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Abstract
The measurement accuracy of wind direction and wind speed is very important to the unmanned sailboat control, but the 
mature mechanical wind sensor and ultrasonic wind sensor both have great defects to be applied to the unmanned sailboat. 
Inspired by previous works on neural networks, we propose a low-cost, real-time, and robust wind measurement system based 
on computer vision (CV). This CV-wind-sensor includes an airflow rope and a camera, which can be simply deployed on 
the sailboat. We implement a prototype system on the FPGA platform and run a series of experiments that demonstrate the 
promising performance of our system. For example, the absolute measurement loss of the CV sensor in this paper is basi-
cally kept below 0.4 m/s, which shows a great advantage of measurement accuracy compared with the mechanical sensor.

Keywords  Wind measurement · Unmanned sailboat · Applications of machine learning

1  Introduction

With the development of artificial intelligence technol-
ogy and the maturity of global communication networks in 
recent years, the research on the ocean is gradually deep-
ening, which requires real-time and long-term monitoring 

on ocean current, water quality and marine climate data. 
Because of its long endurance, flexible deployment and 
low maintenance cost, autonomous surface vehicle (ASV) 
(Cruz and Alves 2008; Rynne and von Ellenrieder 2008) 
especially unmanned sailboat is gradually applied in the field 
of environmental monitoring in the ocean, lakes, rivers, etc. 
(Manley 2008; Murphy et al. 2008; Pastore and Djapic 2010; 
Steimle and Hall 2006)

Similar to unmanned vehicles and unmanned aerial vehicles 
(UAVs), unmanned sailboats need to integrate multi-dimen-
sional information such as geographical location, operation 
status, water environment, hull attitude, etc., and do autono-
mous navigation to complete the assigned operation tasks (Plu-
met et al. 2015). In order to realize the control algorithm effi-
ciently and accurately, the sensing and measurement of various 
signals must be in high precision and real-time (Petres et al. 
2011; Guo et al. 2011). Since the power of unmanned sailboats 
mainly comes from wind energy, the accuracy of the wind 
sensing directly determines the control efficiency.

In this paper, a wind measurement method for unmanned 
sailboat based on computer vision is presented. The meas-
urement system is composed of an airflow rope, a camera 
and a computing platform, which can accurately measure the 
wind speed and direction by identifying the airflow rope’s 
fluttering. Experiments show that this method not only 
improves the accuracy, and real-time performance of wind 
measurement on the unmanned sailboat but also reduces the 
installation cost.
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2 � Related work on wind sensing

At present, in the field of navigation, the measurement of 
wind speed and wind direction mainly depends on wind sen-
sor. Dominating methods for this task can be roughly divided 
into three categories:

2.1 � Mechanical wind sensor

Mechanical wind sensor includes cup anemometer Pindado 
et al. (2014), wind vanes Ebert and Wood (1995) and propel-
ler anemometer SUZUKI et al. (1984), etc. A cup-vane wind 
sensor integrates a mechanical photoelectric conversion cir-
cuit which can calculate the rotation speed of the wind cup 
and the angle of the wind vane Kang’iri et al. (2018). The 
cost of the mechanical wind sensor is low, and the installa-
tion is simple. It has been widely used.

However, the accuracy of the mechanical wind sensor 
cannot be very high because its measurement results have 
a great relationship with its installation position. If it is 
installed on the top of the mast, due to the inclination of the 
ship during sailing, the sensor will also incline greatly, and 
the accuracy will be significantly reduced. If it is installed 
at the front or rear side of the deck, the turbulence of the 
sail will also seriously affect the accuracy. In addition, the 
response time of the mechanical sensor is too slow to pro-
vide a real-time control strategy Camp et al. (1970).

2.2 � Ultrasonic wind sensor

Ultrasonic wind sensor measures wind’s speed and direction 
by analyzing the modulation effect on ultrasonic by the pass-
ing airflow (Nakamura 2005; Svilainis and Dumbrava 2007; 
Quaranta et al. 1985). Ultrasonic wind sensor has rapid reac-
tion speed, high measurement accuracy, no zero drift and 
longer service life. It has been widely used in large ships 
and marine equipment. Ultrasonic wind sensor also has its 
shortage. The inconstant wind and swinging of the boat may 
lead to errors in wind measurement Zhi-qian et al. (2020). 
Meanwhile, it is too large, too heavy and costs too much to 
be applied in the low-cost small unmanned sailboat.

