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Abstract—1In this paper, we present a robust and -effi-
cient estimation approach with multi-camera, odometer and
gyroscope. Robust initialization, tightly-coupled optimization
estimator and multi-camera loop-closure detection are utilized
in the proposed approach. In initialization, the measurements
of odometer and gyroscope are used to compute scale, and then
estimate the bias of sensors. In estimator, the pre-integration
of odometer and gyroscope is derived and combined with
the measurements of multi-camera to estimate the motion
in a tightly-coupled optimization framework. In loop-closure
detection, a connection between different cameras of the vehicle
can be built, which significantly improve the success rate of
loop-closure detection. The proposed algorithm is validated in
multiple real-world datasets collected in different places, time,
weather and illumination. Experimental results show that the
proposed approach can estimate the motion of vehicles robustly
and efficiently.

I. INTRODUCTION

Self-driving vehicle is a complex topic with many chal-
lenges, among which motion estimation is a crucial issue.
Various sensors (e.g., camera, LiDAR, IMU and wheel
odometer) are used to estimate motion. The vision-based
method has become prevalent in motion estimation, as the
advantage of lightweight, low cost and sufficient information.
The low-cost camera configuration (see Fig. 1-(b)) is already
commonly equipped in some commercial vehicles. Besides,
multi-camera system covers a wider field-of-view, which can
improve the performance of motion estimation, especially
in poorly textured environments. Therefore, some motion
estimation methods toward the multi-camera system are
presented[1], [2], [3], [4]. However, vision-only approaches
are usually not robust enough, which is fatal for self-driving
vehicles.

To make the vision-based method more reliable in real-
world applications, various sensors are introduced to improve
the robustness. To this end, there is a growing trend of visual-
inertial navigation system (VINS) recently. VINS, which
combines visual observations from cameras and motion
data from IMU to achieve 6-DOF localization, has the
advantage of scale observability and being robust to fast
motion. Considering the cost reduction of IMU and excellent
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(c) Example of images from multi-camera system from outdoors

Fig. 1. The experimental vehicle equipped with multi-camera system,
odometer, gyroscope and GPS/INS system. (a) The appearance of the ex-
perimental vehicle. (b) The multi-camera system configuration. (c) Example
of images from multi-camera system from outdoors. The upper row is front
camera, and the bottom row is left, back and right cameras.

performance of VINS in autonomous MAVs, we expect
it to perform the same well on the self-driving vehicles
moving on the ground. However, this is not the case. The
main reason is that the movement of the vehicles is not
a complete 6-DOF movement. The restricted motion that
vehicles undergo on the ground is planar and has the constant
velocity or acceleration in most case, which may lead to the
unobservability of part of the state (e.g., metric scale)[5].
Since we are focusing on vehicles that are usually equipped
with wheel odometer, we are considering the use of wheel
odometer to solve the unobservability problem.

Since the visual-only approach and VINS encounter sig-
nificant challenges in the motion estimation for vehicles, a
motion estimation approach is proposed, which combines
images from multi-camera, wheel odometer and gyroscope
in this paper. The proposed approach is validated using the
experimental vehicle in Fig. 1. In summary, the main con-
tributions of this work can be summarised as the following:

« We present a robust and efficient motion estimation

method for vehicles equipped with multi-camera sys-
tem, odometer and gyroscope.

o We derive the pre-integration of odometer-gyroscope

and estimate the bias of sensors in a tightly-coupled
sliding window optimization framework.

4490

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 03:25:07 UTC from IEEE Xplore. Restrictions apply.



Odometer-
Gyroscope —>| Pre-integration
(high frequency)
Y
Image KLT Feature oo
(low frequency) Tracking Iz
| —
Transform BoW Detect
Vector Loopclosure

Input Data || Feature Tracker

Fig. 2.

e We propose an initialization algorithm with odometer-
gyroscope and multi-camera loop-closure detection
method to improve the robustness and efficiency of
motion estimation.

e We carry out sufficient experiments on real-world
datasets and validate the performance of the proposed
approach.

