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ABSTRACT

Recently, some multi-modality features are introduced to the multi-view action recognition methods in
order to obtain a more robust performance. However, it is intuitive that not all modalities are avail- able
in real applications. For example, daily scenes lack depth modal data and capture RGB sequences only.
Thus comes the challenge of learning critical features from multi-modality data at train time, while still
getting robust performance based on RGB sequences at test time. To address this chal- lenge, our paper
presents a novel two-stage teacher-student framework. The teacher network takes advantage of multi-
view geometry-and-texture features during training, while the student network is given only RGB
sequences at test time. Specifically, in the first stage, Cross-modality Aggregated Transfer (CAT) network
is proposed to transfer multi-view cross-modality aggregated features from the teacher network to the
student network. Moreover, we design a Viewpoint-Aware Attention (VAA) module which captures dis-
criminative information across different views to combine multi-view fea- tures effectively. In the second
stage, Multi-view Features Strengthen (MFS) network with the VAA module further strengthens the glo-
bal view-invariance features of the student network. Besides, both of CAT and MFS learn in an online dis-
tillation manner, so that the teacher and the student network can be trained jointly. Extensive
experiments on IXMAS and Northwestern-UCLA demonstrate the effectiveness of our proposed method.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

With the explosion of video data nowadays, the need to recog-
nition human action information automatically is growing. Appar-
ently, it is impossible to recognition action in a video by simply
processing an isolated frame, especially to recognize human
actions. Thus, there are several methods [1-4] which take motion
information into consideration to encode the temporal features
between adjacent frames. Recently, many remarkable two-stream
approaches [5-7] and 3D convolutional based methods [8-10]
have achieved great success in action understanding.

However, multi-view action recognition [11,1,12-15] remains a
challenging problem. The reasons are as follows. First, the first
challenge is that the mannings of visual expressions from different
viewpoints would change significantly, which could easily cause
ambiguity. In order to extract view-invariance features, Cai et al.
[16] design a global descriptor that is composed of relatively dis-
tinctive features of each view for recognition tasks. Ji et al. [17]
introduce a novel multi-view space hidden Markov model
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algorithm for view-invariance action recognition. From then on,
with the emergence of deep convolution networks and the devel-
opment of sensors [18], more and more datasets contain depth
and skeleton modality, and the 3D motion begins to be view-
invariance action representations. Li et al. [19] conduct extensive
experiments to prove that multi-modality information can extract
the essential features of human action and is not affected by the
environment. Li et al. [20] and Shi et al. [21] both represent skele-
ton data as graphs and take advantage of graph convolutional net-
works for skeleton-based action recognition. Xiao et al. [22] use
multi-view depth videos to extract 3D characteristics. Although
the skeleton and depth information could improve multi-view
action recognition to some extent, 3D representations would
increase the cost of computing resources and the inference time.
Besides, it is expensive to deploy depth cameras in actual scenes.
Most of the cameras only capture RGB video sequences which
are the cheapest available data modality. Considering this limita-
tions, the challenge to use only RGB modalities to learn robust rep-
resentations at the inference phase comes out. The second
challenge is to make full use of multi-view information
[15,23,24] to analyze human action. The common solution for
multi-view action recognition is to transfer knowledge from one
viewpoint to the other viewpoints [25,26], or to learn separated
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view-specific features first and then aggregate all of the feature for
classification [27]. The above methods explore the characteristics
of single viewpoints and the correlation between multiple view-
points to understand human actions. However, they neglect that
not all view-specific features are critical. For example, as shown
in Fig. 1, it is usually impossible to obtain clear human character-
istics from a top view, which means gaining features from some
viewpoint may lead to inaccurate 3D representations.

