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Human–computer interaction technology brings great convenience to people, and dynamic gesture
recognition makes it possible for a man to interact naturally with a machine. However, recognizing ges-
tures quickly and precisely in untrimmed videos remains a challenge in real-world systems since: (1) It is
challenging to locate the temporal boundaries of performing gestures; (2) There are significant differ-
ences in performing gestures among different people, resulting in a variety of gestures; (3) There must
be a trade-off between the accuracy and the computational consumption. In this work, we propose an
online lightweight two-stage framework, including a detection module and a gesture recognition module,
to precisely detect and classify dynamic gestures in untrimmed videos. Specifically, we first design a low-
power detection module to locate gestures in time series, then a temporal relational reasoning module is
employed for gesture recognition. Moreover, we present a new dynamic gesture dataset named
ZJUGesture, which contains nine classes of common gestures in various scenarios. Extensive experiments
on the proposed ZJUGesture and 20-bn-Jester dataset demonstrate the attractive performance of our
method with high accuracy and a low computational cost.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the significant progress of science and technology, people
are surrounded by many electronic devices, such as computers,
phones, and smartwatches. Thus it raises an increasing demand
for flexible and effective human-computer interaction. Compared
with the traditional forms of keyboards and touchscreen, the
dynamic gesture is a more intuitive and natural way to interact.
For example, in a noisy environment where speech recognition
systems do not work, gesture interaction is an effective touch-
free way. Besides, using in-air gestures in human-computer inter-
action can be safer and more convenient when driving a car.

Dynamic gesture recognition is the task to identifying the speci-
fic category of gestures in the videos. Many works have achieved
excellent performance, including wearable hardware-based meth-
ods [1–4], ultrasound-based method [5], and computer vision-
based methods [6–13]. The first method is based on information
captured from special sensors, such as the motion profile and the
position. Although they meet the performance requirements, the
attached devices would be inconvenient in the application. The
second one utilizes the Doppler ultrasound, which is easily affected
by environmental noise, and suffering from difficulties when
deploying. While the vision-based method does not need addi-
tional equipment except for the image acquisition sensors, and
the development of deep convolutional neural networks brings sig-
nificant improvements for gesture recognition.

Although deep networks perform well in this task, they fail to
meet the requirement of real-time gesture recognition systems.
In these systems, dynamic gesture recognition faces many open
challenges. Firstly, different from the trimmed video clip that only
contains a single gesture, untrimmed videos usually comprise an
unknown number of gestures, which have the diverse appearance
and no indication of the start and end timestamps. Secondly, the
response delay of the real-time system must be short enough to
provide immediate feedback. Therefore, the lightweight model is
expected in the whole system. Thirdly, we need a robust system
to deal with the challenges of illumination, complicated back-
grounds, and intra-class variations in practical application. Nota-
bly, a complete dynamic gesture can be divided into three parts:
preparation, the core of the gesture, and retraction, of which the
second part is the most important to discriminate inter-class dif-
ferences. While the other two parts are very similar among differ-
ent categories, which is easy to cause misrecognition.
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For CNN-based methods, the size and quality of datasets seri-
ously affect the final performance, so many datasets have emerged
in the field of gesture recognition. Unlike HDMB [14], UCF101 [15],
and other action datasets, gesture datasets emphasize the impor-
tance of temporal relational reasoning. There are common gesture
datasets, such as EGOGesture [16], NvDataset [17], 20-bn-Jester
[18]. However, there are still some defects in these datasets: 1)
The transition and core actions are not clearly divided. 2) The col-
lection distance is far, which leads to lots of noise, e.g., arm actions.
3) Most of the datasets have certain standards for the length of the
video, which means that the gestures in these datasets have similar
action speeds and cannot adapt to different operating habits
among different users in the real world. We urgently need a
dynamic gesture dataset that is more focused on one-handed
human–computer interaction and should have the following char-
acteristics: 1) The preparation and retraction in the complete ges-
ture are classified into the no gesture category, and only the most
distinct parts are divided into the defined gesture category. In this
way, we can obtain more accurate response in the untrimmed
videos without being affected by the transition parts that often
cause error responses. 2) Images in the video clips need to pay
more attention to hand movements to be closer to the human–
computer interaction needs of handheld devices, such as the most
common mobile phones, which focus on hand movements and
exclude other unrelated noise. 3) The gestures in the dataset
should have various moving speeds. Even for the same category
of action, the length of each sample needs to be diverse to simulate
different users.