II. RELATED WORK
A. Multi-Camera Based Approach

In recent years, many multi-camera-system-based robot
localization algorithms have been proposed due to the emer-
gence of various fisheye camera models. For example, the
models proposed in[6], [7] show excellent performance in
practice. In [8], an extrinsic calibration method that uses
the specially designed pattern to extract features of varying
scales is proposed. In [9][10], SLAM approach based cal-
ibration method that runs a bundle adjustment on vehicle’
driving data to get refined extrinsic is proposed. Based on
the above, multi-camera system is applied to the state-of-art
visual SLAM methods. Urban et al.[11] and Liu et al.[2]
extend ORB_SLAMZ2[12] and DSO[13] repeatedly to make
them applicable to multi-camera system. However, these
two approaches take a tremendous computational cost. The
difference between the multi-camera system and pinhole
camera that light rays do not meet at a single point results in
that standard pose estimation solutions cannot work. To fix
this problem, Pless et al.[14] propose the 17-points algorithm
to compute relative pose and Li et al.[15] extend it to
suit the degeneracies. Stewénius et al.[16] propose 6-points
algorithm that needs fewer points correspondences, but it
is difficult to identify the correct one from 64 solutions
given by 6-points algorithm. The 2-points algorithm[3] with
Ackermann motion model that gives up to 6 solutions enables
fast localization. There are also some algorithms[17], [18]
representing the light rays as Pliicker lines that can solve the
pose estimation efficiently without the need for SVD.

B. Sensors Fusion based Approach

Due to the poor robustness of vision-only localization
approaches, motion measuring sensors(e.g., IMU and odome-
ter) are used in visual estimation methods. There are two
methods to deal with images and IMU data in VINS: loosely-
coupled fusion and tightly-coupled fusion, where the latter
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System overview of the proposed motion estimation approach.

is more effective. The tightly-coupled fusion approaches
are either filter-based[19], [20] or optimization-based[21],
[22], [23]. MSCKEF[19], [20] update the camera poses in
a window using the geometric constraints provided by the
features in multiple cameras’ field of view. The optimization-
based approaches[21], [22], [23] usually maintain a fixed-
size window of states consisting of feature and camera
pose and then solve the estimation problem using nonlinear
optimization. On the other hand, odometer measurements and
planar motion constraints are introduced to VINS to fix the
scale drift problem in the case of restricted motion in [5].
However, the implementation in [5] is not a complete motion
estimation system.

III. METHOD
A. Overview

The proposed approach consists of feature tracker, pose
estimator and pose graph module, as shown in Fig. 2. The
input data consists of synchronized images acquired from
the multi-camera system and motion measurements from
odometer and gyroscope.

Feature Tracker: The tracking module processes each
frame (four images). Extracted corner points are tracked
between frames by the KLT sparse optical flow algorithm[24]
and rejected by RANSAC. A unique ID is assigned to the
matched point for distinguishing.

Pose Estimator: The primary functions of the estimating
module are pre-integration of motion measuring sensors
(odometer and gyroscope) and estimating the motion by
graph optimization. Sliding window optimization is used to
reduce computing complexity. Keyframes are selected by the
average parallax and track quality of the feature. Keyframes
remain active in sliding window optimization and are fed to
the pose graph module.

Pose Graph: The pose graph module is a place recognition
module. The descriptors of previous keyframes are trans-
formed into bag-of-words vector and saved in a database that
stores the description of the scene. The new frame detects the
loop-closure by querying in the database. Once loop-closure
is detected, 4-DOF global pose graph optimization[22] is
performed to correct the drift of trajectory.

The notation used in this paper is defined. We use lower
case letters for scalar variables, bold lower case for vectors
and bold capital case for matrices. We use superscript to
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represent the coordinate system, where w represents world
frame, b represents body frame that coincides odometer-
gyroscope frame, c represents camera frame. Hamilton
quaternions q represents rotation and p represents translation.
T represents the transformation matrix between two frames.
7() represents and projection function of camera. Mg,

represents the estrinsic between ¥ camera and body frame.