To address the above two problems, we propose a teacher-
student learning framework that learns from multi-view RGB and
DensePose sequences and could be deployed with a single-view
RGB sequence input. Our model is inspired from the knowledge
distillation [28]. Knowledge distillation usually refers to a training
procedure where a teacher network has been trained previously
and then provides supervision for a student network on the same
modality. Different from the traditional distillation framework,
we propose an online distillation training strategy, in which the
teacher and the student networks are trained simultaneously.
Another work that inspires us is proposed by Gupta et al. [29], they
transfer supervision from one modal to another. We employ these
ideas to designing a novel two-stage learning paradigm, where
both of the two stages follow the online distillation framework.
Specifically, we use DensePose [30] as the 3D representation,
which maps the human pixels from a single 2D image to a 3D
human surface model. Many previous works [19,31,32] have
proved that DensePose is an effective 3D human representation.
Our two-stage network plays a different roles during training. In
the first stage, Cross-modality Aggregated Transfer (CAT) network
is used to transfer the geometry-and-texture information of
multi-view DensePose representations from the teacher network
to the student network. The teacher network is given multi-view
DensePose sequences while the student network is given single-
view RGB sequences. To aggregate multi-view information effec-
tively, we build a channel-wise Viewpoint-Aware Attention
(VAA) module to capture complementary information across dif-
ferent views. Furthermore, we apply feature supervision on middle
layer during training to help the student network to learn extra
cross-modality information complementary to the appearance
information. After training, the student network is able to capture
multi-view geometry-and-texture representations. In the second
stage, we design the Multi-view Features Strengthen (MFS) net-
work to further enhance the multi-view features of the student
network. The structure of the MFS network is the same as the
CAT network, which include I3D backbone and VAA module as
well, but the teacher and the student networks are both given
RGB sequences. Besides, there is no feature supervision since this
stage is not used to learn complementary information from differ-
ent modalities. More detail information is depicted in Fig. 2. As a
result, the student network of the MFS could process single-view
RGB sequences more efficiently and could be deployed in real life
without increasing cost.

In summary, the main contributions of this paper are as follows:

e We propose a Cross-modality Aggregated Transfer (CAT) net-
work and a Multi-view Features Strengthen (MFS) network,
which could transfer view-invariance and multi-modality fea-
tures to the student network in the training stage while using
only RGB data in inference phase.

e We build a simple yet effective Viewpoint-Aware Attention
(VAA) module, which could capture complementary informa-
tion across different views.

e We propose a novel online distillation training strategy to guide
the teacher-student learning.

e We make extensive experimental analyses based on two data-
sets, IXMAS and N-UCLA, which shows that our method
achieves competitive performances.
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2. Related work
2.1. Multi-view cross-modality action recognition

Human action sequences in RGB modal usually vary with the
camera view, which brings challenges for multi-view action recog-
nition. The key to this problem is to learn discriminative view-
invariance features. Thus, it relies heavily on diverse multi-
modality data. Holte et al. [11] generate 3D optical flow in each
view and combines them into enhanced 3D motion vector fields
for human action recognition. Kong et al. [12] introduce an auto-
matic encoder to learn view-specific representations and view-
shared representations in the hidden layer, thus achieving robust
multi-view action recognition. Gupta et al. [2] recover 3D pose
sequences and generate multiple motion projections to transfer
knowledge across views. Besides, dense trajectories [3,4] have
been proved to be effective to promote recognition performance.
Subsequently, Zhang et al. [13] use a 3D trajectory created by syn-
thetic data and applies dictionary learning to project real-world 2D
video into a view-invariance sparse representation. In [33], Rah-
mani et al. propose a non-linear unsupervised model that transfers
knowledge from multiple views to a canonical view. In addition to
3D trajectories, other forms of 3D modal representations are also
widely used. Cheng et al. [1] take the depth information into con-
sideration and designs a new descriptor of depth information. Rah-
mani et al. [34] process point clouds directly for cross-view action
recognition from unknown and unseen views. Wang et al. [35]
model the geometry, appearance and motion variations into a
multi-view spatio-temporal AND-OR graph, which projects the
3D skeleton to different views, and combines different views with
apparent features for classification. Compared with the existing
methods, we use RGB and DensePose sequences as the cross-
modality inputs, which could benefit from the rich geometry-
and-texture features of DensePose.