Therefore, it is necessary to have a more economical and 
suitable wind direction and wind speed measurement tech-
nology in the unmanned sailboat.

2.3 � Wind estimating based on machine learning

With the development of artificial intelligence technology, 
computer vision (CV) and machine learning technology 
have been gradually applied to the field of perception and 
measurement (Vodrahalli and Bhowmik 2017; Patruno et al. 
2017).

Image or video data can be used to estimate the physical 
properties of fluid flows, such as flowing water (Spencer 
and Shah 2004; Mottaghi et al. 2016; Wu et al. 2016), or to 
estimate material properties of objects Meka et al. (2018) 
by extracting physical quantities from videos Bhat et al. 
(2003). There have been researches on estimating or fore-
casting wind speeds using time series of measurements from 
existing instrumentation or weather forecast data as inputs 
(Mohandes et al. 2014; Li and Shi 2010; Liu et al. 2018).

The present works aimed at wind speed regression from 
images or videos are based on previous studies on classify-
ing videos by neural networks. Shubhi et al. Harbola and 
Coors (2019) propose two one-dimensional (1D) convolu-
tional neural networks (CNN) for predicting dominant wind 
speed and direction whose accuracy reaches up to 95.2%. 
Runia et al. Runia et al. (2019) concentrate on flags curl-
ing in the wind and extract wind velocity and properties. 
Cardona et al. Cardona et al. (2019) demonstrate a coupled 
CNN and recurrent neural network architecture (RNN) 
that extracts the wind speed ranged from 0 to 15.5 m/s and 
encoded in visually recorded flow-structure interactions of 
a flag and tree in naturally occurring wind.

The related work above on estimating wind mostly focus 
on the fixed objects, such as wind power plants, trees or flags 
in the field. On the sailboat, the rapid movement, inclination 
of the sailboat and the change of the natural environment 
make the visual projection and fluid motion characteristics 
quite different from those works.

As shown in Fig. 1, in the actual navigation of a tradi-
tional sailboat, the sailor who is in charge of the sailing 
direction and speed usually quickly evaluates the wind speed 
and wind direction by observing the fluttering of airflow 
ropes on the sailboat, and then controls the sails consider-
ing the inclination angle and direction of the boat SU et al. 
(2014).

Therefore, this paper attempts to simulate the sailor’s way 
of observing the airflow rope, estimating the wind direction 

Fig. 1   Traditional sailboat with airflow ropes
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and wind speed information by computer vision, and then 
realize the precise control of the unmanned sailboat.

3 � Visual processing of airflow rope

The airflow rope will flutter under the wind, and a two-
dimensional (2D) image which reflects the fluttering will 
be obtained by a camera installed under the airflow rope. 
Suppose there are n feature points on the image which are 
defined as 

(
X0, Y0, 1

)
⋯⋯

(
Xn, Yn, 1

)
 . These feature points 

can be transferred into three-dimensional (3D) feature data 
through the camera’s internal parameter matrix, the airflow 
rope’s length, the installation height and other information 
from the structure. The transfer function can be described as:

In this case, fx and fy are the camera’s focal lengths, x0 and 
y0 are the main point coordinates of the image plane, s is the 
tilt parameter of the coordinate axis. The image informa-
tion of a fluttering airflow rope is time-dependent, so the 
dynamic model of the airflow rope is established based on 
the combination of image frames of time t.

Under the wind, the sailboat will form a rolling angle � 
(the angle between the X-axis of the boat and the horizontal 
plane) and a pitching angle � (the angle between the Y-axis 
of the boat and the horizontal plane), which will also affect 
the projection characteristics of airflow rope in the camera. 
However, the course angle of the boat(the angle of the hull 
around the Z-axis) has no effect on the projection features.

In general weather conditions, the wind’s pitching angle 
is small ( < 5◦ ). In order to simplify the calculation, the 
pitching effect is ignored. That is, the z-axis component of 
the wind vector is 0. Thus the wind vector in the hull coor-

dinate system is defined as 
⎡⎢⎢⎣

u

v

0

⎤⎥⎥⎦
 , and the dynamic model G(x) 

of the airflow rope is described as:

In this case, t is the time span of the image sequence, (
xn, yn, zn

)
 is the relative 3D coordinate of feature point n, 

and 
(
x−1
n
, y−1

n
, z−1

n

)
 is the relative 3D coordinate of feature 

point n in the previous frame.
In order to get the accurate wind speed and direction, 

it is necessary to get the wind vector in the geographical 
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coordinate system instead of the hull coordinate system. 
So the transformation from hull coordinate system to geo-
graphic coordinate system is implemented. 