B. Pre-integration of Odometer-Gyroscope

In this paper, the pre-integration used in the proposed
approach is derived based on the IMU pre-integration[22].
The raw gyroscope measurements w is given by:

"bt:wt""bwt"'nw (1)

The wheel odometers measure the linear and angular
velocity. Considering the scale error due to the measurement
error of wheel diameter, the odometer measurements are
modelled as:

'f)t =v + bvt + n, (2)

w; and v; are the measurements of rotational velocity and
linear velocity, w; and v, are the real value, b,,, and b,, are
random walk bias whose derivatives are Gaussian, n,, and
n, are additive noise that is Gaussian. Although odometers
can only measure the velocity in x axis, the measurements are
expanded to three dimensions for maintaining the uniformity
with other measurements and introducing the constraint that
vehicles move on the ground.

The state of the vehicle that consists of position and
orientation is propagated by the motion measurements during
time interval [tx, t5+1]. To avoid the re-propagation that takes
the expensive cost, pre-integration in body frame is utilized
as follows:

by,

b b
Clufp;f;“ = ql:pg; + Py (€))]

b _ b
A @ dh,, = Ay, 5
As the measurements in practice are discrete, the pre-
integration and discrete-time error state dynamics used in
the proposed system is derived. Mid-point integration is used

for deriving here. The mean of pll;:+1 and quﬂ can be
propagated step by step as:

R . 1
qi+1 = 4q; ® |:05w;:| (4)
Pit1 = D + vidt

where

Next, the discrete-time linearized dynamics of error state
can be derived as:

OPk+1 I fy —E5tge i3] [ ops
50k+1 10 f11 0 —dt 60
Sbo | [0 0 I 0 | [oby,
0bye,] [0 0 0 1| [6bo,
- [ nvk
sardt gor  3qki1dt gos 0 0 n,,
L]0 1dt 0 $dt 0 0| [ny,,,
0 0 0 0 dt 0| |Duwy,
0 0 0 0 0 dt] | M
L Ny,
(6)
where
1 1
for = — 5k Vi — by, | xdt — 5 Ak+1 [ Vi1 — by, | x
R L
1
fo3 =— 5(_(lk+1 [Vi+1 = by, ] dt)dt )
@pt1 + @
fi, =1— L% — by, | xdt
1
o1 =803 = Z(*Qk+1LVk+1 — by, | xdt?)dt
The Eq.6 can be abbreviated as:
0z;+1 = Fézy, + Gn ®)

During the pre-integration, the Jacobian Jy; and covari-
ance Py can be propagated by:

Jer1 =FJp
P, = FP,FT + GQG”

When the estimation of bias changes during optimization,
the pre-integration can be corrected by:

by ~b
pb;+1 = pbzﬂ + Ji)ﬂ 6b"k + ng 5b‘*’k

&)

be b 1 (10)
qb2+1 - qb’;+1 ® th 0by,,

where J? ; ,Ji’w and ng are sub-blocks of Jg 1.

C. Robust Initialization

Due to the difficulty in obtaining accurate metric scale
directly, VINS has a complicated initialization procedure
that is difficult to succeed, which often fails VINS. It is
unacceptable for the case of self-driving cars that has high
requirements for robustness. To this end, a simple but robust
initialization is adopted in the proposed system. The motion
of vehicles can be estimated directly by integrating the
odometer and gyroscope based on the assumption that the
bias is zero. The poses are used to triangulate the feature
points. When the measurements reach the size of the window,
the optimization (in Sec. III-D) that considers the visual

P @i @ b fac.tor and odometer—gyroscqpe factor'is performeq. .A.t Fhis

Wi= 75 7 DPuw point, the refined pose and bias are estimated. The initializa-

(Vi = by,) + i1 (Vigr — by,) ) tion has completed. The odgmeter-aideq initialization method

Vi = B shows robust performance in the experiment(see Sec. IV-B).
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Fig. 3. Factor graph of optimization. Bias is bias of odometer-gyroscope.
B is pose in body frame. Cy, is pose of the nth camera of multi-camera
system. A is inverse depth of feature in the host frame. rb connects two
adjacent frames. rc connects two frames observing the same feature. In
normal visual factor, rc only connect the same camera (e.g. C2 to C2). In
loop-closure visual factor, rc may connect two different cameras (e.g. C2
to C3).