In this paper, we propose an online lightweight two-stage
framework to precisely detect and classify dynamic gestures for
the raw video streams in real-world systems with a single RGB
camera. We design an efficient detection module that consists of
a MotionNet and the post process to distinguish whether there
are gestures. Then the cleaned video sequence is sent to the follow-
ing gesture recognition module, which consists of a temporal rela-
tional reasoning network (GestureNet) and a single-time filter to
identify the specific gesture category. Our method benefit from
the two-stage phase is three folds: 1) The gesture recognition mod-
ule only turn on if there is a gesture in the video clip. Since the
computation of the detection module is lower than that of the ges-
ture recognition module, thus it dramatically reduces the power
consumption of the overall system. 2) The detection module
reduces the noise caused by unknown hand movements. 3) Two
modules are highly related, and the role of the gesture recognition
module is used to refine the output of the detection module to
ensure that the whole system is more reliable than the single-
stage system.

Moreover, we propose a ZJUGesture dataset to meet the practi-
cal application requirements. This dataset distinguishes transi-
tional movements, focuses on hand movements, and contains
different action speeds. We define nine common categories of ges-
tures, including no gesture, swipe left, swipe right, push, turn
clockwise, turn counterclockwise, palm to fist, fist to palm and fold
up. As mentioned earlier, a complete gesture should be divided
into three parts. For example, the action of changing a palm into
a fist can be divided into: the preparation action of the hand into
the camera field of view to form the palm, the core action of the
palm into the fist, and the exit action of leaving the field of view
of the camera after turning into the fist. Fig. 1 shows an example
of the partition for the whole gesture. With this in mind, we clean
every gesture in the ZJUGesture dataset into preparation, core
action, and retraction. To the best of our knowledge, we are the
first to clean a complete gesture into three partitions which is con-
venient for algorithm design. The preparation and retraction are
classified as no gesture for training, effectively reducing the mis-
recognition of unknown gestures. Our dataset is captured under
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different speeds and complex scenarios, e.g., diverse illuminations
and backgrounds, to cover most circumstances and users.

The contributions of this paper are summarized as follows:

� We propose an online lightweight two-stage framework for
dynamic gesture recognition in raw video streams, which can
handle untrimmed videos and achieve high precision with a
low computational cost.

� A detection network that combines the texture and motion fea-
tures in the untrimmed video stream through RGB images and
differential images is introduced to locate gestures in time ser-
ies. And a classification network is employed to deduce tempo-
ral relationships at multiple time scales. Both networks are
highly efficient and effective.

� We present a new gesture dataset, termed ZJUGesture, which
focuses on solving one-handed operation scenarios in practice.
This dataset aims to improve the diversity of gestures, like dif-
ferent speeds, illumination changes, and lots of scenarios.
Besides, we employ more fine-grained annotation to reduce fre-
quent error responses in real systems.

We organize this paper as follows: Section 2 reviews related
research works about motion detection, gesture recognition, and
gesture recognition dataset. Section 3 introduces the framework
and details of the proposed method for dynamic gesture recognition
in untrimmed videos. Section 4 introduces our ZJUGesture dataset
in detail. In Section 5, comprehensive experiments are illustrated,
and the effectiveness of the proposedmethod is evaluated. Section 6
presents the conclusion.
2. Related Work

2.1. Motion Detection Methods

Motion detection is the process of obtaining motion informa-
tion from the video. Christopher Richard Wren et al. [19] establish
a Gaussian background model to segment moving foreground
object. Although these approaches are simple, they lack robustness
in practical application because the influence of the changed illu-
mination and background. The method [20] computes the change
of pixels in the time domain and the correlation between adjacent
frames to get the motion information of the object in both camera
stationary and moving situations. Limited to an enormous amount
of calculation, these optical flow estimation methods are too hard
to be applied in real-time systems.

With the development of deep learning, more and more algo-
rithms [21,22] track moving objects through the features extracted
by the networks. The sophisticated methods can maintain high
accuracy in variable scenarios but come with heavy consumption.
Therefore, a lightweight network with excellent performance is
more suitable for edge computing scenarios.
2.2. Gesture Recognition Methods

Gesture recognition has been widely investigated. Early efforts
[23–25] adopt low-level features, such as skin color and motion
features, to track the hand and then identify the specific gesture
category by the classifier. Recently, deep-learning-based methods
have achieved tremendous success in many computer vision tasks.
Similar to action recognition, it is critical to extract spatial and
temporal features of the dynamic gestures. Specifically, some
works design the two-stream networks, which rely on isolated tex-
ture encoder and motion representation, e.g., optical flow [26–28],
and motion vectors [29]. Other methods use recurrent neural net-
works to model temporal information. For example, [30] extracts



Fig. 1. Two examples of a complete gesture partition.The gesture types for the two rows are fold up and fist to palm, respectively. In this paper, each complete gesture is
divided into three sub-parts.
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the features of each frame of the video by 2D CNNs, then models
temporal information through LSTM [31], finally get video-level
predictions. Furthermore, to better model spatial and temporal at
the same time, 3D CNNs have been proposed. C3D [32], I3D [26],
and P3D [33] utilize 3D CNNs to improve the situation that 2D
CNNs severely compress the inter-frame motion information in
the temporal dimension. Consequently, many researchers [26,34–
40] explore 3D convolutions, which extract spatial and temporal
features simultaneously. However, the aforementioned methods
only support the trimmed video clips that contain a single gesture,
which prevent their real-world applications. This paper focuses on
untrimmed video streams obtained directly from the camera. The
common solution [17] is adding an extra no gesture class and pro-
cessing it together with the gesture classes. Some works have the
same spirit as ours. [34] first trains a binary classifier to detect
whether gestures appear. A followed predictor outputs the specific
category if there is a gesture in the video clip. Compared with it,
our method takes temporal features into the first stage and effec-
tively models the multi-scale short- and long-term temporal cues
in the second stage.

