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Multivehicle Motion Planning With Posture
Constraints in Real World

Gang Xu“, Yansong Chen, Junjie Cao

Abstracit—This article addresses the posture constraints
problem in multivehicle motion planning for specific appli-
cations such as ground exploration tasks. Unlike most of
the related work in motion planning, this article investigates
more practical applications in the real world for nonholo-
nomic unmanned ground vehicles (UGVs). In this case, a
strategy of diversion is designed to optimize the smooth-
ness of motion. Considering the problem of the posture
constraints, a postured collision avoidance algorithm is
proposed for the motion planning of the multiple nonholo-
nomic UGVs. Two simulation experiments were conducted
to verify the effectiveness and analyze the quantitative per-
formance of the proposed method. Then, the practicability
of the proposed algorithm was verified with an experiment
in a natural environment.

Index Terms—Collision avoidance, constrained motion
planning for multivehicle.

[. INTRODUCTION

N RECENT years, the multivehicle system has witnessed

prominent progress, which is mainly due to its practical
potential in various applications [1], [2], ranging from military
operations to formation transportation, collaborative search, res-
cue, etc. However, multivehicle motion planning, navigating the
vehicles to specified targets without collisions with the obstacles
and the other vehicles, remains a top priority for the multiple
unmanned vehicle systems. As a fundamental challenge, motion
planning considering physical constraints on multiple unmanned
vehicles has attracted considerable attention from researchers in
robotics and control communities. To take a concrete example,
multiple unmanned ground vehicles (UGVs) motion planning
has been in the spotlight as it is indispensable for ground
transportation, exploration, patrol, etc.
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Conventionally, multivehicle motion planning is mainly di-
vided into centralized and decentralized methods. The former is
mostly global and offline, while the latter is generally local and
online. Most centralized planning methods are extended from the
A* [3] approach, the rapidly exploring random trees* (RRT*)
method [4], and the probabilistic roadmaps algorithm [5]. The
first algorithm is a unitary heuristic search for maps, while the
lasttwo are sampling based. For example, both the conflict-based
search [6] and the safe interval path planning (SIPP) [7] are
developed from the A* method. Recently, Okumura et al. [8]
solved the deadlock problem of the SIPP algorithm caused by
fixed priorities. There are also many improvements in sampling-
based methods, such as coordinated sampling-based expansion
proposed by Le et al. [9], which improves the computational
speed of centralized motion planning algorithms. However,
centralized methods are logically simple but require hardware
resources of high quality and holonomic information of all kinds
with high computational cost and limitation of the number of
agents, resulting in that it cannot be applied to real scenarios
well.

Different from centralized motion planning methods, dis-
tributed ones can be practical in complex dynamic environments.
Many of them do not require holonomic information and can
address noise in sensors well. The methods mainly include
artificial potential fields [ 10], deep reinforcement learning meth-
ods [11], sampling-based methods [12], geometric collision
avoidance such as velocity obstacles (VO) [13], etc. Artificial
potential fields are robust but difficult to integrate constraints on
vehicles and environments. Deep reinforcement learning based
methods have drawn a lot of attention in recent years, but most
work may be only applied to scenarios where training data is
provided [14]-[16]. Sampling-based motion planning methods
are generally used by being combined with other distributed
methods. The VO algorithms have been in the spotlight recently
for their excellent performance. Among them, the VO series of
algorithms are most related to the proposed algorithm in this
article.

Geometrically, the VO algorithm can obtain a set of obstacle
velocities. If not included in the set, the velocity chosen by the al-
gorithm at the next moment will be regarded as a safety solution,
among which the one closest to the ideal velocity is the optimal
solution. However, the distribution of responsibility of avoiding
collision leads to the oscillation of vehicles’ trajectories, which
cannot be resolved by the early improved versions, such as [17].
Reciprocal velocity obstacle (RVO) [18] was proposed to deal
with the problem by assigning the responsibility equally for any
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two vehicles with potential collision, thus, achieving smooth
trajectories. Afterward, Snape et al. [19] proposed the hybrid re-
ciprocal velocity obstacle to solve the problem that RVO cannot
achieve collision avoidance on the same side in some particular
scenarios. To implement dynamic constraints on vehicles, Van
Den Berg et al. [20] proposed acceleration-velocity obstacles.

In the VO series of algorithms, the optimal reciprocal collision
avoidance (ORCA) [21] is the most popular one except for
RVO. The RVO algorithm takes collision avoidance between
any two vehicles into account by selecting the intersection of two
safety velocity sets. However, the ORCA considers two or more
vehicles and is superior in computational speed, collision avoid-
ance, and smoothness of trajectories, leading to its application
as expert data in machine learning algorithms. Moreover, Guo
et al. [22] improved the smoothness of trajectories and collision
avoidance of ORCA by adjusting the distribution of responsi-
bility of avoiding the collision. Gopalakrishnan et al. [23] put
forward a way of distributing the responsibility according to
certain probability distribution and considered the uncertainty
related to state evaluation and robot driving as well. Arul et al.
[24] integrated RVO and Voronoi diagrams, and then, achieved
better performance than ORCA.

The VO series of algorithms can add constraints flexibly, such
as kinematic and dynamic constraints. For example, Mao ef al.
[25] integrated linear model predictive control and ORCA with
constraints from wheeled robots. Fuad et al. [26] added several
common constraints into the ORCA algorithm, providing a
reference idea for the motion planning problem with constraints.
Yuan et al. [27] utilized the VO algorithm to control ships
with dynamic and uncertain constraints considered to reduce
collision. Liu et al. [28] proposed the Dubins-RVO algorithm to
fit limited space and constraints from fixed wings in 2-D space
by combining the Dubins curve and the RVO algorithm.

In addition, aimed at the problem of physical constraints, De-
saraju et al. [29] proposed the decentralized multiagent rapidly
exploring random tree with constraints on moving directions.
Wang et al. [30] proposed an optimization framework specific
to multicopters with geometrical spatial and user-defined con-
straints.

To date, most of the existing related work focuses on simula-
tion environments. At the same time, most of UGV are subject
to limited nonholonomic cases, i.e., they cannot move in any
direction in the 2-D workspace, especially in loaded conditions.
For this above challenge, a solution with curvature constraint is
more qualified for multiple UGVs motion planning due to its
strengths in nonholonomic. On the other hand, it is also of great
significance that extensive benchmarks are conducted for vali-
dating the effectiveness of proposed methods in the real world.
Motivated by the problems discussed above, the problem of
multiUGVs motion planning with posture constraints is studied
in this article.

The contributions can be summarized as follows:

1) The strategy of diversion is proposed in symmetric sce-
narios to choose the optimal velocity on the right of the
current velocity direction for collision avoidance when
there are two optimal solutions.

2) The postured collision avoidance (PCA) algorithm is
presented based on the RVO algorithm expanded with
the Dubins method and the strategy of diversion.

3) Specific exploration task is considered by imposing sim-
ulation experiment and real-world experiment to verify
the proposed algorithm.

The rest of the article is organized as follows. In Section II,
we formulate the problem investigated in this article. In Sec-
tion I1I, we introduce our proposed multivehicle motion planning
algorithm with posture constraints. In Section IV, simulation
and real-world experiments are conducted to show the validity
of our method in simulated and natural environments. Finally,
Section V concludes the article.

Il. PROBLEM FORMULATION

In this section, we summarize the formulation of the motion
planning problem in multivehicle system, the kinematic model
of UGV, and the RVO algorithm. Note that in the rest of this
article, scalars and vectors are denoted by ordinary and boldface
letters, respectively.

A. UGV Kinematic Model

The UGV is modeled as a nonholonomic system in the shape
of a circle with kinematic constraints needed to be considered.
Specifically, the Ackermann-steering model is used to describe a
UGYV. Considering the origin of the rigid body the frame is placed
at the center of its rear axle, the vector position and velocity of
the UGV is denoted as p = [z,y]T and v = p = [#, ], where
x and y are its coordinates in a global frame. The angle between
the x-axis of the body frame and the global frame is denoted as
0, which is also the angle of v in the global Cartesian coordinate
system of XY plane. Note that the y-axis of the body frame points
to the left side of the UGV. Additionally, the vector velocity can
also be expressed as v = [v cos @, vsin 0], where v represents
the UGV’s scalar speed. The steering angle of the front wheels
is denoted as (. Then, the radius of trajectory along which the
UGV moves is expressed as R = L/tan ¢ with the steering
angle fixed at ¢. The distance covered along the trajectory within
time dt is given by dw = R - df. Thus, the mathematical relation
between ¢ and 6 can be written as

.
0=—t . 1
7 tane (D
Then, we discretize (1) above with sample time 7 and obtain
the expression of the state of UGV at time index ¢ as

p=p ' + T, 2)

t_ pt-1 vt

The bound of UGV ’s velocity is given by v € [Up max; Vf max]
where negative vpmax and positive vy, represents the max-
imum backward and forward speed, respectively. The steering
angle satisfies the inequality ¢ < pnax, implying the turning
radius of an Ackermann-steering UGV has a minimum value.
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Fig. 1. VO geometric representation of obstacle velocity set
VO4(vp) of UGV A for UGV B.

B. Summary of the RVO Algorithm

Let UGV A and B be any two UGVs of 1,2,--- | K in the
workspace. We denote the position of UGV A as p 4, and its
radius as 74, moving at v 4 in the 2-D plane toward its goal
position p&™ and pose 05, Similarly, UGV B’s reference
position is pp and radius is rp, moving at v toward its goal
position p&5*' and pose 65",

We assume that two UGVs reach the position relationship
shown in Fig. 1 at ¢ moment. In this condition, we first consider
the obstacle avoidance of the UGV A, in which the UGV B is
viewed as a dynamic obstacle of A. In the VO algorithm, the
cone-shaped boundary was defined by the Minkowski sum of
A as well as B and the position p 4, in which the Minkowski
sum is expressed as D(pp, 74 + rp) shown as the light-gray
dotted circle whose center is pp and radius is r4 +rp in
Fig. 1. Then, the set VO4Z(vp) of A against B at t + 1 time
is expressed geometrically as cone-shaped zone translated at
P4 + vp shown in Fig. 1 with dark-gray zone. Geometrically,
the VO algorithm holds that A and B will certainly collide at
some moment in the future if the rays of v4 — v p intersect with
the light-gray zone in Fig. 1. Otherwise, the two UGVs will be
collision free.

The mathematical formulation of the VO algorithm is as
follows. We denote D(p, ) in (4) as a circle-zone with center
p, radius r, and any point q in the workspace. In addition, the
ray A(p,v) is denoted by (5) where p is the starting point,
the direction is v, and ¢ is the parameter of extension. Finally,
the obstacles velocity set VOg(v B) is expressed in (6), where
VapisSva —vpandrapisra +7rp

D(p,7) ={a||la—pl <r}, “)
A(p,v) ={p+ecv|c>0}, )

VOR(vE) = {va | Mpa,vap) N D(pp,rap) # 0}. (6)

Similarly, the concept of RVO is illustrated geometrically in
Fig. 2. The basic idea can be summarized as follows. When UGV
A calculates the collision-avoidance solutions v/, at the ¢ + 1
moment, it believes that UGV B will also take a certain effort for
collision-avoidance. Hence, A no longer holds that the velocity
of B at the next moment must be vy (VO is), but another one
considered the motion of A, such as % Geometrically,
the cone-shaped with the inscribed circle (the light-gray zone
in Fig. 2) is translated at % for expressing the reciprocal

Fig. 2. RVO geometric representation of obstacle velocity set
RVO#Z(vp,va) of UGV A for UGV B.

obstacle velocity set of A expressed as RV O3 (vg,v.4) shown
in Fig. 2 with the dark-gray zone. Sequentially, when A calcu-
lates the velocity of collision-free, its relative one also changes
to v/, — ¥41¥YE Finally, the formulation of RVO is shown as

RVO#(vp,va) ={V | (2Vy —va) e VOA(vE)}. (T)

The RVO concept follows the lemma of the same side that can
guarantee that both UGVs automatically choose the same side
to pass each other. This lemma was expressed as Formula (8),
where v 4 + u and v — u are the optimal velocity for UGV A
and UGV B, respectively

vVa+u ¢ RVOg (VB,VA) < Vp—u ¢ RVOE (VA,VB) .
(®)
Although, the RVO algorithm is more feasible to integrate
the physical constraints of the UGV than other states of the
art, the lemma of the same side will not be feasible when there
are more than two UGVs in symmetric scenarios. In this case,
the symmetric situations may generate two optimal solutions,
resulting in the stuck or oscillation. On the other hand, the RVO
method only takes into account the simple kinematic constraints,
but posture constraints of the UGV. Therefore, the above two
problems are investigated in this article.

[ll. PROPOSED METHOD

In this section, the method of motion planning with posture
constraints is presented for the multi-UGVs applications. The
proposed method is named as PCA algorithm, in which it over-
comes the problems of two optimal solutions and especially the
posture constraints in the 2-D workspace.

A. Strategy of Diversion

We first denote a universal set of velocity U.. Meanwhile, we
can achieve two velocity sets through the RVO algorithm, named
RV O representing the obstacles velocity set and AV expressed
as the collision-free velocity set, respectively. As long as the
UGV takes action in the AV set, there will be no collision. In
the view of UGV A, its formulation can be defined by (9). Then,
one of the optimal solutions is calculated through (10) where
the v is expressed as the desired velocity of A. Finally, the
optimal solutions set, namely AVSPT, are generated by (11).
Actually, a threshold parameter Avp, empirically 1073, needs
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Fig. 3. Symmetric situation of three UGVs, where every UGV has two
optimal velocities.

to be set slightly greater than zero

AVE (vB,va) =Uf(vE,va) — RVOZ(vE,va), ©)
opt __ . . bref 10
vy = arg Anelglw(IIVA va D (10)

AV64PT ={val||va— VZPtH < Avgp, Va € AVéq}.
(11)

Then, we implement the diversion strategy to pick the optimal
solution from the set AVgpy and compute their angle 6. Theoreti-
cally, the angle of safety velocity v 4 must be larger than or equal
to the Oyign, of the optimal velocity on the right of v 4 and must
be smaller than or equal to the ) of another optimal one on
the left of v 4. In a word, the inequations Gyigne < 6(va) < biese
and Orignt < Oper are always true. Finally, the formulation of the

strategy of diversion is shown as

min  (§(v
L pin (1)

v/ = arg (12)

The validity of the strategy of diversion can be proven in the
following example. Imagine a symmetric situation that might
occur in the real field and as shown in Fig. 3, three UGVs
are traveling to their goal position from the symmetric start
position where the current velocities of three UGVsare v4, vp,
and v¢, respectively. In this case, every UGV has two optimal
velocities vI=" (v = v, 4 u}) and v (VI = v, + u!),i €
{A, B, C} in geometrically. With our strategy of diversion, the
more collaborative optimal velocities achieved by (12) are vzghl,

v and viE™ for three UGVs, respectively.

For UGV A, v'#" is the optimal velocity under the strategy
of diversion. In th1s condition, the Formula (13) must be true.
This illustrates that the optimal velocity v"*‘t is not better than

rlght for UGV C. In contrast, the Formula (14) might be true. To
right

sum up both Formulas (13) and (14), the optimal velocity v
is better than vl"ft for UGV C'. Similarly, for UGV B and C’
we can prove the optimal velocity v'E" and v} are better than

vt and vIEl, respectively. In a word the strategy of diversion
can guarantee all the UGVs passing on the right side, improving
the capacity of cooperation among UGVs. The same holds for

Algorithm 1: The Strategy of Diversion.

Input: p4,va4.PB, VB, vﬂ’(ef— UGV A config.
Output: The UGV A’s optimal velocity v/,
RVO,‘% +ComputeRVO(p4,va,P5,VE);
AVE « Uf — RVO3;
Opt A argmvaeAvA(HVA - VpTef”);
for v in AV4do
AVOAPT —A{valllva— VOpt” < Avgpt }s

end
v/, + arg min VP EAVA OF));

OPT

A o

return v/,;

other symmetric situations
Vi € RVOS (VIR V) AVt e RVOR (V" Vi),
(13)
n ht A right right
¢ RVOR (V" V).
(14)

righ righ righ
VI ¢ RVOR (VE" V) A

In summary, the implementation of the strategy of diversion
has mainly the following three steps, and its details are shown
in Algorithm III-A.

1) All the optimal v%* of the UGV are solved by applying
the RVO algorrthm and put into the optimal velocity set
AVSpr

2) The angles of both these optimal velocities and the v 4
are computed.

3) The optimal solution v’, will be achieved by (12).

B. Dubins Path With Collision Avoidance

In fact, most of UG Vs are subject to limited nonholonomic, in
which an allowed minimum turning radius is needed to consider.
We view this challenge as the posture constraints problem. The
Dubins method is mainly explored to solve this problem, where
the shortest distance between the starting position and the end
position will be the length of the Dubins curve.

We denote the length of the Dubins curve as L(D) = fOD dt,
where d; indicates the sampling distance of the curve. Then, we
define the total length of the trajectory traveled by all UGVs
as Z Lz, where ¢ represents the id of the vehicle and K
represents the number of vehicles in the environment. Hence,
the multivehicle shortest path problem using the Dubins method
can be expressed as (15), where L; and L(D;) are the actual and
ideal length of path for the UGV i, respectively. Meanwhile,
we set the preferred speed v for all the UGVs. Then, the
preferred velocity is achieved by v*" = P . dp(t), where
dp(t)is D(t + 1) — D(t). Note that D(t) indicates the node
coordinates of the Dubins curve at the ¢ moment. In this way,
we get the optimal solution considered posture constraints of the
UGV 1. It can be expressed as (16)

i=K i=K i=K
P (Z Li> = arg min <| Z L; — Z L(Di)”) , (15)
i=1 i=1 i=1
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Algorithm 2: The Dubins Path with Collision-Free.

current goal  pref

Input: D, ¢, v;, pose; ,pose’ " pin —
UGV ¢ config.
Output: The UGV i’s preferred velocity v/
I: dp(t—1)« D(t)—D(t—1);
2 dy + |0(vi) — 0(dp(t — 1)
3:  dist +ComputeDistance(pose;* " pose! oaly.
4: ifdy < gg or dist < x then
5. dp(t) « D(t+1) - D(t);
6: v ol dp(t);
7: return vfref;
8: end
9: else
10: D +ComputeDubins(pose* ™" pose?*™);
11: t <—update(t);
12 dp(t) « D(t+1) - D(t)
30 W e dp (o)
14: return vfref;
15: end
v = arg min_ (||VZ - v?ref”) . (16)
v,€AV"

The Dubins curve with collision-avoidance can be summa-
rized into the following three steps, and the algorithm is given
in Algorithm III-B.

1) The path node at time ¢ is set by D(t), and dp(t — 1)
is denoted as the direction from the node D(t — 1) to
the node D(t). Then, the absolute difference dy is got by
computing the angle of the current velocity v; and the
angle of dp(t — 1).

2) Parameter g, generally 107, is set as the parallel condi-
tion between vector v; and vector dp (¢t — 1). Then, the
UGV ¢ continues to track the current Dubins trajectory
if dy is less than or equal to £¢; otherwise, the Dubins
curve is replanned based on the current posture and goal
posture.

3) The minimum turning radius of the UGV i is denoted as
Pmin, and the distance parameter & is defined with xk = 3 -
Pmin- The Dubins curve will not be updated according to
the physical size of the UGV ¢ when the distance between
the current position and end position is less than &.

C. PCA Algorithm

From the above, the PCA method is proposed by integrating
the strategy of diversion with the Dubins method. The process of
the PCA algorithm is as follows. Firstly, the preferred velocity
of a UGV A can be achieved by the Algorithm III-B, in which
the Dubins method considers the posture constraints. Then, the
actual optimal velocity with posture constraints for UGV A
can be generated by introducing this preferred velocity into the
Algorithm III-A such that the strategy of diversion can obtain
the input of v&" in Algorithm III-A. Note that the proposed
algorithm is not simply the combination of the RVO algorithm
and the Dubins method, which makes it different from the

work of Liu et al. [28] in the optimization and the fields of
application.