D. Graph Optimization
Consider the frame state vector consisting of odometer-
gyroscope state and inverse depth of feature:

Xp = [pk7Qkabvabwa>\la)\2a T a)‘m] (11)

Ceres Solver [25] is used to solve the optimization problem:

X = argmin{er + ZrB +ry} (12)

where ry is visual factor, rp is odometer-gyroscope factor,
r)s is marginalization factor.

The structure of the factor graph is shown in Fig. 3.

1) Visual Factor: Pinhole camera is modelled as gen-
eralized reprojection plane and pinhole. This model is not
suitable for fisheye cameras. In [6], [7], fisheye camera is
modelled as reprojection unit sphere. Therefore, the repro-
jection error computed on unit sphere in the proposed system.
Considering the multi-camera model in the proposed system,
four images can be regarded as a frame and calculate the
reprojection error in a framework. Therefore, measurements
from four cameras can be combined to optimize the motion
of vehicle in body frame.

rv(Ptu) =
ME‘;TgMCpJ(W_lpj)/)‘Pj )
| Mg, TGMe,, (m1p5) /A, |l
(13)

(b1, bo)” (7 'p; —

where M, is the extrinsic of the camera which observes
p to body frame, p; and p; are pixel coordinates of the
matched features in frame i and j, b; and by are two
orthogonal bases of the tangent plane of reprojection unit
sphere.

2) Odometer-Gyroscope Factor: The state to be opti-
mized of odometer-gyroscope consists of p, 6, b, and b,
therefore the residual factor of odometer-gyroscope can be

Fig. 4. A bird’s-eye view of the outdoor scene

defined as:
b b ~b
5p,b,’;+1 a.(py,,, — Pp,) —bpbiﬂ
b ~Ok41
rp(xb,y) = 90| = | 2 @ab,, @ (@)
b, bug,; — buy
by, Y

(14)

As the state 6 is three dimensional but q is four-
dimensional, the imaginary part of the quaternion is extracted
as error state.

3) Marginalization Factor: To maintain the fixed size
of the sliding window, the old state should be thrown
away. Marginalization is adopted to avoid destroying the
constraints established by the previous measurements. When
the frameset reaches the size of the window, marginalization
is carried out at the time processing the next frame. There are
two marginalization criteria according to whether this frame
is a keyframe. When this frame is keyframe, all the factors
of the oldest frame will be marginalized out. Otherwise,
the visual factors of this frame will be marginalized out,
and odometer-gyroscope factors will be kept to maintain
the continuity of odometer-gyroscope measurements between
frames.

E. Multi-Camera Loop-Closure

Multi-camera system is beneficial for loop-closure de-
tection. The image captured by each camera is regarded
as a separate camera frame. Corner points in each image
are described by the BRIEF descriptor[26]. In addition to
the points extracted in feature tracker, more keypoints are
extracted here. DBoW2[27] is used to transform descriptors
to bag-of-words vectors and store these vector in keyframes
database. New keyframe detects loop-closure by querying the
bag-of-word vector keyframes database. The relative pose
between the current camera frame and loop-closure camera
frame can be computed by EPnP[28]. Then the relative pose
to loop-closure frame in body frame can be computed since
the extrinsic is known. In particular, one keyframe containing
four images can only detect one loop-closure in the proposed
system. Once loop-closure is detected, 4-DOF global pose
graph optimization[22] is performed to correct the drift of
trajectory.
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Fig. 5.
Mono-Loop is the proposed approach(with monocular camera loopclosure).