2.3. Real-time Recognition

Although existing methods have achieved significant improve-
ments, they still suffer inconvenience in real-time deployment
due to the heavy parameters. To address this challenge, Zhang
et al. [29] design the enhanced motion vectors as motion features
instead of optical flows to boost the speed of the network. Sung
et al. [41] present an on-device real-time gesture recognition sys-
tem based on RGB frames. Recently, some works [42,34] propose
a deep 3D CNN for gesture classification and a lightweight gesture
detector. They still employ 3D CNN as backbones, which will inevi-
tably increase the amount of calculation. In contrast, our method
only adopts 2D network and designs some structures to supple-
ment the temporal information.

2.4. Gesture Recognition Datasets

Some gesture recognition datasets are collected for human–
computer interaction or sign language understanding. For exam-
ple, NVIDIA Gesture [17] focuses on the interactions while driving,
so the clips are recorded inside a car simulator. EgoGesture dataset
[16] is a multi-modal large-scale dataset for egocentric hand ges-
ture recognition, which provides both RGB and depth videos. Cha-
Learn ConGD [43] is also captured by the Kinect devices. But this
dataset requires the hand gesture and camera to be as close as pos-
sible. For Jester [18], it adopts the computer camera or laptop to
record gestures, which are used to device-freely control the com-
puter. In this paper, we directly utilize the front camera of the
mobile phone to collect the diverse gesture data, exhibiting chan-
ged speeds, different illumination conditions, and various scenes.
Besides, we provide more fine-grained annotation to benefit algo-
rithm design.
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3. Methodology

In this section, we will describe the proposed online lightweight
two-stage framework for detecting and classifying dynamic ges-
tures in untrimmed videos in detail. The flowchart of this frame-
work is shown in Fig. 2. After obtaining the video stream from
the camera, the whole analysis procedure can be summarized as
follows:

� Detection module: We first introduce a motion detection net-
work, i.e., MotionNet, to determine whether there is a gesture
at present in the raw video stream. Furthermore, to improve
the reliability of the system, we propose a post-process that
smooths and filters the output of the MotionNet. After that,
the gesture clips will be sent to the cascade gesture recognition
network.

� Gesture recognition module: We employ a temporal relational
reasoning network, i.e., GestureNet to process the cleaned ges-
ture sequences and identify the specific gesture type. Besides,
we design a state machine to process the results from the ges-
ture recognition network so that each complete gesture corre-
sponds to a single-time prediction.

3.1. Detection Module

For real-time gesture recognition on untrimmed videos, the
basic idea of these methods is to slide over a video sequence with
a certain step and window size and perform gesture classification
on these window segments. However, clips at the beginning and
end of the action are prone to errors. It also causes heavy resource
consumption due to the long-time and high-load operation. There-
fore, we design a low-power motion detection module as the state
converter of the gesture recognition module. Thus the gesture
recognition module will only be enabled if a gesture is detected.
The detection module consists of the MotionNet and the post-
process to distinguish whether there are gestures in the raw video
stream.

As a real-time system, we expect the MotionNet: 1) has accept-
able accuracy to ensure the performance of the entire system; 2) is
a lightweight network to ensure that it can run for a long time with
low power consumption; 3) has the fast speed to avoid interaction
delay. Although the optical flows and 3D CNNs perform well in
capturing motion information, the former is complex and slow to
compute, and the latter has vast parameters and a large model.
Hence, we propose a lightweight network based on 2D CNNs for
gesture motion detection. The original video data is RGB image
sequences at 30 FPS captured from the camera, which are then
sampled at 15 FPS. A raw sequence is obtained by using a sliding
window with length 4 and stride 2 on the input video. To encoder
appearance and motion features simultaneously, we convert the
four frames of RGB images into a combination of RGB images and
differential images, which are then sent into the MotionNet.
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In our method, we regard the gesture motion detection task as a
binary classification task. The difference is that the input of a gen-
eral classification task is a single image, but a sequence is pro-
cessed here. There are many excellent image classification
networks, such as VGG [44], ResNet [45], and the family of Incep-
tion [46–49]. However, these methods are unsuitable for real-time
systems because of heavy computation. We select Mobilenetv2
[50] for its depthwise separable convolution design and change it
to make the network more lightweight. Specifically, as shown in
Fig. 3, the standard convolution operation is performed simultane-
ously in the two dimensions of space and channel, but the depth-
wise separable convolution splits the convolution operation into
two layers. Depthwise convolution uses a single convolution filter
to compute per input channel, while pointwise convolution com-
putes linear combinations of the input channels. The computation
amount of the depthwise separable convolution is reduced by
about K2 times than the standard one when kernel size is set K.
The architecture of the MotionNet used in this work is shown in
Table 1. (See Fig. 4).

