with
appropriate black-white stripes at the first row of Figure 5,
even though some elements of the background are changed.
Comparing Figure 5(d) and Figure 5(e), we can see that the
DiscoGAN performances similar or slightly worse results to
CycleGAN. It is a reasonable result since these two methods
share the same idea and only have a difference in implemen-
tation details. Meanwhile, failing to preserve the content of
the inputs, UNIT gets the worst performance in our com-
parison experiments. We believe this result is related to the
assumption of shared latent space, which enable UNIT to
change the geometric shape of objects.

We further conduct a quantitative evaluation, which can
be found in Table 1 and 2. We report the FID and KID value
computed using generated samples and target domain. Our
approach gets the lowest FID/KID value in all translations
while CycleGAN is the second great performing method.
DiscoGAN achieves a similar score to CycleGAN while UNIT
obtains the worst result, which accords with the visual ef-
fects displayed in Figure 5. Moreover, AGGAN gets the
second bad result for FID/KID, which may be caused by the
color distortion in generated images.

4.2.2. Results on CUB-200-2011

Since the classification network is pre-trained on Ima-
geNet dataset, we further evaluate the scalability of SAA-
GAN for translating the objects that are not contained in
ImageNet. In this study, we use images of four classes from
the CUB-200-2001 [35] dataset to perform bird transforms.
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Figure 6: Salient object translation results on CUB-200-2011 dataset. Our method is able to focus on salient object and
ignore the background during the image translation process, generating photo-realistic images.

H!

(a) Inut (b) CAM [46]  (c) Grad-CAM [30]

Some example results are shown in Figure 6. We can see
that SAAGAN generates extremely realistic images along
with attention maps that focus on the objects of interesting.
The idea of using the attention map in the image transla-
tion task has obvious advantages, as it leads to a clearly im-
proved background region. As a comparison, CycleGAN
translates the objects together with the background. The
feature of the background sometimes is mapped to the ob-
ject in the results of CycleGAN, e.g., the leaves are covered
by the appearance of background in the third row of Fig-
ure 6(d). FID values are reported in Table 1. Our method
outperforms baselines with a large margin.

(d) SPG [45]

(e)AGGAN [24]

(f) Ours

Figure 7: Salient object estimation results and comparisons with baselines. All methods are trained with only class annotation.

(g9) Ground Truth

4.3. Attention Results

We quantitatively evaluate our model’s capability of pre-
dicting saliency maps. Following the same experimental
procedure described in [6], we perform horse < zebra task
on MSCOCO dataset [20] where the images and correspond-
ing annotations could be directly obtained. Furthermore,
we observe that people often appear in the horse class in
MSCOCO dataset. This data distribution is different from
the ImageNet on which the comparisons are trained. For
a fairly evaluation, we also evaluate horse < zebra task on
ImageNet [29] by manual annotating corresponding saliency
maps. Results are shown in Table 3. We compare our ap-
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10 epochs 20 epochs 40 epochs 60 epochs

a) Tune the hyper-parameter of cycle consistency loss.

v
»

10 epochs 20 epochs 40 epochs 60 epochs

a) Tune the hyper-parameter of attention loss.

Figure 8: Visualization of the training processing of the attention branch. We investigate the effect of two key components by

tune its hyper-parameter in Eq. 11. From top to bottom, (a) we fix 4
to 0, 1 and 4. As we can see, the training of attention branch is more stable after introducing the attention loss.

vary A

attn

Table 3
MAE (lower is better) for different methods, evaluated on
both MSCOCO and ImageNet.

Algorithms MSCOCO [20] ImageNet [29]

horse zebra horse zebra
CAM 0.343 0.260 0.255 0.294
Grad-CAM | 0.340 0.247 0.300 0.292
SPG 0.235 0.203 0.196 0.258
AGGAN 0.225 0.151 0.169 0.184
Ours \ 0.201 0.140 0.146  0.158

proach with CAM [46], Grad-CAM [30], SPG [45], AG-
GAN [24] and the ground truth. As can be seen, our method
outperforms all the comparisons for MAE, which may ben-
efit from adversarial learning. Figure 7 shows the visual
results of estimated attention map. CAM and Grad-CAM
are able to cover the object of interest but also parts of the
background. With the supervision of self-produced atten-
tion seed, SPG can learn more confident patterns of fore-
ground and background while failing in covering entire ob-
ject. As a similar method to our method, the attention map
generated by AGGAN is accurate but contains numerous
noise points. As a comparison, our proposed approach can
highlight nearly the entire object regions.

4.4. Training Stability

We introduce the attention loss as we noticed that train-
ing the attention branch is a trade-off between the cycle con-
sistency loss and the adversarial loss. Figure 8(a) depicts
such behavior: it can be seen that without the attention loss
(Agtn = 0in Eq. (11)), generated attention maps are sen-
sitive to the ratio of the cycle consistency loss to the ad-
versarial loss. With only the adversarial loss supervision

=8 and

cyc

=0and tune 4., to 0, 1 and 4; (b) we fix 4

attn

(first row in Figure 8(a)), the attention map would collapse
to white. Such behavior can be explained by that the whole
image is the discriminative area in the case of only two do-
mains (wild horses live in green meadows while zebras live
in dry landscapes). As the weight of the cycle consistency
loss increases, the attention map includes less background
area. In equilibrium, the attention map focuses on the ob-
jects of interesting and ignore the background. However,
As discussed in [24], the attention map would collapse to
black frequently.

As shown in Figure 8(b), the training stability of the at-
tention branch is increased obviously after introducing the
attention loss. Although generated attention maps change in
shape with different 4,,;,, these maps would not collapse to
black with a high weight of the cycle consistency loss. The
quantitative results are displayed on Table 4.

4.5. Ablation Study

To investigate the effect of each term in our full ob-
jective, we compare against ablations of our full loss on
horse « zebra task. The results are illustrated in Table 4 and
shown in Figure 9. First, we test the effect of the smoothness
loss, which reduces the absolute gradient of the attention
map. As shown in Figure 9(c), removing the smoothness
loss, the model (‘w/o smooth’) produces rougher attention
maps and gets slightly higher MAE in both translating pro-
cesses. Then, we evaluate the importance of our revised ad-
versarial loss by replacing it with an original one. As illus-
trated in Figure 9(d), the original discriminator encourages
the attention branch to attend the whole input image. Fur-
thermore, we take out the fake sample augmentation ("w/o
FSA’). Its MAE performance decrease with a large margin.
The augmented images are sampled from the neighborhood
of the fake, providing information for the discriminator to
learn salient object discovery.
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(a) Input & Truth  (b) Full loss (c) W/o smooth

d) W/o RA

e) W/o FSA

e) W/o cycle (f) W/o attention

Figure 9: Different variants of our method for horse < zebra mapping. We demonstrate our results in every two rows, one for
image translation and the other for attention map estimation. From left to right: input image and its ground truth of attention
map (input & Truth), full loss, without smoothness loss (w/o0 smooth), without revised adversarial loss (w/o RA), without fake
sample augmentation (w/o FSA), without cycle consistency loss (w/o cycle), without attention loss (w/o attention).

Table 4
Ablation study: FID and MAE for different variants of our
method, evaluated on horse < zebra dataset.

Method Horse — Zebra Zebra — Horse

FID MAE FID MAE
W/o smooth 4533 0.162 56.12 0.169
W/o RA 4750 0.193 58.72 0.174
W/o FSA 48.40 0.202 57.27 0.176
W/o cycle 60.22 0.180 60.59 0.183
Wr/o attention | 50.84 0.403 58.23 0.351
Full loss \ 38.73 0.146 53.81 0.158

Table 5

The saliency object translation results with different accuracy
in classification network. From top to bottom, we finetune the
last layer of classification network for 1, 5, 10 epochs.

Top1 accurac Horse — Zebra Zebra — Horse
P Y FID  MAE FID MAE
0.9738 2012 0.183 55.18 0.187
0.9879 3963 0.168 5581 0.173
0.9943 3873 0.146 5381  0.158

We remove the cycle consistency loss, whose motivation
is ensuring 1-1 mapping, from the full loss. As a result,
we get the highest FID in our ablation experiments, because

the cycle loss enforces the generated image to preserve the
structure of its input. Finally, we get the highest MAE in our
ablation experiments by removing the attention loss, which
provides weak supervision on the attention branch. What’s
more, the attention loss plays an important role in stabilizing
the training process of the attention branch.

We also conduct an experiment to evaluate how the ac-
curacy of classification network influences the final results.
Results is shown on Table 5. The accuracy of classifier is an
important factor for our model. The higher the classification
accuracy, the better the final result.

4.6. Comparison to Supervised Results

We also perform a comparison to supervised results at
the horse < zebra task. We manual annotate segmentation
maps of 1187 horse images and 1449 zebra images. In the
supervised manner, the attention branch is constrained by
the ground truth instead of the ternary mask (A(x), A(»)).
As shown in Table 6, SAAGAN with supervision extremely
outperforms unsupervised results at MAE score and, in the
meantime, the supervised result gets slightly better FID value.
With the ground truth of segmentation maps, the attention
branch predicts attention maps more accurately, which fur-
ther conduces to generate more realistic images. Though
there is a gap at the accuracy of predicted attention map,
unsupervised generated images are just slightly worse than
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Unsupervised

Supervised

s < @

Figure 10: From left to right: input images, attention maps
and translated images in an unsupervised manner, attention
maps and translated images in a supervised manner.

Table 6
Comparison to supervised results, evaluated on horse <
zebra task.

Task Unsupervised  Supervised
FID Horse — Zebra 38.73 34.81
Zebra — Horse 53.81 49.14
MAE Horse — Zebra 0.146 0.061
Zebra — Horse 0.158 0.081

those in a supervised manner. It indicates that the ternary
mask is an effective alternative in the case of no ground
truth. Some samples are demonstrated in Figure 10 and it
can be seen that SAAGAN is able to generate similar im-
ages to the supervised method and the later performs better
at details. For instance, in the first row of Figure 10, the at-
tention map of the unsupervised method does not cover the
horse legs.

4.7. Failure Analysis

Our method relies on the spatial attention prior to pro-
vide weak supervision on the attention branch. As the prior
is inferred from a classification network, it may fail in some
cases. Figure 11 shows typical failure cases of our method.
Although we add an attention mechanism in image transla-
tion, our model is still limited by some general computer vi-
sion problems, e.g., object occlusion or large-scale changes.
In the first case, our model fails in dealing with object occlu-
sion, and the attention map hence only includes one horse.
The second case is related to errors in the attention mech-
anism when given a tiny image patch. The attention map
does not cover the whole image as the input is completely
different from a zebra class.

f

(b)Attention (c)Final result

(é)lnpﬁ :

Figure 11: Typical failure cases of our method. Top: in the
task of horse — zebra, our method fails in detecting the right
horse in the input as it is obscured by trees. Bottom: our
method also fails in this zebra — horse example as the tiny
patch is completely different from a zebra class.

5. Conclusions

We introduce a novel framework for the salient object
translation task. Our attention-guided generator allows si-
multaneously locating the attention areas in each image and
translating the related areas between two domains. Two
novel losses, the attention loss and the revised adversarial
loss, are proposed to stabilize the training of the new added
attention branch. Through a detailed visualization, we can
see that the proposed attention loss is able to improve the
training ability of the attention branch. We propose a fake
sample augment strategy which utilizes the ternary mask to
synthesize fake samples. It can stabilize the initial training
of GAN since the augmented images provide extra infor-
mation in object discovery. By leveraging spatial attention
prior, the proposed method achieves superior performance
in a variety of tasks demonstrated by both qualitative and
quantitative experiments. The result indicates that the at-
tention module is especially helpful to focus on the region
of interest during the image translation, which further con-
duces to generate more realistic images.
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