IV. EXPRIMENTAL RESULTS

Experiments are carried out in the park of SAIC Mo-
tor Corporation Limited. The vehicle equipped with multi-
camera system, wheel odometer and a low-cost IMU (only
gyroscope is used) is the experimental platform. The model
in [6] is used to model and calibrate the intrinsic of the
multi-camera system. To attain the extrinsic, the experimental
vehicle is parked in an empty room with a big chessboard
calibration pattern on the ground. Initial extrinsic is estimated
by optimizing the reprojection error of chessboard corners
Then the initial result is fed to CamOdoCal[9]. After the
offline bundle adjustment on long-term outdoor travel data,
refined extrinsic of multi-camera system and rigid transform
between cameras and odometer-gyroscope are calibrated.

The proposed algorithm is implemented based on VINS-
Mono[22]. The feature tracker and pose graph module of
VINS-Mono are extended for multi-camera system. The esti-
mation module pre-integrates the measurements of odometer-
gyroscope and propagates the error. The nonlinear opti-
mization problem (in Sec. III-D) is solved to estimate the
motion of vehicle and bias of sensors. Four images with the
close timestamp are regarded as one frame in the estimation
module and as four frames in the pose graph module. 150
corners are extracted for each image in feature tracker.
Images are resized to 960*%604. All the parameter settings
remain the same in all the tests.

Experiments run on an Intel Core 17-7700k desktop com-
puter with 32GB RAM and Nvidia DRIVE PX2. GPU is
not included in both platforms. In particular, only one Tegra
in DRIVE PX2(consisting of Tegra A and Tegra B) is used.
The performance metrics include the absolute trajectory error
(ATE) to evaluate accuracy and CPU runtime to evaluate
the computational cost. The ground truth of trajectory is
provided by GPS/INS system on the vehicle. The driving
data is collected in different places (outdoor and underground

-30
100 -50 0 50

X
sequence 15

100 150

20 0

20 40 60 80

X
sequence on PX2

TABLE I
MOTION ESTIMATION ACCURACY

100

Sequence | Length(m) Scene Proposed(Full Proposed(Mono-

System) Loop)

1 208.0 outdoor 0.6417 /

2 1425 outdoor 0.3042 /

3 64.8 outdoor 0.3693 /

4 1415 outdoor 0.3503 /

5 323.7 underground 0.2487 /

6 329.5 underground 0.3310 /

7 737.1 outdoor 0.2114 /

8 911.5 outdoor 0.4758 0.7298

9 143.8 outdoor 0.2349 /

10 116.8 outdoor 0.3584 /

11 1671.2 outdoor 0.6553 1.0742

12 395.0  underground 0.6326 0.6260

13 982.1 underground 0.9897 1.0561

14 600.4  underground 0.4878 0.7742

15 713.7 underground 0.8870 0.9398

The part of trajectories of the proposed system and groundtruth. Grounttru is the ground truth, Proposed is the proposed approach(full system),

parking lot), time weather and illumination at the speed of
fewer than 20 kilometres per hour. Fig. 4 shows a bird’s-eye
view of the outdoor scene, which is empty and lacks objects
and texture information. This will bring challenges to the
motion estimation approach. Fig. 1-(c) shows an example
of images from multi-camera system in the outdoor scene.
Accuracy, initializing robustness, loop-closure efficiency and
computational cost experiments are carried out to validate the
performance of the proposed approach.

A. Accuracy Experiment

In this experiment, we focus on the motion estimation
accuracy of algorithms. The offline experiment is carried out
on the desktop computer. Our results are compared to VINS-
Mono[22]. It should be noted that although this is not a fair
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TABLE I
INITIALIZATION FRAMES REQUIRED

Sequence 1 2 3 4 5 6

8 9 10 11 12 13 14 15

Proposed 100 10 10 10 10 10
VINS-Mono | 53 /22 / 8 /

0 10 10 10 10 10 10 10 10
84 43 36 26 61 20 28 28 32

comparison due to the difference in sensors configuration,
it makes sense to validate the performance of the proposed
system. The part of trajectories of the proposed system and
ground truth is shown in Fig. 5. In Table. I, the length and
collected scene of each sequence are shown. In the column
Full System, the metric, ATE, is used to evaluate the accuracy
of the proposed algorithm. The proposed algorithm attains
excellent performance. VINS-Mono[22] can only work on
sequences 1,9,10,11,12,17 (fail after running for a while
on sequence 11), where the scale shows a significant drift.
VINS-Mono[22] often fails when the vehicle is turning fast
in our dataset. The proposed approach can perform accurate
motion estimation and estimate true scale compared to VINS.