In practice, we observe some critical issues. First, the uncer-
tainty of obtaining dynamic gestures in untrimmed videos will
lead to the loss of some frames of a complete gesture. Second, for
the existence of the intermediate transition action, the detector
usually makes a misjudgment. Third, it may repeatedly detect a
specific gesture if the length of the sliding window does not cover
the entire gesture.

To address the above three problems, we propose to filter the
gesture motion detection results in pursuit of the reliability of
the entire system. During the online detection, the results of the
MotionNet are further processed. Specifically, a double-ended
queue is set up to save the four historical states from t1 to t8 at
the current time. We apply this queue to correct the current result.
The specific rules are as follows: 1) The state of the first position in
the queue must be gestures; 2) Among all states in the current
queue, at least one result is judged to be a gesture; 3) In the final
queue obtained by filtering, it is guaranteed that no two consecu-
tive results are judged as gestures. If the above rules are satisfied
simultaneously, it is determined that there is a dynamic gesture
in the new motion detection result. This process is the key to
ensuring the accuracy of the whole real-time system.

3.2. Gesture Recognition Module

When the motion detection module detects a gesture, it will
activate the gesture recognition module. The gesture recognition
module consists of the GestureNet and the single-time filter. Gen-
erally, to obtain temporal relations from video sequences, most
recent methods adopt 3D CNNs, but they struggle to model the
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long-term temporal cues in untrimmed videos. Besides, the succes-
sive frames usually show redundant information in spatial and
temporal dimension. Inspired by the Temporal Relation Network
(TRN) [51] that uses a sparse sampling strategy and deduces the
short- and long-term temporal relations, we propose a lightweight
relation reasoning network, termed GestureNet, to identify the
specific type of gestures from video clips. The differences between
our GestureNet and TRN are: (1) The feature extraction layer of
TRN is replaced with the Mobilenet-v2 to reduce the parameters.
(2) TRN calculates frame relationships, while we only use 3-
frames and 7-frames relationships to reduce the amount of compu-
tation in our system. Our design makes it possible to reason tem-
poral relationships at multiple time scales and satisfies the real-
time application. The architecture of the basic model in GestureNet
is shown in Table 2. Formally, the temporal relationship between
the two frames is defined as below:

TR2 Vð Þ ¼ FCb

X
i<j

FCh f i; f j
� � !

ð1Þ

where the input video V ¼ ff 1; f 2; f 3; � � � ; f ngcontains n sampled
frames, where f i represents the features of the i-th original video
frame extracted by the backbone layer. The function FCh is a two-
layer MLP with 256 units per layer, while FCb is a one-layer MLP
with the unit number matching the class number. These two layers
are shared within each scale. They are used to fuse the relationships
of different ordered frames. Similarly, the temporal relationship
between the three frames is defined below:

TR3 Vð Þ ¼ FC 0
b

X
i<j<k

FC 0
h f i; f j; f k
� � !

ð2Þ

According to the formula defined above, we can easily get higher
frame relationships. In order to obtain the temporal relationships
at multiple time scales, the fusion function is defined below:

MTRN Vð Þ ¼ TR2 Vð Þ þ TR3 Vð Þ . . .þ TRN Vð Þ ð3Þ
Specifically, the GestureNet is fed by the video sequences filtered
through the detection module. We sample 8 frames to calculate
temporal relationships at multiple time scales, i.e., from 2-frames
up to 8-Frames. For example, in the 3-frames temporal relation-
ships, there are 56 combinations. If all ordered pairs are analyzed,
the amount of computation will be too heavy to be accepted by
our framework. In this paper, we choose 3-frames and 7-frames
to balance accuracy and computation.

In practice, we expect that a complete gesture corresponds to a
single-time prediction in the real-time gesture recognition system.
Besides, different types of gestures may contain similar prepara-
tion and retraction, which can easily lead to ambiguity at the
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Table 1
Model architecture for MotionNet. Unless otherwise stated, all spatial convolutions
use 3�3 kernels. The expansion ratio is the ratio between the size of the input
bottleneck and the latent size. The channel is the number of filters. The bottleneck is
shown in Fig. 4.

Input Layer Channel Stride Expansion ratio

56�56�12 conv2d 32 2 -
28�28�32 bottleneck 16 1 1
28�28�16 bottleneck�2 24 2/1 1.5
14�14�24 bottleneck�3 32 2/1/1 1.5
7�7�32 bottleneck�4 64 1/1/1/1 1.5
7�7�64 bottleneck�3 96 2/1/1 1.5
4�4�96 bottleneck�3 160 2/1/1 1.5
2�2�160 bottleneck 320 1 1.5
2�2�320 conv2d 1�1 512 1 1.5
2�2�512 avgpool 2�2 - - -

input

Conv 1×1, Relu 6

Depthwise 3×3
Relu 6

Conv 1×1, Linear

Add

input

Conv 1×1, Relu 6

Depthwise 3×3
Stride 2,Relu 6

Conv 1×1, Linear

Stride 1 Stride 2

Fig. 4. The details of the bottleneck in Table 1.
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beginning and end of the gesture. Meanwhile, we also do not want
to receive multiple unstable outputs during a long-term gesture
performing. Considering the above issues, we set up a state
machine to process the results of the gesture recognition network,
which judges the next state based on the current and historical
states to return the final recognition result. Our method initializes
a queue with a fixed length of 3 for storing and updating the result,
confidence, and timestamp of the classifier’s output. We update the
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result R, confidence Conf, and timestamp Ts to the end of the queue.
If the gap between the timestamp of the previous state and the cur-
rent is greater than 1 s, the result is regarded as the current state
ðR�;Conf �; T�

s Þ, otherwise, we will traverse all elements of the
queue, the highest confidence is regarded as the current state. After
obtaining the current state, its confidence is greater than the pre-
defined threshold and is different from the previous state, then
R� will be a final result; otherwise, it will not be output.

4. ZJUGesture Dataset

This section provides the details of the ZJUGesture dataset. This
dataset mainly focuses more on solving one-handed operation sce-
narios in practice, such as mobile phones and tablets. Our dataset
defines nine common categories of gestures that are easy for users
to operate: no gesture, swipe left, swipe right, push, turn clockwise,
turn counterclockwise, palm to fist, fist to palm, and fold up. In order
to ensure the diversity of data samples, we collected each action in
12 sub-scenes, including different backgrounds and light intensity.
Fig. 5 shows some of the data in the ZJUGesture dataset. The video
data is collected by 60 identities at a resolution of 1280�720, and
30 FPS.

According to the training requirements of the model, there are
two steps to label the gesture dataset. The first step is to label all
videos frame by frame whether they contain gestures or not. Sec-
ondly, the video clips with gestures are labeled with a specific ges-
ture category. Nine types of gesture data correspond to the label 0–
8. To ensure the effectiveness of the experiment, our training set
and test set are strictly divided according to the principle that
the same person cannot appear in both subsets simultaneously.
In order to ensure the quality of the data, we hire 20 professional
employees to label each original video frame by frame. During
the labeling process, 1 or 2 frames will be skipped between each
adjacent action.

Compared with the existing datasets, ZJUGesture maintains the
same collection conditions, such as distinct subjects, complex sce-
narios, and different illumination, but embodies three different
properties, i.e., considering the transitional movements, focusing
on hand movements, and containing different action speeds.
Specifically, we found that the transition actions of each gesture
are close. If the complete gestures are retained in the dataset with-
out distinction, it will cause frequent error responses when pro-
cessing untrimmed videos in real systems. Consequently, we
divide a gesture into three parts: preparation, core action and
retraction. Second, the collection distance is far in current datasets,
resulting in the noise of arm and body actions, which does not sat-



Table 2
Basic model architecture for gesture recognition. The meaning of the parameters is
the same as described in Table 1.

Input Layer Channel Stride Expansion ratio

224�224�24 conv2d 32 2 -
112�112�32 bottleneck 16 1 1
112�112�16 bottleneck�2 24 2/1 1.5
56�56�24 bottleneck�2 32 2/1 1.5
28�28�32 bottleneck�3 64 1/1/1 1.5
28�28�64 bottleneck�2 96 2/1 1.5
14�14�96 bottleneck�2 160 2/1 1.5
7�7�160 bottleneck 320 1 1.5
7�7�320 conv2d 1�1 512 1 1.5
7�7�512 avgpool 7�7 - - -
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isfy the human–computer interaction requirements of handheld
devices with relatively small view fields. In contrast, we choose
to directly use the front camera of the mobile phone to collect ges-
ture data and pay more attention to hand movements. Third, the
speeds of the gestures in the dataset must be different, even for
the same action category. In ZJUGesture dataset, 60 persons are
asked to perform each gesture according to their habits in three
levels, i.e., fast, normal, and slow. In summary, our dataset has dra-
matically diversified properties.

5. Experiments and Discussions

5.1. Details of Data and Experiments

In this paper, we evaluate our framework on Jester[18] and
ZJUGesture. Jester is the standard publicly available dataset for
gesture recognition, which is collected by crowd workers perform-
ing 27 kinds of gestures in front of a laptop camera or webcam,
consisting of three parts, 118,562 for training, 14,787 for valida-
tion, and 14,743 for testing. The images in Jester are extracted from
the videos at 12 FPS. For ZJUGesture, we first sample 30 original
videos that contain multiple gestures within a continuous
sequence for the detection module experiments. We label videos
frame by frame into gestures and no gestures, obtaining the Motion-
Fig. 5. Some data examples in the ZJUGesture dataset. The categories of gesture
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Data. The sample numbers of the training and test sets are given in
Table 3. For gesture recognition experiments, we carefully anno-
tate the original collected videos into nine categories. The statistics
of gesture instances in the training and test sets are given in
Table 4. We also report the gesture duration, which is described
in average, maximum, and minimum. It can be seen that the dura-
tion of gestures both in inter- and intra-class are significantly dif-
ferent. The difference between the longest and shortest clips can
reach 103 frames, or 91 frames for the same gesture class, which
brings great challenges to gesture recognition. Besides, the number
of frames in the preparation and retraction stages are relatively
close.
5.2. Experiments for Detection Module

Since the motion detection module is always running in our
framework, we need to consider the trade-off between accuracy
and the consumption of time and space. We first compare the per-
formance of our MotionNet with other popular approaches on the
MotionData. In this experiment, we first resize the video frames
from 1280�720 resolution to 56�56 to avoid the heavy computa-
tional burden. Here we stack the continuous four frames covered
by the sliding window, obtaining the input with 56�56�12. In
our MotionNet, we convert the input of four RGB frames into one
RGB image and three differential images to provide appearance
and motion information. The models are trained from scratch with
Kaiming initialization. Table 5 shows the results of the MotionData
test set. We find that the MotionNet performs better than VGG16
[44], Resnet50 [45], and TRN [51] with 4-frames relationships on
metrics of accuracy, model size, and counting FLOPs. The third
metric means floating point operations, which are used to measure
the complexity of the algorithm. The FLOPs and model size of our
detector are much smaller than other models to ensure that it is
lightweight. Besides, our method with differential images has
higher accuracy than the original Mobilenet-v2 without additional
computing resources, which shows the effectiveness of our
method.
s from top to bottom are swipe left, swipe right, palm to fist, and fist to palm.



Table 3
Statistics for MotionData in detection module experiments.

Category Instances

Total Train Test

gesture 2920 2000 920
no gesture 2255 1825 430

Table 5
Comparison of our MotionNet to the state-of-the-art methods on the test set of
MotionData. Bold and underline represent optimal and suboptimal results. The up
arrow indicates that the larger the value, the better the model performance, and vice
versa.

Model Top-1 acc(%) " Size(M) # GFLOPs #
VGG16 60.3 285.7 1.381
ResNet-50 89.9 297.3 0.660
TRN (4 frames) 88.2 40.1 0.084
Mobilenet-v2 90.2 17.6 0.027
Ours 91.7 17.6 0.027

Table 6
Comparison of our MotionNet to the state-of-the-art methods on the Jester dataset.

Model Top-1 acc(%) " GFLOPs #
VGG16 95.43 1.381
Mobilenet-v2 95.85 0.027
ShuffleNet (x2) 95.64 0.398
ShuffleNet (1.5) 94.13 0.231
Ours 96.30 0.027
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In order to further analyze the MotionNet, we compare Motion-
Net with other lightweight networks on the Jester subset. Specifi-
cally, the experiment utilizes 17,664 videos in the Jester data set,
of which 15,706 were used as training samples, and 1,958 were
used as test samples. The results are shown in Table 6. We observe
that our method exhibits superior performance over VGG16,
Mobilenet-v2, and Shufflenet [52] both in model accuracy and
the amount of computation. Thus, we can draw the conclusion that
our detector is lightweight and high accuracy, satisfying our
requirements for deployment in real-time systems.

Then, we study the performance of the MotionNet under differ-
ent input forms and sizes to achieve the trade-off between accu-
racy and resource consumption. The performance comparison is
shown in Table 7. Although increasing the resolution of the input
image can bring a little performance improvement, the amount
of computation has increased a lot. Experimentally, we choose
the input with a size of 56�56. Besides, we present four variants,
four RGB frames, three RGB frames and 1 differential image calcu-
lated from pair 1–2 frames, two RGB frames and 2 differential
images calculated from pairs 1–2 and 1–3 frames, one RGB frame
and three differential images calculated from pairs 1–2, 1–3, and
1–4 frames. From Table 7, we conclude that the concatenation of
differential images helps capture motion information, and combin-
ing low- and high-ordered motion cues will further improve
performance.

Thirdly, we design an experiment to study the effect of the
intervals of differential images on performance. We fix the input
size as 56 and choose the format of three RGB images and one dif-
ferential image. The distance to calculate the differential image is
1, 2, 3. Table 8 illustrates that the differential image with a large
distance shows the best performance, which reveals that adjacent
frames contain less important motion information than that with
larger intervals.
5.3. Experiments for Gesture Recognition Module

We evaluate the gesture recognition models on ZJUGesture and
Jester in terms of accuracy and computation, i.e., top-1 accuracy,
top-5 accuracy, total parameters of the model, and counting FLOPs,
to prove that our model is applicable in real-time systems.

First of all, we compare our GestureNet with SOTA methods in
the field of action recognition on the test set of the ZJUGesture
dataset. Here, all models are trained from scratch with Kaiming ini-
Table 4
Statistics for ZJUGesture dataset in gesture recognition experiments. AP. and AR. mean th

Category Instances

Total Train Test

no gesture 2255 1965 290
swipe left 1110 934 176
swipe right 1031 867 164

push 807 648 159
clockwise 1061 864 197

counterclockwise 1089 878 211
palm to fist 862 754 108
fist to palm 918 790 128

fold up 759 590 169
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tialization. We sample 8 fixed-length RGB images from the video
and resize the resolution of the images to 224�224, which are then
stacked along the channel dimension, obtaining the input size of
224�224�24. Notably, the duration of each gesture is different,
resulting in an uncertain number of video frames per sample dur-
ing the training, we propose a time scale normalization method to
enhance the adaptability of the network to the inconsistency of dif-
ferent time scales. Specifically, we set the length of the window
according to different video lengths and then randomly generate
offsets within the video range. The window location plus the offset
is the final sampling result. As shown in the upper part of the
Table 9, our method achieves competitive performance in accuracy
and lower computation consumption than common action recog-
nition methods, C3D [32], P3D [33], MSTRN [51], and TSM [53].
We further compare the proposed method with a recent real-
time gesture recognition method with officially released codes.
From the bottom part of the Table 9, our method shows a compa-
rable amount of calculation with RGDC [34] but outperforms a
large margin on recognition accuracy than it. Therefore, it is more
suitable for our method to be applied to the actual gesture recog-
nition system than the existing methods.

We further evaluate the gesture recognition models on the test
and valid set of Jester. The results are listed in Table 10 and
Table 11, respectively. Similar to the results of the ZJUGesture
dataset, common action recognition methods perform pretty well
in accuracy, but require the complex model and heavy calculation.
Another real-time method RGDC has low GFLOPs and model size
but suffer from the sharp drop in accuracy. In contrast, our method
exhibits trade-off performance on accuracy and computation,
e average number of preparation and retraction stages.

Duration AP. AR.

Avg. Max. Min.

17 48 9 - -
21 52 10 3 4
22 56 12 3 5
20 67 9 5 6
39 108 17 3 7
41 104 20 4 6
13 42 5 3 5
16 70 6 5 6
36 42 19 6 4



Table 7
Comparison of the MotionNet performance of different input forms and sizes on the
test set of MotionData. Diff means differential images.

Input form Input size Top-1 acc(%) " Size(M) # GFLOPs #
4 RGB 224�224 92.3 17.6 0.442
3 RGB + 1 Diff 92.8
2 RGB + 2 Diff 93.2
1 RGB + 3 Diff 93.4
4 RGB 56�56 90.2 17.6 0.027
3 RGB + 1 Diff 91.3
2 RGB + 2 Diff 91.6
1 RGB + 3 Diff 91.7

Table 8
Comparison of the MotionNet performance of different distances on the test set of
MotionData.

Input form Distance Top-1 acc(%) "
3 RGB + 1 Diff 1 91.3

2 91.4
3 91.7

Table 9
Comparison of our GestureNet to the state-of-the-art methods on the test set of
ZJUGesture dataset.

Model Top-1 acc(%) " Top-5 acc " GFLOPs # Parameters(M) #
C3D 79.62 97.69 129.9 99
P3D199 75.83 97.88 35.5 66
P3D131 81.54 97.88 24.6 47
P3D63 81.35 97.69 15.9 25
MSTRN 92.15 99.75 16.4 13
TSM 91.02 99.70 23.7 24

RGDC 83.71 98.89 2.3 6
Ours 90.39 99.74 2.0 10

Table 10
Comparison of our GestureNet to the state-of-the-art methods on the test set of Jester
dataset.

Model Top-1 acc(%) " GFLOPs # Parameters(M) #
MSTRN 94.78 16.4 13
P3D63 91.19 15.9 25
TSM 92.29 23.7 24

RGDC 82.30 2.3 6

Ours 91.22 2.0 10

Table 11
Comparison of our GestureNet to the state-of-the-art methods on the valid set of
Jester dataset.

Model Top-1 acc(%) " Top-5 acc " GFLOPs # Parameters(M) #
MSTRN 93.70 99.59 16.4 13

P3D63 91.13 98.99 15.9 25
TSM 93.58 99.68 23.7 24

RGDC 83.92 97.64 2.3 6

Ours 91.80 99.06 2.0 10

Table 12
The results of different frame-relation on ZJUGesture dataset. R-N means the
relationship between N frames.

Model Top-1 acc(%) " GFLOPs # Model Top-1 acc " GFLOPs#
R-2 82.79 0.6 R-7 88.62 1.4
R-3 84.61 0.8 R-2–8 90.36 1.9
R-4 86.58 1.2 R-3–7 90.39 2.0
R-5 87.17 1.3 R-4–6 90.41 2.6
R-6 88.09 1.4 R-All 92.10 12.1

Table 13
Online results in untrimmed videos selected frome ZJUGesture dataset.

Method Levenshtein accuracy(%) " Speed(seg/s) "
No MotionNet 87.2 55
No post-processing 70.9 186
No single-time filter 80.2 176
Ours 92.4 173
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which is more suitable and compact for real-time application.
Notably, GestureNet has a significant performance advantage on
the ZJUGesture. For example, the accuracy improvements com-
pared with P3D63 are 9.04 and 0.67 on ZJUGesture and Jester,
respectively. The reason is that methods like P3D63, which strug-
gle to capture long-term temporal relationships, usually fail to dis-
tinguish the same parts of different gestures, such as swipe left,
swipe right, and turn clockwise have many similar parts. Our data-
set only contains high-frequency daily-used gestures and magni-
fies the shortcomings of these methods, resulting in performance
degradation.

Finally, we evaluate our method with various frame relation
modules on ZJUGesture. As shown in Table 12, more additional
frames included in the relation bring an obvious boost. To consider
the low- and high-ordered relation, we combine two relation mod-
ules, e.g., 2-frames and 8-frames, and achieves further improve-
ments. Our method with all scale relations shows the best
performance. As for the real-time system, we adopt 3-frames and
7-frames relationship to balance the performance and
computation.

5.4. Experiments for Untrimmed Videos Online

In this experiment, we adopt the average Levenshtein accuracy
metric [34] to further evaluate the system’s misclassification, mul-
tiple detection, and missing detection online. Levenshtein distance
measures the distance between sequences by counting the number
of item-level operations (inserts, deletions, or replacements) that
convert one sequence to another. Formally:

Levenshtein accuracy ¼ 1� Levenshtein distance
Number of categories

� �
ð4Þ

Unlike the offline test, this experiment simulates the actual system
processing untrimmed videos directly from cameras online. Here,
we select 153 untrimmed videos from ZJUGesture, 15 gestures per
video on average. The sliding window size of the detector is 8 and
16 for the classifier. The clips are down-sampled to 4 and 8 frames
for networks. The experimental results are shown in Table 13. The
first row indicates that if the classifier directly processes the video
streams without motion detector, the results are prone to be no ges-
ture, which severely affects gesture identification. Besides, the com-
putational cost of the classifier is much higher than that of the
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detector, which will greatly reduce the speed when performing
uninterruptedly. The second row illustrates that if there is no
post-processing, although the speed is improving significantly, the



Fig. 6. Visualize the results of each step of the entire framework. Other represents interference gestures. Our method locates the moment when the user performs the gesture
in the video stream and achieves a single-time prediction. And the activation often occurs in the first half of the gesture, reducing the response time.

Table 14
Comparison of our framework to the state-of-the-art methods with MobileNet-v2
backbone in untrimmed videos.

Model Levenshtein accuracy(%) " Speed(seg/s) "
C3D 76.1 28
P3D 78.2 57
MSTRN 72.4 145
Ours 92.4 173
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Levenshtein accuracy decreases obviously. This phenomenon attri-
butes to the misrecognition occur in the neural network and the
loss of field of view in the real-time system, thus the post-
processing is critical to correct the results. Furthermore, comparing
rows 3 and 4, it is necessary to filter the recognition results when
processing long-term gestures. The results of each step of our
framework are visualized in Fig. 6. Moreover, in Table 14, we change
the backbone of C3D, P3D, and MSTRN to MobileNet-v2. It is obvi-
ous that directly sending the frames covered by the sliding window
to these methods will result in a loss of accuracy and efficiency,
demonstrating the effectiveness of the combination of detector
and classifier. In summary, our framework is both lightweight and
efficient when dealing with untrimmed videos directly from cam-
eras online.
6. Conclusions

In this paper, we proposed an online lightweight two-stage
framework to detect and classify dynamic gestures in untrimmed
video streams. The proposed framework can quickly return a single
video-level prediction for a complete gesture. Specifically, we first
design a lightweight detection module that introduces extra
motion information by using differential images and a post-
process to reduce misrecognition. Then, a followed lightweight
gesture recognition module predicts gesture categories from the
RGB images with gestures detected by the detection module and
a filter to ensure a single-time response. Furthermore, we propose
a more complex and fine-grained annotated gesture recognition
dataset ZJUGesture. The experiments conducted on Jester and
ZJUGesture datasets demonstrate our lightweight framework with
competitive accuracy using only images. Our approach has been
deployed to the mobile for use online, which verifies the effective-
ness of the whole framework.
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