(
q0, q1, q2, q3

)
 

are quaternions continuously updated by the First Order 
Runge–Kutta Method Shi and Liu (2019).

By multiplying 
⎡⎢⎢⎣

u

v

0

⎤⎥⎥⎦
 with the inverse matrix of the direction 

cosine matrix CZhou et al. (2008), which represents the rota-
tion direction of the hull body relative to the geographical 
coordinate system, the wind data in geographical coordinate 

system 
⎡⎢⎢⎣

U

V

0

⎤⎥⎥⎦
 can be obtained:

And with the U and V obtained from (4), the wind speed and 
wind direction � can be described as:

According to the above derivation, the wind speed and direc-
tion information can be calculated with the aerodynamic 
model of the airflow rope and IMU data. However, it is dif-
ficult to implement this method for two reasons.

First, it is difficult to extract features from the images. 
Even in the same circumstance, i.e., same wind speed and 
direction, the airflow rope may be in different forms, such 
as overlapping or bending. In addition, the environment 
light, contrast, background interference, etc. all increase 
the difficulty in extracting features.

Second, it is difficult to establish the aerodynamic 
model equation G(x). Due to the material, weight, wind-
ing method, air humidity and other factors, the wind and 
airflow rope form a nonlinear system which is difficult to 
solve.
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4 � Wind sensor based on neural network

Because of the advantages in pattern recognition and non-
linear processing ability, machine learning based on CNN 
will be a good solution Szegedy et al. (2015) for the prob-
lems mentioned in Sect. 3.

4.1 � Sensor structure

Under different wind direction and wind speed conditions, 
the characteristic image of airflow rope will be quite differ-
ent. Fig. 2 shows four special cases.

In Fig. 2a, b show the status of the airflow rope in the 
crosswind from the side (same as X-axis direction of the 
hull). When the crosswind is weak, the rolling angle of the 
hull is small, and the airflow rope is blown up slightly, which 
forms a sinusoidal projection of the fluttering angle � . With 
the increase of wind speed, the airflow rope is blown up 
more greatly, and the rolling angle of the hull � is super-
posed to the fluttering angle and makes � larger. When the 
wind speed is large enough, the airflow rope will be com-
pletely horizontal, and � = � + 90◦ . When the wind speed 
continues increasing, the sinusoidal projection of � becomes 
smaller due to the increase of � . In other words,, the projec-
tion characteristics of the airflow rope are related to the wind 
speed and the roll angle �.

Similarly, it can be seen from (c) and (d) that for the wind 
from the y-axis direction of the hull, the projection char-
acteristics are related to the wind speed and the ship pitch 
angle �.

Thus, for the natural wind with different directions and 
speeds, the projection characteristics are strongly related to 
the wind , the pitching angle � and the rolling angle � . That 

is to say, the wind vector 
⎡⎢⎢⎣

u

v

0

⎤⎥⎥⎦
 can be accurately calculated 

from projection features (camera data) and hull attitude 
⎡⎢⎢⎣

�

�

0

⎤⎥⎥⎦
 

(IMU data) theoretically.
Neural networks can be used for end-to-end training and 

inference. That is, the wind data can be directly calculated 
from the input of the camera and IMU. However, the end-to-
end method which involves many conventional calculation 
processes in the network is difficult to train, particularly a 
much deeper network may be needed to obtain an accurate 
inference. This is not suitable for the embedded low-cost 
environment of unmanned sailboats.

Therefore, in this paper, the neural network is only used 
to deal with the non-linear part of the process, that is, the 
airflow rope dynamic model. The coordinate transforma-
tion and the solution of wind data are still completed by 

Fig. 2   a, b Show the status of 
the airflow rope in the cross-
wind from the left side. c, d 
Show the status of the airflow 
rope in the wind from back side
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conventional mathematical calculation. The structure of this 
CV wind sensor is shown in Fig. 3.

4.2 � Network model

As described in 4.1, The IMU data not only affects the con-

version from 
⎡⎢⎢⎣

u

v

0

⎤⎥⎥⎦
 to 

⎡⎢⎢⎣

U

V

0

⎤⎥⎥⎦
 , but also directly affects the meas-

urement accuracy of 
⎡⎢⎢⎣

u

v

0

⎤⎥⎥⎦
 . Therefore, it is necessary to con-

struct a multi-source hybrid neural network by taking it as 
an input besides the image data. The two-stream convolu-
tional networks proposed by Karen et al.Simonyan and Zis-
serman (2014) processes the optical flow and image stream 
separately, and then combined them by late fusion, which 
has proved a good effect in action recognition. This network 
provides an idea for this paper. However, one of inputs in our 
system is a one-dimensional data from IMU, and the other 
are 20 frames of 128*128 images. The large difference in the 
data amount between IMU and the camera may lead to 
improper weight training of the neural network, and cause 
the over-fitting problem. In fact, the wind can be roughly 
predicted only based on the camera data, so we assume that 
the effect of the camera data is greater than that of IMU. 
Therefore, we properly increase the dimension of IMU data 
to 8 to reduce the weight and increase its nonlinearity. At the 
same time, the dimension of video stream data is reduced, 
and these two-source data are then concatenated.

So in this article, a multi-source hybrid convolution neu-
ral network is constructed. The data is obtained from two 
sensors, i.e., the camera and the IMU installed on the boat. 
A branch convolution network processes the formatted video 
data acquired from the camera, and the other branch pro-

cesses the boat hull angle data 
⎡⎢⎢⎣

�

�

0

⎤⎥⎥⎦
 obtained from IMU. All 

channels will be concatenated in a full connection layer Tran 
et al. (2018). The controller of an unmanned sailboat cannot 
provide a strong computing environment with its embedded 

platform, so a shallow network will be more appropriate in 
this application to guarantee adaptability, reliability and effi-
ciency. A 16-layer network is designed, whose structure is 
as shown in Fig. 4.

The result and label of this network are both vectors, so 
the distance of the vectors is defined as the loss function, 
that is, the square loss function. The function is described as:

4.3 � Data collection

In order to obtain a large number of stable and consistent 
data for network training and verification, an automatic data 
acquisition platform is built in a closed laboratory environ-
ment, which is composed of the wind generation device and 
data acquisition device.

The wind generation device is mainly composed of four 
electric fans around the boat, facing four directions. The 
wind speed is adjustable by the servos installed on fans. 
A programmed FPGA board controls each electric fan to 
blow wind in four strength levels and switches the level 
every 30 s. In this way, several groups of horizontal wind 
with different directions and speeds are generated to blow 
the airflow rope to flutter.

(7)L(Y , f (x)) = (Y − f (x))2.
Fig. 3   Wind sensor structure with neural network

Fig. 4   Network structure
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The data acquisition device consists of a servo motor 
installed at the bottom of the boat to control the inclination 
of the hull, a camera installed directly under the airflow 
rope, an IMU installed inside the boat, an ultrasonic wind 
sensor, and a mechanical wind sensor installed near the 
airflow rope (Fig. 5).

After the program is started, the FPGA board randomly 
controls four fan servos to generate a horizontal wind of 
random strength and direction. At the same time, the servo 
at the bottom of the boat is controlled to make the boat 
incline to the downwind direction. After waiting for 5 s 

when the wind is stable, the hull angle data 
⎡⎢⎢⎣

�

�

0

⎤⎥⎥⎦
 will be 

obtained from IMU and a 20-frames-video data whose size 
is 20*640*480*3 will be obtained from the camera. The 
colorful image sequence data needs to be cleaned and nor-
malized via square cutting, graying and scaling, etc., to 
generate 20*128*128*1 data.

Because the airflow rope is red, we hope to have a better 
response to red while keeping the response to all colors so 
as to get a greater anti-interference ability. Therefore the 
grayscale response function in this application is defined 
as:

As shown in Fig. 6, after graying with this function, the red 
will be enhanced, while other colors will be attenuated. In 
order to enhance the model’s resistance to interference, each 
sample will have a random gamma correction to simulate the 
visual effects of various lights.

The 20*128*128*1 matrix is regrouped to 20 channels, 
i.e. 1*128*128*20, and then combined with the hull angle 
data as the input of the network. At the same time, the 

current wind data 
⎡⎢⎢⎣

u

v

0

⎤⎥⎥⎦
 is obtained by ultrasonic wind sen-

(8)f (h) = −h ∗ (h − 255)∕1500

sor, which is used as the input. Save this data sample file 
and start the collection of the next sample.

For this application, a total of 100,000 groups of data sam-
ples are collected, 80% of which are randomly used as the 
training set, and the rest 20,000 groups are used as the test set.

4.4 � Model training

We use Keras as the front end and Tensorflow as the back 
end for model training. And we implement the network on 
the PowerEdge R740 server, which is equipped with an Intel 
Xeon Silver 4214R processor and a GeForce GTX 1080Ti 
graphics card. Since the network model is a multi-input and 
single output model, the functional model structure of keras is 
chosen for the convenience of description. When training our 
model, we use Adam optimizer Kingma and Ba (2014) with a 
standard setting(i.e.,. a learning rate of 0.001, a first-moment 
momentum coefficient of 0.9, a second-moment momentum 
coefficient of 0.999). After 300 epochs, the training result is 
shown in Fig. 7.

As shown in Fig. 7, the average accuracy is 75% and the 
average loss of the wind speed is 0.13 m/s. We believe that 
under a more suitable network structure and more appropri-
ate parameters configuration, the recognition accuracy can be 
greatly improved.

5 � Experiment

5.1 � Embedded environment implementation

As mentioned above, the unmanned sailboat is a rela-
tively low-cost and low-performance embedded operating 
environment. In this paper, the unmanned sailboat con-
troller is based on Xilinx XC7Z035 series FPGA chip, 
which is equipped with about 180K LUTs, a dual core 

Fig. 5   Automatic data acquisition platform
Fig. 6   The curve of gray scale coefficient
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cortex-A9 ARM processor and two 1GB DDR3 memories. 
So it is necessary to compress and accelerate the network, 
although it is already simple.

According to the designed network structure, we carry 
out the hardware acceleration on FPGA platform. A neural 
network co-processor module is developed, including 3*3 
convolution operators, 2*2 max-pooling operators, full 
connection operators and common activation operators. 
All operators are based on semi-precision floating-point 
numbers, with an operating frequency of 100MHz. The 
structure of the module is shown in Fig. 8.

A program for network scheduling control is imple-
mented, which organizes the data from DDR memory and 
sends them to the neural network co-processor module by 
Direct Memory Access (DMA). After the operation of the 
module, the result is sent back to DDR memory. According 
to the program, several DMA operations and data processing 
are carried out, and finally the results of the neural network 
are obtained. The conversion speed test denotes that it takes 

about 500ms to complete the conversion from the input and 
obtain the wind data, which meets the application require-
ment of unmanned sailboats.

5.2 � Performance evaluation

In order to evaluate the performance of the network more 
directly, we compare the wind measurement effect to the 
mechanical sensor. Thus, besides the camera, the airflow 
rope and the control module as the tested equipment, an 
ultrasonic wind sensor and a mechanical wind sensor are 
also installed on the boat. The ultrasonic sensor is used as 
the measurement reference because of its high precision and 
fast response.

As shown in Fig. 9, the test environment is in a pool 
where there is a natural wind with random direction and 
speed. The measurement data of ultrasonic sensor, mechani-
cal sensor and CV sensing system in this paper are together 
collected continuously. The geometric distance between the 

Fig. 7   Diagram of accuracy 
and loss vs. epoch. The red line 
shows the accuracy is up to 75% 
and the loss of the wind speed is 
less than 0.2 m/s after 50 epochs

Fig. 8   The structure of the 
neural network co-processor 
module
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measured data (velocity vector) of the tested sensor (i.e., the 
CV sensor in this paper and the mechanical sensor) and the 
ultrasonic sensor is calculated as the loss. The result, taking 
the measurement results of the ultrasonic sensor as a refer-
ence, is as follows.

As shown in Fig. 10, under common natural conditions 
where the wind speed is within 0–5 m/s,the measurement 

loss of the mechanical wind sensor is quite large. The loss 
is especially large when the wind is weak. When the wind’s 
speed is about 3.5 m/s, the accuracy of the mechanical sen-
sor is the highest, and then decreases again. There are sev-
eral reasons for this. First, when the wind is weak and the 
wind changes its direction greatly or roughly turns around, 
the mechanical sensor’s hysteresis phenomenon is serious, 
which needs more than 10 s to stable again. Second, when 
the wind is strong enough to make the boat tilt, the mechani-
cal sensor will also have a pitching angle, which makes the 
measurement accuracy decline. The tilting effect varies with 
the wind, so the variance is large. The magnitude measure-
ment loss of the mechanical sensor is larger than 0.4 m/s.

On the contrary, the magnitude measurement loss of 
the CV sensor in this paper is basically kept below 0.4m/s. 
When the wind’s speed is about 1.5 m/s, the loss of the CV 
sensor is lowest, which is below 0.1 m/s. The loss and the 
variance also increase with the wind speed. When the wind’s 
speed is larger than 3.5m/s, the airflow rope has been almost 
blown parallel to the horizontal plane, but the measurement 
is still relatively accurate. 

We also did some experiments to evaluate the real-time 
performance.

As shown in Fig. 11, in the laboratory environment, after 
the wind direction suddenly changes by 90◦ , the deflection 
angles of the air flow rope and the wind vane are recorded. 
The response curves of the CV sensor and mechanical sensor 
to the wind changing are shown in Fig. 12.

When the wind changes, the airflow rope of the wind 
sensor and the wind vane of mechanical sensor will both 
have a hysteresis and then follow the change. The data Fig. 9   The tested unmanned sailboat in pool

Fig. 10   The loss of CV sensor and mechanical sensor (ultrasonic sensor as reference). The airflow rope is parallel to the horizontal plane when 
the wind’s speed is largerthan 3.5 m/s
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collected in this hysteresis is inaccurate. Due to the lighter 
weight and softer material of the airflow rope, it’s more 
sensitive to the wind changing, and the response is more 
timely. Figure  12 shows that when the wind changes 
instantaneously, the airflow rope can be stable again in 
about 0.6 s, while the wind vane will be stable gradually 
in more than 1.5 s. A shorter response time of the CV 
sensor means preciser data can be collected, which will be 
sent to the network accelerator to finish the conversation. 
It takes less than 1 s for the CV sensor to complete the 
measurement, which also makes the sensor more stable 
and real-time.

Due to the limitation of the natural environment, no 
data of wind speed above 4.5 m/s was collected. But from 
this test, the CV sensor still shows a great advantage of 
measurement accuracy compared with the mechanical 
sensor.

On the other hand, compared with the ultrasonic sen-
sor, the CV sensor in this paper not only greatly reduces 
the implementation costs but also greatly reduces the load 
and space requirements of the unmanned sailboat due to its 
light and simple installation and deployment.

6 � Conclusion

In this paper, we propose a wind measurement system 
based on CV, in which the nonlinear part of the airflow 
rope aerodynamic model is trained and replaced by the 
neural network. Experiments are conducted which dem-
onstrate that the CV sensor has not only significant advan-
tages in accuracy and real-time performance but also a low 
implementation cost and simple deployment, which is very 
suitable for unmanned sailboats.

Fig. 11   The real-time performance experiment. When the wind suddenly changes, the airflow rope changes it’s direction faster than the wind 
vane

Fig. 12   Response of the CV 
sensor and mechanical sensor to 
the wind changing
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Our CV wind sensor still has certain shortages. (1) The 
training data-set is collected in our laboratory environment, 
and takes the ultrasonic sensor as a reference, which cannot 
represent the real outdoor condition, especially the sea and 
the ocean. Besides, the inconstant wind and swinging of the 
boat may lead to errors in ultrasonic sensor measurement. 
For this problem, the same ultrasonic sensor whose posi-
tion is fixed is used so that the bias caused by the reference 
can be neutralized as much as possible. Li’s article Zhi-qian 
et al. (2020) also gives guidance on the correction method of 
ultrasonic wind sensors based on platform attitude. And in 
future researches, we will try to create a more accurate wind 
tunnel test environment, and use the standard wind data as 
the reference. (2) In this paper we only present a preliminary 
verification of the wind measurement based on CV. More 
researches on the neural network model and the airflow rope 
installation mode are needed to improve the measurement 
accuracy. For example, it is predictable to obtain higher 
measurement accuracy and robustness by installing airflow 
ropes in several key positions of the sailboat and evaluating 
the fluttering state of ropes with the same camera. In addi-
tion, the effect of different dimensions of IMU and camera 
data and the possible improper weight problem are also wor-
thy of further research. (3) As mentioned, there are practical 
issues that impact the performance of our system (such as 
the precise position of the airflow rope and the camera). It 
will be a better solution for the final product to supply a fixed 
set of sensor kits and fine-tune a generic model for each boat.
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