2.2. Knowledge distillation

Knowledge distillation is originally proposed in [28] to transfer
knowledge from a strong model to a weak one. The key idea is to
transfer a soft target, which is learned by a large model, to a small
model. Recently, knowledge distillation has been applied in action
recognition, which can be classified into three categories in gen-
eral. In the first category, the teacher is given multi-modality data
to guide the student to learn. Luo et al. [36] introduce a graph dis-
tillation method that can incorporate privileged information from a
multi-modality dataset to enrich the target domain where training
data are scarce. Stroud et al. [37] train the teacher network with
the motion input and the student network with regular images.
Thus, the student network could recognize actions based on both
appearance and motion. In the second category, multi-teacher
single-student networks and multi-student single-teacher net-
works are proposed. Wu et al. [38] hold the view that multi-
teacher knowledge distillation can help a single small student
model to learn comprehensive knowledge better than that with
the single-teacher network. Thoker et al. [39] use mutual learning
to train two or more student networks together so that each stu-
dent learns from the supervision of the teacher and other students.
In the third category, the student learns global spatio-temporal
information under the guidance of the teacher network. Bhardwaj
et al. [40] achieve a memory-efficient video classification model,
they feed a compute-heavy teacher network into all the frames
to train a compute-efficient student which only processes a small
fraction of frames. Similarly, in [41], Wang et al. use full frames
to recognize actions in the teacher networks and predicts early
actions from partial videos in the student network. All the above



C Xu, X. Wu, Y. Li et al.

Fig. 1. Four sampled images from different views of the same action. The last image is obtained from the overhead camera, which does not clearly express the meaning of the

action.
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Fig. 2. Overview of our method that consists of two stages. In the first stage, the teacher network of our CAT is given multi-view DensePose sequences, while the student
network is given single-view RGB sequences. In the second stage, both the teacher network and the student network of our MFS are given RGB sequences. Our method is

designed in online distillation manner.

methods follow the pattern that the teacher network is trained in
advance and provides the supervision for the student network. In
contrast, we propose a strategy called online distillation in which
the teacher and the student network are in the same structure
and parameters are updated simultaneously.

2.3. Multi-modal data capturing

Diverse input data modalities could provide complementary
cues for action recognition to achieve more robust performance.
However, it is expensive to capture all modalities with sensors in
intelligent monitoring. To reduce the cost of multi-modal informa-
tion capturing, one solution is to design the transfer network for
learning the mapping from RGB to the target modality when target
modal data is unavailable. Recently, DTMMN [42] first employs U-
Net to synthesize depth modality data from RGB modality and then
utilizes multi-metric learning to extract discriminative multi-
modality features to classify actions. PM-GANs [43] generates
infrared features from RGB images for action recognition. Another
solution is to train the model using all modalities and exploit RGB
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only at test time. This learning paradigm is generally known as
learning with side information or cross-modal distillation. In the
domain of action recognition, D3D [44] distills knowledge from
the temporal stream that given optical flow information into the
spatial stream that given RGB sequences to improve motion repre-
sentations. Thoker et al. [39] extract the source modal information
of the trained teacher network and transfer it to a small ensemble
of student networks. Both solutions do not require any annotated
modal data at test time, which reduce the cost of multi-modal data
acquisition. Since cross-modal distillation is more computation-
friendly, our design follows the structure of the distillation
framework.

3. The proposed method
3.1. Problem overview
For the multi-view action recognition dataset D, it can be

divided into Dy, and D, according to different views. The train
test Dyqin contains video sequences of the same actor’s action in
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several different views {v1, 25, -- -, vk}, and the validation set D,
includes video sequences of a new view 7, that is not in Dyqip.
Therefore, in multi-view action recognition tasks, the more global
action representations learn from the train test, the better results
achieved in the validation set.

Let wus denote the available training data as
{(Xv,,Xu,,-+,Xu); ¥}, where X is the training sample from the vy
view, y is the score vector of classification. After learning, the net-
work needs to map video sequences {(X,,,X,,,---,X,)} into y,
defined as F. In our method, in addition to the original RGB
sequences {(X,,,X,,, --,Xy)}, we use pre-trained DensePose-
RCNN [30] model to extract the corresponding DensePose
sequences {(X/,,,X1y,, -+, X1y}

In this work, we propose a two-stage network that is developed
in a teacher-student learning framework. Our model uses RGB and
DensePose data at training time and uses exclusively RGB data as
input at test time. In the following content, we will describe our
viewpoint-aware attention (VAA) module, online distillation strat-
egy and the two-stage network structure.

3.2. Viewpoint-aware attention module

Intuitively, to effectively aggregate multi-view geometry-and-
texture features, the views that are full of key information need
to be emphasized, otherwise should be ignored or weakened. How-
ever, a naive implementation for multi-view feature aggregation is
usually concatenating them along the channel dimension, which
treats the features of different view equally.

In our viewpoint-aware attention (VAA) module, we employ a
structure similar to the CBAM [45,46] to reweight the feature maps
of different views. Given the feature maps F,, € R®*“*W from y,,
we firstly concatenate multi-view features along channel dimen-
sion F € RBV*OHxW 3nd feed them into 3d average pooling and
3d max pooling operations separately to generate F,,, and Fngx
descriptions. After that, we sum the two descriptions directly and
forward them to a multi-layer perceptron, which serve as a bottle-
neck module. To reduce the parameters, the fully connected layer
is applied to compress the number of channels C into C/r, where
r is a scaling factor, the next fully connected layer is applied to
restore the number back to C. After the aggregated features going
through a sigmoid layer, the attention module generates combined
weights of different channels. Finally, we multiply F by the
weights, the output F. of VAA can be described as:

F. = F - 0(0(3DAvgPool(F) + 3DMaxPool(F))) (1)

where 0 denotes multi-layer perceptron and ¢ denotes the sigmoid
function. Details of the attention module is shown in Fig. 3

3.3. Online distillation

The previous works [38,47-49] usually train a large-scale
teacher network in advance and then guide the small-scale stu-
dent network to learn offline. Unlike the above works, we pro-
pose an online distillation strategy to simultaneously train two
networks with similar structures, so that the student network
gradually follows the teacher network, and the teacher network
optimizes itself during training. The online knowledge distilla-
tion still follows the framework proposed by Hinton et al.
[28]. The output denotes z() before the softmax layer is used

to calculate the probability of each category p?. Complete for-
mula is as follows:

pl exp(z"/T)

NS expn T .
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Fig. 3. Diagram of Viewpoint-aware Attention (VAA) Module. As illustrated, the
attention module utilizes both 3d-max-pooling outputs and 3d-average-pooling
outputs. A bottleneck network is followed to get channel-wise attention.

where T represents temperature, which is an adjustable hyperpa-
rameter. The larger of T, the smoother of each category probability
distribution.

In order to make the output distribution of the student network
as close as possible to the soft target of the teacher network, we
minimize the KL divergence between the p, of two networks, the
Lyp loss is defined by:

teacher
DPs

EKLD (pgeacheerstudent) _ Zpgeucher log pstudent (3)
s

3.4. Two-stage teacher-student learning

Cross-modality Aggregated Transfer (CAT) network. To make
the student network full of multi-view 3D information, we design a
novel cross-modality aggregation transfer approach to transfer the
multi-view geometry-and-texture representations to the student
network. The two networks with different modalities can be
described as:

yteacher _ ]:teacher (X/v] o >X/1/K) (4)

(5

In other words, multi-view DensePose sequences are fed into
the teacher network to learn global features. In contrast, the stu-
dent network is only given a single-view RGB sequence. Consider-
ing the features of the middle layer have more geometry-and-
texture representations, we apply VAA module after the third
residual block, the output channel of the attention mechanism
has been expanded by a factor V, which represents the number
of training viewpoints, we restore the feature channels to C as
the input feature. In short, the mapping of the teacher network is
described as:

f[Ea[‘her ( ) _ fteacher
¢

j,student _ ]:student (ka )

(staeerye () (6)

where g denotes the 3D convolutional bottleneck network and Att
denotes VAA module.

Since the student network only has single-view input data, no
extra aggregated function is needed. The mapping of Fsudnt jg
described as:

]_-s[udent(.) :fz)tudent (f;mdent(‘)> (7)

Besides, the original distillation method only rely on Lgp loss,
and the transfer happens at the last prediction layer, where only
contains classification distribution but loses detailed semantic
information of humans. We add auxiliary feature supervision
after the viewpoint-aware attention module. Such choice is con-
sistent with observations from [29] that feature loss is an effec-
tive means to learn the complementary information from
different modalities, the lower layers are modality-specific while
the features of mid-level layers are semantic. We use ¢; loss to
minimize the regression loss between the corresponding features
of the two modalities.
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CAT __
‘C’feat -

> llgAat(fy X, . X0,))) = F5 ™ Xa )

XEDirain

(8)

During training, we also optimize the classification loss £ of
the category probabilities relative to the ground truth label y.

LCAT:teacher - _ Z yteacher log pteacher

cls

9

LE;:T:srudent — _ Zi,student log pstudent (] 0)

In summary, we train the teacher network by optimizing its
own classification loss:

£CAT;teucher ﬁg/:T:teacher

(11)
As for the student network, we employ a loss function which
consists of three terms:

LCAT:smdent _ ls’?Tl:CAT . TZ

1CAT »CAT
KLD L

1CAT »CAT:student
+ /Lfear “feat + Acls L

cls

(12)

2CAT ,CAT

AT
Age s Agqs and 7

where fear 1S @ set of adjustable parameters measuring
the importance between three loss terms.

Multi-view Features Strengthen (MFS) network. In stage two,
we use the same structure of CAT to strengthen the multi-view fea-
tures in the student network. So the mapping of the teacher net-
work and the student network are consistent with that of CAT.
But MFS uses only RGB sequences both in the teacher network
and the student network. The two networks can be described as:

yreacher _ :Fteacher (Xv cee ,XyK) (] 3)

19

ystudent _ :Fstudent (ka) (]4)

Another difference between CAT and MEFS is that we remove
feature supervision, because the input of the teacher and the stu-
dent network are both RGB modal, the scene of video sequences
are the same as well. The Lyp loss is enough for the student net-
work to learn multi-view features from the teacher network.

Similar to the loss function in CAT, the full loss function of MFS
is defined as follow:

£MFS:teacher _ l:lc\/’ISFS:teacher (l 5)

MFS:student __ yMFS ,MFS:student 2 MFS »MFS
L = Ads Lcls + Adt L:KLD

(16)

where 227 is the weight of classification loss and

of online knowledge distillation loss.

1 MFS

g - is the weight

4. Network architecture

In order to improve the operating efficiency and reduce the
model scale, the network structure is readjusted. We use 13D [9]
as the backbone. The first convolution kernel in ResNet [50] is
expanded to 5 x 7 x 7. In addition, some 1 x 1 convolutions in
the residual module are expanded to 3 x 1 x 1. After the last resid-
ual block, a global average pooling and a fully connected layer are
followed to get classification output.

As described in Section 3.3, we apply VAA module after the
third residual block. In the meantime, we add feature supervision
of the reweighted features output from VAA module, where the
multi-view cross-modality aggregated transfer has the best perfor-
mance according to our experimental results.

5. Experiments

We implement our multi-view action recognition architecture
in Pytorch. Our model is evaluated based on two benchmark data-
sets, IXMAS [51] and N-UCLA [35]. In the following, we will
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describe details of the training process, experimental results and
the corresponding analysis. We train and evaluate on a server with
four NVIDIA GeForce GTX 1080 Ti GPUs.

5.1. Dataset

IXMAS is a multi-view human action recognition dataset. It con-
tains 11 actions, such as checking a watch, getting up, waving,
kicking, etc. The dataset is relatively small in size and has a total
of 1695 labeled video clips. Each action is performed by 10 actors
for three times, which is captured synchronously by four horizon-
tal cameras and one vertical camera.

N-UCLA is another multi-view action recognition benchmark
dataset. It contains 10 daily actions, which are captured by three
static cameras and are performed by 10 subjects for several times.
In total, the dataset consists of 1475 RGB videos and the correlated
depth frames and skeleton information. We only use the RGB
videos in our experiments.

5.2. Implementation details

Detailed training process. In the first stage, the teacher net-
work and the student network are trained end-to-end simultane-
ously. The teacher network is optimized based on the
classification loss £G7 """ while the student network is opti-

mized based on the feature regression loss £, classification loss

“feat»
LETsdent and online knowledge distillation loss £,
CCAT

experiments, we attempt to calculate the regression loss Lg; in
¢, constraint and supervise the middle feature maps of multiple
layers at the same time. However, the test results are not as good
as that of the single layer with the ¢; loss. Both the teacher and the
student network are initialized with ImageNet weights. Besides,
we explore the position of the feature loss. As shown in Fig. 4,
we sample one sequence from the N-UCLA dataset, and visualize
the feature maps output from the first residual block and the third
residual block of both the student and the teacher network. Consis-
tent with the observations from previous works [29], the lower
layers are modality-specific and thus harder to transfer across
modalities. While the visualizations from higher layers are
abstract, and the two modalities share one semantic space and
semantic representation. As a result, it is reasonable to add a fea-
ture loss after VAA.

The second stage, which is still end-to-end jointly training, is
designed to enhance multi-view global information through fur-
ther online distillation. The teacher is optimized based on the clas-
sification loss cMSteacher and the student network is optimized

cls
based on the classification loss cMPSstudent and distillation loss

LY. We initialize the student network in MFS based on the stu-

dent network in CAT, while the teacher network is initialized by
the weights that are trained with a set of RGB video sequences sep-
arately with a certain iteration.

Detailed training parameters. Since the action fragments in
these two benchmark datasets are relatively short, we sample 1
frame from every 4 frames, thus, a total of 8 frames are taken from
a fragment. During the training stage, we use Adam [62] optimizer
for all the modules and set 8, =0.99, 8, = 0.999. For CAT, the
learning rate is set to 2e~3, we set loss weights 15", iZf, 58" to 1,
2, and 1 respectively. Since both teacher and student networks
are optimized by a certain number of iterations, the learning rate
of MFS is initialized to 2e~*, and the 2™ and A4 are both set to
1. The learning rate decays 10 times in every 100 epochs. We train
CAT for 200 epochs and MFS for 100 epochs, with batch size of 12.
Besides, the temperature value T is set to 2 empirically.

During our
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(a) (b)

() (c)

Fig. 4. Visualization of the original frame and corresponding feature maps. (a) visualizes the first frame from the sampled sequence on the N-UCLA dataset. (b), (c) visualize the
same channel output from the first residual block of the student network and the teacher network, respectively. (d), (e) visualize the same channel- output from the third

residual block of the student network and the teacher network, respectively.

5.3. Comparison with state-of-the-arts

We conduct experiments on leave-one-view-out protocol, in
which we use video sequences from one view as the test set, and
employ video sequences from the remaining views to train our
model. During training, for the student network, we randomly
select a video sequence and get the corresponding actor ID, while
for the teacher network, we input the video sequences from the
same actor.

For the IXMAS dataset, we conduct fivefold cross-validation.
The video sequences from the unseen view are not available during
training. We report our results in Table 1. Some previous methods
trained with one source view and test with another target view. In
contrast, our method is trained with three source views and test
with the remaining one target view. For a fair comparison, we aver-
age the accuracy of them when a certain camera is used for testing.
The upper part of the table shows the results of non-CNN based
methods, while the methods of lower part introduce CNN for fea-
ture learning. Our model performs better than both CNN based
and non-CNN based methods. Compared with 13D, the average
accuracy increases from 83.0% to 87.8% for five views and from
92.9% to 97.3% for four views. However, the average accuracy of
the top view as the test set is generally poor. There are two reasons
that account for these results. First, the backgrounds and the
actors’ pose captured from the horizontal cameras are different
from that of the vertical cameras. Second, it is difficult to obtain
a reliable human representations from the vertical cameras.
Besides, we note that the TDL and Temporal 3D gain the competi-
tive results under camera 4. The TDL process pre-training phase
that utilizes a large number of automatically synthesized multi-
view 2D and 3D videos to learn 3D dense trajectories, and then
train a view-invariant action classifier using 2D videos of IXMAS.
After such training phase, the TDL could capture robust view-
invariant representations under camera 4. For the temporal 3D, it
use the TCN to lift from the 2D space to the 3D space. In TCN, tem-
poral information of the skeleton is considered, the temporal
coherence reduces the noisy joints estimates. For our method,
the 3D DensePose representations extracted from the pre-trained
DensePose-RCNN, and the pre-training dataset is the DensePose-
COCO, which has little overhead view data compared with the syn-
thesized dataset of TDL. Moreover, DensePose-RCNN estimate Den-
sePose per frame without temporal consistency in Temporal 3D.
The above two reasons may account for the lower accuracy of
our method under camera 4, but it doesn’'t make sense because
of its generally low accuracy.

For the N-UCLA dataset, we conduct threefold cross-validation.
From the comparison results shown in Table 2, our method
achieves the best performance and improves the average accuracy
by 5.9% compared to I3D. In detail, when cam; and cams are used as
test set separately, our method achieves an accuracy of 85.2% and
91.1%, which is 1.8% and 1% higher than the Glimpse Clouds,
respectively. However, as shown in Table 2, the Glimpse Clouds
gain more competitive results than our method under camera 2.

We also find that the accuracy under camera 3 is usually higher
than that under camera 2, and the accuracy under camera 2 is usu-
ally higher than that under camera 1. It is obvious that the accu-
racy and scene are highly correlated. The possible reason for the
comparative results between the proposed method and the
Glimpse Clouds under camera 2 lies in that the Glimpse Clouds
focus on view-invariant spatial features of the scene captured from
camera 1 and camera 3 due to its visual attention module, which is
crucial to recognize activities under camera 2. While our method
that without a spatial attention module could not effectively
obtain discriminative features from camera 1 and camera 3. In gen-
eral, the average accuracy of our method achieves much higher
than any other method.

In summary, the results on two benchmark datasets demon-
strate the effectiveness of our method. We perform better than
the other state-of-the-art methods by a large margin, especially
on the IXMAS dataset.

5.4. Ablation study

In this section, we conduct several ablation studies on the
IXMAS dataset and the N-UCLA dataset in the leave-one-view-out
protocol to analyze the contributions of the two-stage structure
and VAA module, as well as the effectiveness of different loss
terms. First, we give descriptions of different methods.

e 1: L. We optimize the student network for single-view RGB
sequences. This method only uses classification loss for training.

e 2: Ly + Lyip,fixed. Method 2 denotes the original knowledge
distillation method. The teacher network has been trained in
advance, the parameters are fixed to provide supervision for
the student network.

e 3: Ly + Lip, online. We replace the original knowledge distilla-
tion with the online distillation based on method 2.

e 4: Los + Liap + Lpeqe- On the basis of method 3, we add feature
supervision during training, which use the features obtained
by the specific layer in the teacher network to supervise the cor-
responding features of the student network. The above four
methods are only given RGB video sequences.

e 5: CAT : Los + Lkip + Lfear, MFS : Las + Lyip. This method intro-
duces our two-stage model. In stage one, we use Cross-
modality video sequences, apply online distillation strategy
and feature supervision during training, but without VAA mod-
ule. In stage two, we further argument multi-view features in
the student network, attention module is not applied either.

e 6: CAT : Lys + Lyip + cfeu[ + VAA, MFES: Lgs + