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Multi-level Spatial-temporal Feature Aggregation
for Video Object Detection

Chao Xu, Jiangning Zhang, Mengmeng Wang, Guanzhong Tian, Yong Liu

Abstract—Video object detection (VOD) focuses on detecting
objects for each frame in a video, which is a challenging task
due to appearance deterioration in certain video frames. Recent
works usually distill crucial information from multiple support
frames to improve the reference features, but they only perform
at frame level or proposal level that cannot integrate spatial-
temporal features sufficiently. To deal with this challenge, we
treat VOD as a spatial-temporal hierarchical features interacting
process and introduce a Multi-level Spatial-Temporal (MST) fea-
ture aggregation framework to fully exploit frame-level, proposal-
level, and instance-level information in a unified framework.
Specifically, MST first measures context similarity in pixel space
to enhance all frame-level features rather than only update
reference features. The proposal-level feature aggregation then
models object relation to augment reference object proposals.
Furthermore, to filter out irrelevant information from other
classes and backgrounds, we introduce an instance ID constraint
to boost instance-level features by leveraging support object
proposal features that belong to the same object. Besides, we
propose a Deformable Feature Alignment (DAlign) module before
MST to achieve a more accurate pixel-level spatial alignment for
better feature aggregation. Extensive experiments are conducted
on ImageNet VID and UAVDT datasets that demonstrate the
superiority of our method over state-of-the-art (SOTA) methods.
Our method achieves 83.3% and 62.1% with ResNet-101 on two
datasets, outperforming SOTA MEGA by 0.4% and 2.7%.

Index Terms—Video Object Detection, Feature Alignment,
Feature Interaction, Instance ID Constraint.

I. INTRODUCTION

Video object detection [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11] is a task to automatically annotate every object
with its bounding box and class label in each frame of the
videos, which has promising application capabilities in visual
monitoring systems and self-driving vision systems. Although
object detection in a single image [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21] has achieved remarkable success due
to the development of deep convolutional networks [22], [23],
[24], [25], [26], video object detection remains a challenging
problem. One key element of videos is temporal information.
If image object detection frameworks are directly applied to
videos frame by frame, the detection confidences of objects
show dramatic changes between adjacent frames, especially
the frames that suffer deteriorated appearance, e.g., occlusion,
motion blur, video defocus, and pose variation. We report that
the proportion of degraded frames in ImageNet [27] validation
set is 9.15%, which has a significant impact on the VOD
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performance. The left part of Figure 1 showcases some hard
examples in VOD.

Since the videos inherently contain richer temporal and
motion context than individual images, one direct way is
to make full use of temporal information from neighboring
frames to solve the object appearance deterioration problem.
Specifically, the frame to be detected is called the reference
frame and some neighboring frames as support frames. Most
existing methods focus on distilling critical information from
the support frames and fuse the distilled information into
the reference frame to generate enhanced features for robust
detection. The distillation and fusion operations are mainly
applied at frame-level [1], [2], [3], [28], [29] or proposal-level
[4], [5], [6], [30] features.

For frame-level methods, some works employ optical flow
as external guidance for feature aggregation. FGFA [1] adopts
a optical flow network to calculate the spatial relationship
between frames, which guides the per-frame aggregation of
nearby features over time. THP [3] also extracts optical flow
for propagating keyframe features to non-keyframe features.
However, optical flow is widely used in feature aggregation
and warping, implemented by an extra model, and significantly
increase model size and computation. Recently, attention-
based methods have illustrated impressive results. STMM [29]
proposes a novel MatchTrans module that models the displace-
ment introduced by motion across frames to achieve accurate
pixel-level spatial features over time. PSLA [28] further argues
that the gap between optical flow and advanced features may
prevent accurately establishing spatial correspondence. They
replace optical flow with progressive sparse local attention
module to propagate high-level semantic features. Although
frame-level aggregation achieves fine-grained feature augmen-
tation, it performs in a global manner, which fails to focus on
critical foreground objects.

To focus on object features and fully explore their relation-
ship in videos, Hu et al. [20] propose the relation network
to explore the dependencies among video frames for feature
aggregation. Their basic idea is to measure proposal features
as the weighted sum of appearance features from other objects
in the same image and other support frames. The weights
reflect object similarity in terms of appearance and geometry
information. Subsequently, RDN [4] proposes a two-stage
framework that first generates proposals for reference and
support frames and then models object relation in spatial-
temporal context to boost the quality of reference feature.
MEGA [5] aggregates both global and local information to
key frames at the proposal level and introduces a memory
module to enable key frames access to more context from
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Fig. 1. The left part shows some examples of deteriorated video sequences. , The conditions are occlusion, motion blur, video defocus, and pose variation
from top to bottom. We mark the low-quality foreground areas as red bounding boxes and zoom in on them. The right part shows a case that SSD [31],
YOLOv3 [21], and Faster R-CNN [14] all fail to predict correct class label. Our method can predict the car with high confidence.

previous frames. The above methods directly aggregate all the
proposals from support frames without considering whether
they belong to the same instance or not.

In this paper, rather than perform feature aggregation at a
single level, we propose a novel Multi-level Spatial-Temporal
(MST) feature aggregation framework to effectively utilize
frame-level, proposal-level, and instance-level features hier-
archically for better aggregation. First, the frame-level feature
aggregation enhances all input features with sufficient spatial-
temporal information instead of only updating the reference
features. We observe that the upgraded support features could
provide more reliable cues for feature aggregation. Second,
we follow the basic stage in [4] and design the proposal-level
feature aggregation after the RPN to augment each object’s
features in the reference frame by aggregating its relation
support features over the proposals. Third, to filter out the
proposal features that from other instance and background, we
further introduce the instance-level feature aggregation, which
only leverage the proposals assigned with the same instance
ID to enhance the reference object proposal features, and the
proposals related to the background are not updated in this
stage. In this way, we can explicitly aggregate the multi-level
spatial-temporal features to generate more robust features.

Besides, current relation-based methods neglect feature
alignment before feature aggregation. They aggregate the fea-
tures from both support and reference frames. Such unaligned
features would confuse relation networks for similarity cal-
culation. To deal with this problem, we design a Deformable
Feature Alignment (DAlign) module to aligns the support and
target features with different poses and shapes. We insert it
before MST. Thus the frame features and proposal features
are both spatially aligned across frames.

In summary, to address the performance degradation in
VOD due to appearance deterioration, we first employ DAlign
to align multiple frames in the temporal domain for better fea-

ture aggregation. MST is then proposed to aggregate aligned
multi-level features to augment the deteriorated features. The
three modules of MST are all inspired by the relation network
that is designed in the attention mechanism. As shown in
the right part of Figure 1, our method could handle a frame
with occlusion and motion blur that produce correct detection
results. We make the following three contributions:

• We introduce a Deformable Feature Alignment (DAlign)
module that uses deformable convolutions across space
and time to align features between frames.

• We devise a Multi-level Spatial-Temporal (MST) feature
aggregation framework that performs feature aggregation
hierarchically at the frame level, proposal level, and
instance level to obtain more robust aggregated features.

• The proposed method is evaluated on ImageNet VID and
UAVDT datasets and achieves the superior performance
of 83.3% mAP and 62.1% with ResNet-101, respectively.

II. RELATED WORK

A. Object Detection in Images

Benefit of deep Convolutional Neural Networks (CNN) [22],
[23], [24], [25], [26] and well-annotated dataset [32], the
image object detection [12], [13], [14], [15], [16], [17], [18],
[19], [21], [33], [34] have achieved remarkable improvements,
which is widely applied in face detection [35], [36], [37],
intelligent transportation [38], [39], [40], SAR image pro-
cessing [41], [42], [43], [44], [45], [46], and so on. There
are generally two directions for object detection. Two-stage
detectors usually perform region proposals first, and then the
proposals are refined by classification and regression. R-CNN
first utilizes selective search to generate region proposals. To
speedup, SPPNet [47] and Fast R-CNN [15] introduce SPP
pooling and Roi pooling to handle multi-size images and avoid
calculating features twice. Faster R-CNN [14] further replaces
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Fig. 2. The pipeline of our proposed method. Given a reference frame It and a set of support frames I = {Iτ}t+T
τ=t−T , we first extract their frame-level

features using the backbone feature extractor. DAlign follows to align features from support frames to the reference frame, obtaining F
′
. Then, the aligned

features go through MST. Specifically, We apply frame-level feature aggregation to enhance all input features. The enhanced frame-level features F
′′

are
input to RPN to generate the high-quality proposals, obtaining reference proposals Rr and support proposals Rs. Furthermore, Rr is updated by the top-K
support proposals Rst in proposal-level feature aggregation, and the foreground proposals of R

′
are updated by the associated support proposals Rsi in

instance-level feature aggregation sequentially. Finally, the enhanced proposal features R
′′

are fed into the detection head for classification and regression.

selective search by Region Proposal Networks, which intro-
duces the anchor to generate region proposals more reliable.

In contrast, one-stage detectors directly output object coor-
dinates and categories without region proposal stage. YOLO
[33], [34], [21] divides the feature map into rigid grids. Each
of them is responsible for detecting the objects located in the
grid. Another one-stage detector, SSD [31], borrows the idea of
anchor and combines different scale features to boost detection
for objects in various scales and aspect ratios. Although one-
stage methods faster than two-stage one, but usually has lower
performance. One major reason lies in unbalanced positive and
negative proposals. RetinaNet [18] designs a new loss named
Focal Loss to ease unbalanced problem. GHM [48] proposes
a gradient harmonizing mechanism to solve the problem of
sample imbalance. Recently, point-based methods [49], [50],
[51], [52], [53], [54] are designed to get rid of the limitation
of anchors. In this paper, we build our method upon Faster R-
CNN [14], which is one of the state-of-the-art object detectors.

B. Object Detection in Videos
Due to the complex manner of video variation, such as

motion blur, occlusion, video defocus, and rare pose, it is
not trivial to directly apply a single image detector into the
video domain. One direction of video object detection is the
box-level association, which associates bounding boxes from
consecutive frames to generate tubelets [55], [56] by linking
or tracking. For instance, D&T [57] designs a correlation
network to predict the local displacement between two frames.
Chen et al. [58] propagate and refines key frame boxes
through Motion History Image (MHI). Yao et al. [59] directly
use real-time trackers to exploit temporal information and
track the bounding boxes in the next frames. Besides, some
offline post-processing methods [60], [4] integrate per-frame
proposals into tubelets for re-scoring to further improves the
robustness of video object detection. However, these methods
are challenging to correct the errors produced by the associated
image object detectors.

Another common solution is feature aggregation that en-
hances per-frame feature by aggregating local frames or global
frames. Specifically, FGFA [1] utilizes optical flow estimated
by FlowNet [61] to propagate feature across frames. However,
an extra model to predict flow would significantly increase the
model size. PSLA [28] establishes the spatial correspondence
between two feature maps to propagate high-level semantic
features among them without relying on optical flow. Besides
of above frame-level aggregation methods, RDN [4] based on
Relation Network to learn the relation among proposals of
different frames in a local range. In contrast, SELSA [6] ag-
gregate box features in the full-sequences level to capture more
discriminative and robust features. To seek the full merit of
both local and global aggregation, MEGA [5] strengthen boxes
features by exploiting the relation across local and global
frames. Besides, SPFTN [62] learns video object detection and
video object segmentation [63], [64] in a unified frame work
to facilitate each other. Unlike these methods that separately
enhance per-frame feature by frame-level or proposal-level
aggregation, we propose a hierarchically feature aggregation
strategy. Our model combines frame-level, proposal-level, and
instance-level modules in a unified framework. The proposed
instance-level feature aggregation follows after the proposal-
level feature aggregation to further enhance reference object
proposal features by the support proposals with the same
instance ID.

C. Self-attention Mechanism
Attention [65] module plays a critical role in NLP and

starts supporting other computer vision tasks, such as object
detection and semantic segmentation. In particular, Hu et al.
[20] presents relation networks to explore the relations among
object proposals. Wang et al. [66] adds non-local module
to capture contextual information within feature maps. CC-
Net [67] designs criss-cross attention to obtaining contextual
information more effective and efficient. Moreover, current
works like [4], [5], [6], [68] extend self-attention to a temporal
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domain to boost video object detection. In practice, attention-
based methods usually split features into separated channel-
wise features with equal channels, and then the separated
features are input to the multi-head attention module. The
previous methods have proven the effectiveness of the attention
for feature aggregation. Thus our method is also built upon the
attention mechanism.

III. METHOD

In this section, our proposed method is first under a brief
overview. Then, we introduce two key components in our
method. We design DAlign to deal with the object motion
and align the feature from support frames to the reference
frame. MST is proposed to perform feature aggregation at the
frame level, proposal level, and instance level. Each feature
aggregation follows the multi-layer and multi-head design.

A. Overview

The pipeline of our method is illustrated in Figure 2. It is
built on the Faster R-CNN image-based detector. Formally,
given a sequence of adjacent frames I = {Iτ}t+T

τ=t−T , where
the central frame It is reference frame and the whole frames
{Iτ}t+T

τ=t−T are support frames, we first extract the frame-
level features F = {Fτ}t+T

τ=t−T by using the backbone feature
extractor Nfeat. Then, we apply DAlign Nali to achieve accu-
rate pixel-level spatial alignment over time, generating aligned

features F
′
=

{
F

′

τ

}t+T

τ=t−T
. After that, the proposed frame-

level feature aggregation Nfra performs on these aligned
features to obtain the corresponding enhanced frame-level

features F
′′
=

{
F

′′

τ

}t+T

τ=t−T
, which are then input into RPN to

generate reference proposals Rr and all support proposals Rs.
We feed Rr and top-K support proposals Rst into proposal-
level feature aggregation Npro to update Rr, obtaining R

′
.

Furthermore, an instance-level feature aggregation Nins is
followed to enhance each object proposal feature by corre-
sponding support object proposal features Rsi that are belong
to the same object, the enhanced proposal features denoted as
R

′′
, which contains the upgraded instance features and other

object-irrelevant features that directly copy from R
′
. Finally,

we feed the enhanced proposal features into the detection head
for object classification and bounding box regression.

B. Deformable Feature Alignment

Due to the motion dynamics, the objects in the reference
frame and support frames usually present different poses
and shapes. Subsequently, the features of these frames are
not aligned in spatial, leading to confusing information and
makes the detector fail to obtain correct recognition and
accurate localization. Therefore, feature alignment is crucial
for better feature aggregation. The former works, DFF [2] and
FGFA [1] adopt FlowNet [61] to model inter-frame motion for
feature alignment, which is explicit but quite time-consuming.
PSLA [28] replaces optical flow with a progressive sparse local
attention module to improve the running efficiency. However,
they use the fixed sample locations without considering the

Fig. 3. The brief architecture of our DAlign with only two deformable
convolution layers. Given the reference feature Ft and support feature Fτ , we
concatenate Ft and Fτ , and then feed them through deformable convolution
layers to produce offsets that are used to sample discriminative features from
Fτ , obtaining aligned features F

′
τ .

diversity of object movements. In contrast, we design our
DAlign using deformable convolution layers to model pixel-
level spatial alignment, which could learn flexible and diverse
offsets to model the object deformation.

Specifically, reference feature Ft and support Fτ feature
first concatenated into a new feature tensor that contains fine-
grained features from both the reference and support frames.
Then a convolution layer is followed to predict sampling
parameters Θ for the features Fτ :

Θ = fθ (Ft, Fτ ) , (1)

where Θ = {∆pn | n = 1, . . . , |R |} refers
to the offsets of the convolution kernels, R =
{(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} denotes a regular
grid of a 3 × 3 kernel. With Θ and Fτ , the aligned feature
F ′
τ can be computed by the deformable convolution, for each

position p0 on the aligned feature map F ′
τ , we have:

F ′
τ (p0) =

∑
pn∈R

w (pn)Fτ (p0 + pn +∆pn) , (2)

where w is the matrix that weighted summarize sampled
values, pn enumerates the locations in R. The convolution
will be operated on the irregular positions pn + ∆pn, where
the ∆pn may be fractional. To address this issue, the operation
is implemented by using bilinear interpolation, which is the
same as that proposed in [69].

We show a simplified version of DAlign in Figure 3. In
practice, we first apply two deformable convolution layers
on concatenated features sequentially to predict the offsets
Θ between these two feature maps. Then, two deformable
convolution layers are fed support feature Fτ and Θ to produce
aligned feature F

′

τ . The DAlign denotes as:

F
′
= Nali (F) (3)

C. Multi-level Spatial-temporal Feature Aggregation

Frame-level Feature Aggregation. Recent proposal-level
feature aggregation such as RDN [4] only distill relation
through proposals. They ignore that if the frame features
input to the RPN are of low quality, the proposals could
not cover the foreground with high scores, which will cause
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Fig. 4. The architecture of aggregation. The left paradigm shows the
appearance similarity calculation and feature aggregation. The right paradigm
shows the geometric similarity calculation. Note that we abbreviate refer-
ence, support, appearance, geometric, and aggregated to Ref., Sup., App.,
Geo., Agg., respectively. The frame-level feature aggregation follows the left
paradigm, and the proposal-level and instance-level feature aggregations are
follow the whole paradigm.

the subsequent proposal-level feature aggregation to easily
combine some irrelevant information. In order to improve
the reliability of proposal-level feature aggregation, we first
perform feature aggregation at pixel level. Unlike previous
works that only enhance the reference feature by itself and
other support features, we argue that the enhanced support
features could also provide key information for feature fusion.
So we take both reference and support features as input and
simultaneously enhance all of them.

Specifically, we follow the multi-head design that promotes
learning coherent spatial-temporal transformations for leverag-
ing the rich information in videos. For a more clear descrip-
tion, we take one attention head for example. As shown in Fig-

ure 4, given aligned frame-level features F
′
=

{
F

′

τ

}t+T

τ=t−T
,

we first apply three transformation layers on F
′

to obtain
Query, Key, and Value:

Q, (K,V) =Mq

(
F

′
)
,
(
Mk

(
F

′
)
,Mv

(
F

′
))

, (4)

where Mq(·), Mk(·), Mv(·) denote the 1 × 1 convolution
layers. After that, the reshape operation is followed and the
similarities between reshaped query features and key features
is calculated as follows:

A = softmax(
Q ·KTrans

√
dk

), (5)

where dk is hidden dimensions of each projection subspace.
Each element of A indicates the relation between each spa-
tial location in the query and key features. Thus, the value
features are weighted-summed with the attention values as the
summation weights, which is then element-wisely added to the
original input features to generate the final updated reference
and support features:

F
′′
= AV + F

′
= Nfra

(
F

′
)
. (6)

After the frame-level feature aggregation, each of the enhanced
features can distill rich spatial-temporal information from the
frame-level features of the other frames.

Proposal-level Feature Aggregation. For the proposal-
level feature aggregation, we feed enhanced features F

′′

into RPN to generate a set of proposals R, which consists
of reference proposals Rr = {Rr

1, R
r
2, . . . , R

r
m} and top-

K support proposals Rst = {Rst
1 , R

st
2 , . . . , R

st
n }. The object

proposals are represented with their geometric features g and
appearance features a, which are both exploited to alleviate
the information distortion problem caused by noise during
the aggregation process. Following the RDN, we devise a
multi-head and stacked architecture, aiming to enhance each
proposal in the reference frame with the most informative
appearance from multiple proposals in the support frames.

Formally, given the Rr and Rst, we first apply two fully
connections on reference and support proposal features to
obtain the query and keys. The reference proposal feature is
projected to the query, while the support proposal features
are projected to the keys. Then, as shown in Figure 4, we
measure each proposal pair not only based on the appearance
information but also based on the geometric information,
which is calculated as follows:

si,j =
exp (asi,j + gsi,j)∑n

v=1 exp (asi,v + gsi,v)
, (7)

where i, j are the index of reference and support proposals,
asi,j and gsi,j represent the appearance similarity and geo-
metric similarity between Rr

i and Rst
j . asi,j is formulated as:

asi,j =< ϕ (ari ) , φ
(
astj

)
>, (8)

where ϕ and φ denote fully connections, ari is i-th reference
appearance feature and astj is j-th support appearance feature.
For calculating the geometric similarity, we use scale infor-
mation (the width and the height), which is more reliable than
spatial locations. The gsi,j is formulated as:

gsi,j = ψ

(
ϱ

(
log

(
wi

wj

)
, log

(
hi
hj

)
, log

(∣∣∣∣wi

hj
− wi

hj

∣∣∣∣))) ,
(9)

where h and w are height and width of bounding box,
ψ denotes as a general transformation function, ϱ is the
embedding function used in [20].

After calculating the similarity of the proposal pair, the
feature aggregation is performed as a weighted summation of
the support proposal features with the proposal pair similarities
as summation weights mathematically. The aggregated support
features are then added to the reference appearance features:

a
′

i = ari +

n∑
j=1

sij ·
(
Wp · astj

)
, i = 1, · · · ,m, (10)

where Wp denotes the transformation matrix. a
′

i is augmented
reference appearance features. The whole proposal-level fea-
ture aggregation denotes as:

R
′
= Npro

(
Rr,Rst

)
. (11)

Instance-level Feature Aggregation. As depicted in the
proposal-level feature aggregation, the reference proposal is
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enhanced with all support proposals to effectively augment the
reference proposal features. However, it is prone to introduce
irrelevant cues to crucial object features. Inspired by the
instance information produced by instance ID, we propose
the instance-level feature aggregation to further enhance the
proposal features associated with the foreground objects. In
practice, we update the object proposal features by support
proposal features that belong to the same objects. The back-
ground proposal features would not participate in the aggrega-
tion process. Such a design filters out invalid support proposals
and reduces the computation cost for relation reasoning.

Technically, given the augmented reference proposals R
′

and the support proposals Rs, we first assign both reference
and support proposals with ID information according to the
IoU. Thus, each ID has its reference and support proposals.
The instance-level aggregation strengthens the reference object
proposals by the corresponding support object proposals Rsi.
The similarity calculation and feature enhancement are the
same operations in proposal-level feature aggregation. The
whole instance-level feature aggregation denotes as:

R
′′
= Nins

(
R

′
,Rsi

)
. (12)

Note that the final proposal features consists of R
′′

fg that
related to the foreground and R

′′

bg that related to background,
the former are updated and the latter are directly copy from
R

′
. We exploit R

′′
for proposal classification and regression.

IV. EXPERIMENTS

In this section, we first briefly illustrate the datasets and
evaluation protocols for video object detection. Then, we
present the details of the network architecture and the im-
plementation details both at the training and testing stages.
After that, we compare our method with several state-of-the-
art video object detection methods on ImageNet VID [27]
and UAVDT [70]. Finally, we carry out efficient ablation
studies on the ImageNet VID validation set to demonstrate
the effectiveness of each proposed module.

A. Dataset

ImageNet VID dataset. It is a large benchmark for video
object detection, consisting of 3,862 training and 555 vali-
dation videos in 30 classes. All bounding boxes are fully
annotated with the class labels, coordinates, and instance id.
Because the official testing set is not publicly available, we
follow the widely adopted protocols [57], [71], [29], [1], [2]
in video object detection, evaluating the mAP@IoU=0.5 scores
on the validation set.

Due to the redundancy of videos, the objects of each
category have limited appearance diversity. Therefore, as in
the previous works [57], [71], [29], [1], [2], we utilize both
ImageNet VID and ImageNet object detection (DET) dataset
to train our network. The ImageNet DET dataset is a still
image detection dataset with 200 categories, containing 30
categories in the ImageNet VID. Thus, we use images of 30
overlapped categories in the ImageNet DET for training.

Unmanned Aerial Vehicle Benchmark (UAVDT). It is a
large scale challenging UAV Detection and Tracking bench-
mark, consisting of 40000 annotated frames belonging to
30 training videos and 30 testing videos. These frames are
manually annotated with bounding boxes and instance ID for
Multiple Object Tracking (MOT). With these annotations, it is
also suitable for VOD.

B. Network Architecture

Backbone network. We adopt ResNet-101 [22] or
ResNeXt-101-32×4d [72] as our backbone feature extractor.
Following the previous works [4], [6], we set the stride of the
first convolution block in conv5 of convolutional layers from
2 to 1, so the total stride of conv5 is changed from 32 to 16,
the resolution of the feature map becomes doubled. Besides,
we also modify all the 3x3 convolution layers in conv5 by the
atrous convolution with dilation rate d=2 to further enlarge the
receptive field of the backbone network.

Detection network. We adopt Faster R-CNN [14] as our
detection network and apply RPN to the output of conv4. We
design the anchors with 3 aspect ratios {1 : 2, 1 : 1, 2 : 1} and
4 scales

{
642, 1282, 2562, 5122

}
, resulting 12 anchors for each

spatial location. A non-maximum suppression (NMS) with an
IoU threshold of 0.7 is adopted to reduce redundancy during
training and inferencing stages, and 300 candidate boxes are
generated in each frame. After that, we apply RoI-Align [17]
to the output of conv5 and a fully connected layer followed to
extract the RoI feature for each box.

Multi-level feature aggregation. We apply the DAlign to
the output of conv4, and a frame-level feature aggregation
equipped with one attention layer is followed to generate the
enhanced feature map. The proposal-level feature aggregation
with two stacked attention layers and instance-level feature
aggregation with one attention layer are followed behind
RoI-Align sequentially. The enhanced proposal features are
then fed into the detection head for object classification and
bounding box regression.

C. Implementation Details

Our model consists of a backbone feature extractor, DAlign,
frame-level feature aggregation, RPN, proposal-level feature
aggregation, instance-level feature aggregation, and a detection
head sequentially. The backbone is initialized with the pre-
trained weights on ImageNet [73], then all modules are trained
and optimized simultaneously. The input images are resized
to be with the shorter dimension of 600 pixels. The whole
architecture is trained on 4 GPUs by the SGD optimizer
with momentum of 0.9 and weight decay of 0.0001. Each
GPU holds one mini-batch, and each mini-batch contains one
image. Every reference frame is sampled during training along
with two random support frames in the same video sequence
with a temporal spanning range T = 18 as RDN. The IoU
threshold in instance-level for assigning foreground proposals
to each object instance is set to 0.5. We optimize location loss
and regression loss simultaneously. When testing, we follow
the RDN [4] and process each frame with a sliding feature
buffer of the nearby frames. Except for the beginning and
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ending 18 frames, the feature buffer’s capacity remains 37.
Each feature buffer is composed of 36 support frames and a
reference frame. Since the instance id used in instance-level
feature aggregation could not be available during testing, we
sample K = 20 proposals with the highest objectness scores
from Rs as candidate foreground instances, each of them
sample the corresponding r = 20% proposals with the highest
similarities to enhance its object proposal features. Besides, we
adopt NMS with a threshold of 0.5 IoU to suppress reduplicate
detection boxes.

D. Comparison with state-of-the-arts

End-to-End models. We show the performance of different
end-to-end video object detection models on ImageNet VID
in Table I. For a fair comparison, we only include the state-of-
the-art end-to-end methods, which learn video object detectors
by enhancing per-frame features in an end-to-end fashion
without any post-processing. Among them, FGFA [1] fuses
the features across frames with external guidance using optical
flow, which is estimated by a FlowNet. MANet [74] uses box-
level calibration to further improve per-frame features. STSN
[75] replaces optical flow with MathTrans to propagate and
aggregate features at frame-level. The above four methods
focus on aggregating frame-level features. While our method
benefits from the multi-level feature aggregation, gaining much
better performance than FGFA, MANet, and STSN by +7.0%,
+5.2%, +4.4%.

For proposal-level feature aggregation, note that there are
two structures of feature storage, sliding window stores raw
features of several neighbor frames of the current frames,
and memory bank utilizes recurrent temporal connections to
aggregate more temporal information from additional frames,
even rely on temporal coherence of the whole video for
prediction. Specifically, SELSA [6] calculates the semantic
similarity between two proposals, which serves as guidance
for the reference proposal to aggregate features from support
proposals at the full-sequence level. RDN [4] designs a multi-
stage network to aggregate and propagate object relation to
augment proposal features in the local frames. LSTS [76]
develops a more effective sampling method to mine the local
motion information. Furthermore, HVRNet [77] integrates
intra-video and inter-video proposal relations hierarchically.
In addition to the above methods that use sliding windows
structure, MEGA [5] introduces a global-local feature ag-
gregation method. MAMBA proposes a new memory update
strategy to utilize knowledge from the whole video. Compared
with these works, our method considers feature alignment and
extends frame-level and instance-level feature aggregation to
effectively enhance the features for VOD. As a result, our
method achieves a competitive mAP of 83.3%, and the mAP
improvements compared with SELSA, RDN, MEGA, LSTS,
and HVRNet are +3%, +1.5%, +0.4%, +3.2%, and +0.1%,
respectively. Notably, our mAP is lower than MAMBA [78].
The reason lies that MAMBA focuses on enlarging the number
of visible frames and proposes an effective memory updating
strategy, while our method is dedicated to sufficiently using
limited neighbor frames to exploit multi-level information

for better feature aggregation. Although our method has not
achieved the best performance among all the competitors, we
outperform other methods that use sliding windows. Moreover,
as shown in Table I, compared to MAMBA, our method
is an online system, which is more applicable for video
applications. We further change the backbone feature extractor
from ResNet-101 to a stronger one, ResNeXt-101. Our method
improves the mAP from 83.3% to 84.3%, which attributes to
the more powerful features extractor.

Besides, we compare our method with some SOTA methods
on UAVDT. Since most of the recent methods are not releasing
their source code, and they are only evaluated on ImageNet
VID, we compare our method with FGFA, RDN, and MEGA.
As shown in Table II, our method achieves remarkably better
results than the above methods. Overall, the same basic archi-
tecture results on two datasets demonstrate that our proposed
method by aligning features first and employing a multi-level
feature aggregation structure exhibits better performance than
all above end-to-end models.

Post-processing. In this section, we compare our method
with other state-of-the-art methods by further applying post-
processing. The results are summarized in Table I. There are
three common post-processing techniques, including tubelet
re-scoring [56], Seq-NMS [60] and BLR [4], which link
detection boxes across frames and use high-scoring object
detection from nearby frames to boost scores of weaker
detection. Our method employs the Seq-NMS to boost its
performance from 83.3% to 84.9% mAP, which still achieves
the best detection precision. The +1.6% performance gain
on mAP can be ascribed to the additional temporal post-
processing. It confirms the effectiveness of propagating the
confidence scores among high-related boxes to boost video
object detection results.

E. Ablation study

1) Quantitative Analsis: We conduct several ablation stud-
ies on the ImageNet VID validation set to evaluate the effec-
tiveness of the proposed method. As shown in Table III, the
quantitative results obtained by seven variants of our methods
are reported. First, we introduce these variants briefly. Method
(a) is the Faster R-CNN with ResNet-101 as the image-based
baseline. Method (b) only uses frame-level feature aggrega-
tion. Method (c) only uses proposal-level feature aggregation.
Method (d) adds the DAlign module into (b). Method (e) adds
the DAlign into (c). Method (f) employs the DAlign, frame-
level, and proposal-level feature aggregations simultaneously.
Method (g) is the complete version of our method.

DAlign module. By comparing the results between Table
III(b) and Table III(d) or Table III(c) and Table III(e), we
can see that introducing the proposed DAlign into method
(b) and method (c) leads to +0.5% gain and +0.6% gain,
respectively, which attribute to the DAlign that can model
object motion and align the features from frame to frame. The
subsequent feature aggregation modules would benefit from
aligned features. Besides, we further compare DAlign with
FlowNetS [61] and apply these two alignment modules on
our method. As shown in Table IV, our method with DAlign
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TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART END-TO-END VIDEO OBJECT DETECTION MODELS ON IMAGENET VID VALIDATION SET. BOLD

AND UNDERLINE REPRESENT OPTIMAL AND SUBOPTIMAL RESULTS. THE UP ARROW INDICATED THAT THE LARGER THE VALUE, THE BETTER THE
MODEL PERFORMANCE, AND VICE VERSA.

Methods Backbone Feature storage Online Offline mAP(%) ↑

FGFA [1] ResNet-101 Window ✓ 76.3
MANet [74] ResNet-101 Window ✓ 78.1
STSN [75] ResNet-101 + DCN Window ✓ 78.9

OGEMN [79] ResNet-101 + DCN Memory ✓ 80.0
SELSA [6] ResNet-101 Window ✓ 80.3
MINet [80] ResNet-101 Window ✓ 80.2

RDN [4] ResNet-101 Window ✓ 81.8
MEGA [5] ResNet-101 Memory ✓ 82.9
LSTS [76] ResNet-101 + DCN Window ✓ 80.1
HVR [77] ResNet-101 - ✓ 83.2

MAMBA [78] ResNet-101 Memory ✓ 84.6
Ours ResNet-101 Window ✓ 83.3

RDN ResNeXt-101 Window ✓ 83.2
MEGA ResNeXt-101 Memory ✓ 84.1

MAMBA ResNeXt-101 Memory ✓ 85.4
Ours ResNeXt-101 Window ✓ 84.3

FGFA + Seq-NMS ResNet-101 - ✓ 78.4
MANet + Seq-NMS ResNet-101 - ✓ 80.3
STSN + Seq-NMS ResNet-101 + DCN - ✓ 80.4

SELSA + Seq-NMS ResNet-101 - ✓ 80.5
RDN + BLR ResNet-101 - ✓ 83.8

MEGA + Seq-NMS ResNet-101 - ✓ 84.5
LSTS + Seq-NMS ResNet-101 + DCN - ✓ 82.1
HVR + Seq-NMS ResNet-101 - ✓ 83.8
Ours + Seq-NMS ResNet-101 - ✓ 84.9

TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART END-TO-END

VIDEO OBJECT DETECTION MODELS ON UAVDT.

Methods Backbone mAP(%) ↑

Faster R-CNN [14] ResNet-101 59.0
FGFA [1] ResNet-101 59.2
RDN [4] ResNet-101 60.2
MEGA ResNet-101 59.6

Ours ResNet-101 62.3

TABLE III
ABLATION STUDIES ON THE IMAGENET VID VALIDATION SET. THE

RESULTS ARE OBTAINED BY SEVEN VARIANTS OF OUR METHOD.

Methods (a) (b) (c) (d) (e) (f) (g)

DAlign ✓ ✓ ✓ ✓
Frame-level ✓ ✓ ✓ ✓

Proposal-level ✓ ✓ ✓ ✓
Instance-level ✓

mAP(%) 75.1 78.0 81.8 78.5 82.4 82.8 83.3

(Ours-D) achieves higher mAP and lower model complexity
than it with FlowNetS (Ours-F), which indicates that DAlign
is more effective and computationally friendly.

Frame-level feature aggregation. Method (b) obtains a
78.0% in terms of mAP, 2.9% higher than the image-based
detector Faster R-CNN. The reason is that the proposed feature
aggregation is capable of fusing the frame-level information
across space and time to enhance the reference frame feature.

Proposal-level feature aggregation. Table III(c) reports the
results obtained by applying the proposal-level feature aggre-

TABLE IV
THE UPPER PART OF THE TABLE IS THE EFFICIENCY EVALUATION
BETWEEN DALIGN AND FLOWNETS. THE BOTTOM PART IS THE

COMPARISON RESULTS OF THESE TWO ALIGNMENT MODULES APPLIED ON
OUR PROPOSED METHOD.

Methods mAP ↑ Params (M) ↓ GFlops ↓

FlowNetS - 38.680 8.90
DAlign - 1.956 0.64

Ours-F 83.1 92.751 260.71
Ours-D 83.3 65.027 252.45

TABLE V
ABLATION STUDY ON EACH COMPONENT OF OUR METHOD WHEN APPLIED

ON MEGA. THE RESULTS SHOWS FOUR VARIANTS OF THE MEGA.

Methods (h) (i) (j) (k) (l)

DAlign ✓ ✓
Frame-level ✓ ✓

Instance-level ✓ ✓

mAP(%) 82.9 83.1 83.1 83.3 83.6

gation to the baseline detector. Compared with the baseline, the
proposal-level feature aggregation achieves a significant +6.7%
gain. This huge improvement demonstrates that the proposal-
level feature aggregation could enhance each proposal in the
reference frame with the most informative appearance from
multiple proposals in the support frames. Besides, method (c)
performs better than method (b). This result indicates that
the proposal-level feature aggregation focuses on the proposal
features that contain balance foreground and background in-
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TABLE VI
PERFORMANCE AND RUN TIME COMPARISONS BY USING DIFFERENT

SAMPLING NUMBER K IN INSTANCE-LEVEL FEATURE AGGREGATION.

K 10 15 20 25 30

mAP(%) 82.5 83.0 83.3 83.2 82.9
runtime(ms) 99.6 102.6 105.7 109.3 112.0

TABLE VII
PERFORMANCE AND RUN TIME COMPARISONS BY USING DIFFERENT
SAMPLED RATIO r% IN INSTANCE-LEVEL FEATURE AGGREGATION.

r(%) 10 20 30 40 50

mAP(%) 83.1 83.3 82.9 82.7 82.7
runtime(ms) 101.4 105.7 109.5 113.2 117.3

formation while the frame-level feature aggregation neglects
the interaction among crucial foreground regions.

Instance-level feature aggregation. Comparing with the
Table III(f) and Table III(g), the instance-level feature ag-
gregation improves the performance from 82.8% to 83.3%,
with 0.5% improvement, which reflects that the instance-level
feature aggregation further updates the object proposal features
by support proposal features that belong to the same object.
Such an operation filters out the irrelevant information and
pays attention to each object proposal for feature aggregation.

The result of our pipeline is presented in Table III(f),
which yields the best performance, achieving +8.2% gain
compared with baseline. It demonstrates that the frame-
level, proposal-level, and instance-level feature aggregation are
complementary. The former is responsible for enhancing the
frame features. The midden distills the relation from support
proposals to strengthen the reference proposal features. The
latter further strengthens the proposal features that are related
to the foreground by using instance ID. Besides, DAlign is
also indispensable to align features from frame to frame.
Thus, our method exploits rich spatial-temporal information in
videos, making the detector robust against object appearance
variations, such as motion blur and occlusion. Overall, the
results in Table III verify the effectiveness of each module
and prove that the combination of all modules in a unified
framework can better deal with the deteriorated video quality.

Effect of proposed components on a strong baseline. We
further apply our proposed components on a more stronger
baseline MEGA to verify the effectiveness of each module.
Specifically, Method (h) is the baseline. The original MEGA
is inherently equipped with proposal-level feature aggregation.
Method (i) adds DAlign module into (h). Method (j) adds
Frame-level feature aggregation into (h). Method (k) adds
Instance-level feature aggregation into (h). Method (l) uses
all components of our method. As shown in Table V, by
introducing our proposed components, the performance of
the MEGA is improved significantly, which demonstrates that
the combination of memory bank structure and our proposed
components could cover more frames and sufficiently mine
critical cues for feature aggregation. Besides, the instance-
level feature aggregation gains the largest improvement from
82.9% to 83.3%, which is consistent with the ablation study

TABLE VIII
PERFORMANCE EVALUATION ON IMAGENET VID DATASET WITH AND
WITHOUT APPEARANCE DETERIORATION. AD IS ABBREVIATED FROM

APPEARANCE DETERIORATION.

Methods with AD ↑ w/o AD ↑

Faster R-CNN 75.1 88.3
Ours 83.3 89.6

in Table III.
Effect of sampling number K and sampling ratio r% in

instance-level feature aggregation. We firstly vary K from 10
to 30 to explore the relationship between the performance/run
time and the sampling top K proposals. As shown in Table
VI, the run time at inference is gradually increased when
enlarging the sampling number. The mAP rises first and then
falls gradually as the sampling number increases, and the best
performance is attained when the sampling number K is 20.
Next, to investigate the effect of sampling ratio r%, we further
compare the results of performance and run time by varying
the sampling ratio from 10% to 50% in Table VII. The perfor-
mance is slightly affected by the change of sampling ratio r.
Besides, the run time significantly increases with the sampling
ratio increases. Therefore, we set the sampling number K to
20 and the sampling ratio r to 20% experimentally.

Whether to update the support frame features in frame-
level feature aggregation. The typical way to conduct frame-
level feature aggregation is combining the support features to
update the reference feature while the support features stay
the same. We argue that the high quality of support features
would benefit the frame-level feature aggregation. To verify
our suppose, we design two variations: the query is all input
frames, and the query is reference frame only. As shown in
Table IX, the query of all input frames boosts up the mAP
from 83.0% to 83.3% compared with the query of reference
frames only. This improvement indicates that the quality of the
supporting frame features affects the video object detection.

Effect of the degraded frames in the dataset. As shown
in Table VIII, by excluding the low-quality frames from the
validation set, Faster R-CNN gains +13.2% improvement on
mAP while our method achieves +6.3%. The relatively low
improvement illustrates that the proposed MST has corrected
some false detection results in degraded frames. Besides,
from columns 2 and 3, MST improves the performance by
+8.2% mAP in the original dataset while only +1.3% in the
manipulated dataset, which indicates that MST plays a critical
role in dealing with appearance deterioration.

2) Qualitative Analysis: First, we select two challenge
video sequences in the ImageNet VID validation set. One
suffers from significant pose variations, and the other has
serious motion blur. As shown in Figure 5, we represent the
results of four variants, baseline, baseline + DAlign + frame-
level, baseline + DAlign + frame-level + proposal-level, and
the whole framework, respectively. The show threshold is set
to 0.6. It is obvious that our method shows better detection
results than baseline. For example, the lizard is presented in
a rare pose for quite a while. The baseline fails to detect
it in the second and third frames. In contrast, our proposed
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Fig. 5. The detection results of two video sequences for qualitative compar-
ison. Please zoom in for a more clear comparison.

method could successfully detect objects with a high score
in each frame. Besides, we also observe that the frame-level
feature aggregation gains better performance than baseline but
still fails to detect the frame in column 2. After adding the
proposal-level feature aggregation, every frame could be de-
tected correctly. The instance-level feature aggregation further
improves the object scores. Benefit from the multi-level feature
aggregation, our method could provide more robust results,
consistent with the results in the quantitative experiment.

F. Failure Cases

We show some failure cases in Figure 6. The first row gives
a wrong class label that predicts the squirrel as a monkey.
The second predicts the motorcycle as a car. The third fails to
produce a prediction and detects duplicated either. Although
our method adopts multi-level feature aggregation, it is still
difficult to detect the correct results in some extreme cases.
Through analyzing the results of the entire video sequences,
the reason may lie in the limited temporal spanning range.

Fig. 6. Some failure cases caused by rare pose and occlusion. We mark the
failure frames with red contour.

TABLE IX
PERFORMANCE COMPARISON BY TWO USAGES OF THE FRAME-LEVEL
FEATURE AGGREGATION, THE DIFFERENCE BETWEEN THOSE ARE THE

QUERY FEATURE OF FORMER ARE ALL INPUT FRAMES, AND THE LATTER
IS REFERENCE FRAME ONLY.

Methods Query-ref Query-all

mAP(%) 83.0 83.3

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel video detection method,
which consists of a Deformable Feature Alignment (DAlign)
module and a Multi-level Spatial-Temporal (MST) feature ag-
gregation module. In particular, DAlign models object motion
and aligns the features from frame to frame. Then, MST
sufficiently exploits the spatial-temporal information at the
frame level, proposal level, and instance level in a unified
framework to generate enhanced features. Specifically, given
the aligned features, the frame-level feature aggregation is
designed to distill informative appearance from all frames
to augment reference and support features. We devise the
proposal-level feature aggregation after the RPN. Each pro-
posal pair measures the similarity based on the appearance
and geometric representation. The reference proposal features
are enhanced by aggregating the support proposal features
according to the proposal pair similarities. Furthermore, an
instance-level aggregation is followed to enhance each object
proposal feature by corresponding support object proposal
features that belong to the same object. Finally, the upgraded
proposal features are input into the detection head and perform
bounding box classification and regression. Extensive experi-
ments conducted on the ImageNet VID dataset and UAVDT
demonstrate the superiority of our method. In future work,
we want to explore a method that could run in real time in
edge devices. Such a method is equipped with a light-weight
structure while still maintaining powerful relation modeling
ability. We hope our method will play a critical role in the
field of autonomous driving.
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