IV. EXPERIMENTAL RESULTS

In this section, we present the experiments in simulated and
real environments to validate the proposed method. Notably, all
code was finished by using Python in this article. The parame-
ters for the motion planning algorithm are set as follows. The
preferred speed is set as vPf = 0.22 m/s, maximum speed is set
as o™ = 1.0 m/s, neighborhood range is set as ™ = 5 m, the
maximum rotational speed is set as w™* = 1.1 rad/s, and the
maximum number of neighbor is set as N™* = 15. In addition,
the minimum turning radius of vehicles is set as pyin = 0.5 m.
For simplicity, we describe all the UGVs’ physical space with a
predefined circle with a radius of 0.2 m according to the physical
size of vehicles. All the experiments were performed on an
ASUS laptop equipped with Intel(R) Core(TM) 17-8700 CPU
at 3.20 GHz with 16 GB memory.

In the simulations, we first show the special performance of
the proposed method by executing an exploration task. Then, we
compared the PCA algorithm with the RVO algorithm under the
same conditions. Especially, we did not compare the proposed
algorithm with the ORCA algorithm as it indeed does not satisfy
the posture constraints.

In the first simulation, we verify the unique performance of the
proposed method by executing an exploration task. 100 UGVs
are deployed for a ground exploration task, where all UGVs
have required a specific heading angle for smoothly backing to
the initial area when reaching their goals. The configurations of
the exploration task are as follows. The benchmark scenario is
set as a circle whose radius is 40 m, in which a square obstacle
with 16 x 16 m? is placed on the center of this circle as a
forbidden area. The positions of both the initial and the target
are set as antipodal positions, and the differences between the
initial heading angle and the target heading angle are 180°. The
regions of exploration are assumed as a square with 1 x 1 m?.
The maximum exploration range is assumed as 0.5 m.

The simulation results are presented in Fig. 4. In (a), (b), and
(c) of Fig. 4, the process of traveling of all vehicles is presented
by selecting representative states at several specific time instants,
respectively. In particular, the start and exploration regions are
highlighted for every vehicle. Fig. 4(d), (e), and (f) depicts the
traveled trajectories under the proposed PCA algorithm for all
the vehicles from the same specific time instants with the above,
respectively. By inspection of these figures, it can be found that
when all vehicles traveled close to the corresponding exploration
region, every vehicle moved along a circular arc in the allowed
minimum turning radius to the appointed heading angle for the
preparation of returning to the start region. Moreover, Table I
separately shows four UGVs’ average computation time in every
step under our PCA algorithm. By inspection of Table I, it is
possible that the proposed method computes new action for the
next-step execution before the vehicles update their parameters.
Itis also observed that these trajectories with posture constraints
are feasible for the vehicles to follow in real environments.
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Fig. 4. 100 UGVs are deployed for a ground exploration task. The red points are the UGVs’ current poses. The yellow points are the UGVs’

goals. The squares are the exploration regions. The arrows indicate the

UGVs’ current heading. Three representative states of UGVs moving are

presented in (a), (b), and (c). The trajectories of UGVs under the same state are shown in (d), (e), and (f).
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Fig. 5. Evaluation results, which the safety weight is 1.55 in (a), (b), (d),

(© ®

and (e). (a) The linear velocity of four UGVs under the PCA algorithm. (b)

The angular velocity of four UGVs under the PCA algorithm. (c) The time ratio in the PCA and RVO algorithms. (d) The linear velocity of all UGVs

under the RVO algorithm. (e) The angular velocity of all UGVs under the

The same benchmark scenario is set as the first simulation in
the second simulation. The positions of both the initial and the
target are set as antipodal positions, and the differences between
the initial heading angle and the target heading angle are 0°. 100
UGVs are deployed for comparing the PCA algorithm with the

RVO algorithm. (f) The success rate in the PCA and RVO algorithms.

RVO algorithm under the same conditions, in which time ratio
and success rate are considered as metrics to evaluate algorithm
performance. The definitions of the two metrics are as follows.
The time ratio is expressed as the ratio of the time of all UGVs
reaching their targets to the time of all UGVs reaching their
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Exploration task in the real world. (a) and (b) The traveled processes of four UGVs executing the exploration task. (c) The deviations

between the ideal position and the actual position. (d) The deviations between the ideal heading angle and the heading angle.

TABLE |
AVERAGE EXECUTION TIME OF THE PCA ALGORITHM [MS]

UGV NO. UGV1 UGV2 UGV3 UGV 4
Simulation 1 P¢A 35.39 38.62 35.87 40.89
Simulation 2 P¢A 42.67 42.58 41.59 41.66
Simulation 2 8VO 37.16 39.09 40.43 40.66

Real Experiment 74 38.69 39.55 38.51 38.95

targets at the desired velocity. The success rate is expressed as
the rate of the number of UGVs reaching their targets to the
number of all UGVs in the environment. Moreover, the safety
weight is expressed as the ratio of the actual computation radius
to the vehicle’s physical radius. Finally, the experimental results
are presented in Fig. 5.

Fig. 5(a) and (b) shows the linear and angular velocities of
four vehicles under the PCA algorithm, respectively. Similarly,
Fig. 5(d) and (e) shows the linear and angular velocities of the
same four vehicles under the RVO algorithm, respectively. From
these figures, it is observed that these velocities generated by the
PCA algorithm are more feasible for the UGVs to follow as the
smaller changes in both linear and angular velocity, result in a
smoother trajectory. Here, chattering can be found in the velocity
profiles due to the vehicle changing the heading for collision
avoidance. However, the velocities can be followed by the vehi-
cle as long as the range of chattering is within maximum linear
and angular velocity. Otherwise, some optimization methods
may be considered to reduce the chattering. Moreover, Fig. 5(c)

and (f) are depicted in the above two metrics under the PCA
method and the RVO method, in which it can be observed that the
PCA algorithm has a higher success rate than the RVO algorithm,
and has a comparable travel time. The average computation costs
of four UGVs are presented in Table I, where the safety weight is
1.55, from which it can be found that the PCA algorithm requires
more computation time than the RVO algorithm as the former
increases the calculation of the Dubins curve.

The real-world experiment was performed on Ubuntu 16.04
with ROS Kinetic, and the rate of ROS is set as 10 Hz. We
verify the practicability of the PCA algorithm by executing an
exploration task. The workspace is set as a rectangle with around
3.5 x 3.5m?. Four UGVs are deployed for a ground exploration
task, where all UGVs are required to adjust their posture so that
they can smoothly return to the initial region once the return
command is received. The communication of all vehicles adopts
a WiFi module connected with a router. The configurations of the
exploration task are as follows. The region of exploration is set
as arectangle with 1 x 1 m?. The maximum exploration range of
the vehicle is set as 0.5 m. The configurations of posture in start
and target are shown in Table II. The experimental results are
shown in Fig. 6, in which the processes of traveling of all UGVs
are presented and the deviations between the appointed pose
and the actual pose are also presented. Note that the start and
exploration regions are highlighted for every vehicle. The aver-
age computation costs in every step of all UGVs are presented in
Table I. From Fig. 6, it can be observed that all UGVs arrived at
the exploration regions at the specific heading angle. Although
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TABLE Il
POSTURE OF INITIAL AND TARGET OF FOUR UGVS

Unit Initial pose Target pose
UGV 1 (3.0, 1.5, 180°) (0.0, 1.5, 0°)
UGV 2 (1.5,3.0, —90°) (1.5, 0.0, 90°)
UGV 3 (0.0, 1.5, 0°) (3.0, 1.5, 180°)
UGV 4 (1.5, 0.0, 90°) (1.5, 3.0, —90°)

the vehicles did not totally follow the appointed goal position
and heading angle, the exploration tasks are completed finally
because all the deviations of position are within the maximum
exploration range of 0.5 m. Meanwhile, all the deviations of
heading angle are within 45°, which cannot impact the process
of returning as the deviation is less than the maximum rotational
angle. Overall, all experimental results indicate the effectiveness
and practicability of the proposed algorithm.

V. CONCLUSION

In this article, we investigated the motion planning problem
of the multiple nonholonomic UGVs. Considering the problem
of the posture constraints, we proposed the novel PCA algorithm
in the 2-D workspace. First, two simulation experiments were
conducted in this article to verify the effectiveness and to analyze
the quantitative performance of the proposed method, respec-
tively. Then, the practicability of the PCA algorithm was verified
by an experiment in a real environment. Here, both the first simu-
lation experiments and the real-world experiment are conducted
by executing exploration tasks. In addition, the velocity profiles
may occur chattering, and the proposed algorithm simply regards
the UGV as a circle. In the future, we will mainly overcome the
limitations and expand the proposed method to a 3-D workspace
for fixed-wing multiple unmanned aerial vehicles.
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