The online experiment is carried out on NVIDIA DRIVE
PX2 on vehicle. As the sensors driver takes up much
computing resource, this experiment can be regarded as
the experiment on low computing capacity platform. The
trajectories of the proposed system and ground truth is shown
in Fig. 5. In this case, the proposed system also has excellent
performance. The vehicle passes through the bottom part
of trajectory more than one time. The total length of the
trajectory is 936.7m. The ATE of the trajectory is 0.55m.
The proposed approach also has a excellent performance on
NVIDIA DRIVE PX2 platform.

B. Initialization Experiment

The initialization method in Sec. III-C has the advantage
of robustness and a high rate of success. In this experiment,
only the performance of initialization is evaluated. To this
end, the size of the initializing window is set to 10 for both
the proposed system and VINS-Mono[22]. The number of
frames required for initialization is counted. Table. II shows
the results of initialization. Each sequence is run 10 times,
and the result of each run is very close. In the frames count
column, the mode in 10 runs is shown. No data means
the failure of initialization. From the table, it can be seen
that the proposed method has a more robust and efficient
initialization.

C. Loop-Closure Expriment

There is the case where the vehicle passes through a road
from different directions in sequence 8,11,12,13,14,15. The
loop-closure experiment is carried out on these sequences.
The approach containing feature tracker, pose estimator and
monocular loop-closure is compared to the proposed full sys-
tem. The result of the approach with monocular loop-closure
are shown in Fig. 5 and Table. I. The comparison results
illustrate the improvement in motion estimation accuracy of
multi-camera loop-closure. In particular, the loop-closures
detected by two methods in a partial trajectory of sequence

-20 -10 0 10 20 30 40 50 -20 -10 0 10 20 30 40 50

(a) Multi-camera loop-closure (a) Mono-camera loop-closure

Fig. 6. Trajectory (red) and detected loop-closures (green). (a) 591 loop-
closure edges. (b) 87 loop-closure edge.

13 is shown in Fig. 6. Some extra rotational error is added
to the trajectory in Fig. 6 to make the detected loop-closure
more clear in the figure. Much more loop-closure is detected
when using multi-camera loop-closure module, which can
bring better localization performance. In practice, it is quite
common for vehicles to pass through a road from different
directions. The proposed approach can work well in this case,
which improves the robustness of self-driving vehicles.

D. Computational Cost

Lastly, the efficiency of the proposed approach is shown
by counting the CPU runtime spent on the main procedures
of the proposed approach on desktop computer. Sequence
13 that is the second-longest and has the most loop-closures
is selected as the test sequence. The result is shown in
Table. III. In this table, corner detection, KLT tracking and
keyframe process are the time spent on one image in a
frame. Optimization consists of the time in building and
solving the optimization. Since loop detection and pose graph
optimization are sensitive to the length of sequence, the
maximum time in parentheses besides the average value is
given. According to the result in Table. III, the proposed can
run in real time. The efficiency of the proposed approach is
validated.

TABLE III
TIME CONSUMING

Module Procession Average Time (ms)
Feature Tracker Corner Detecfctlon 5.6
KLT Tracking 1.2
Pose Estimator Optimization 15.3
Keyframe Process 4.7

Pose Graph

Loop Detection
Pose Graph Optimization

26.6 (max:86.6)
74.3 (max:985)
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V. CONCLUSIONS

To improve the robustness and efficiency of motion estima-
tion of self-driving vehicle, a complete system that combines
the measurements of multi-camera and odometer-gyroscope
is presented. In the future, the proposed system will be
extended to localize vehicles globally and build a more
detailed map by the connection between multi-cameras.
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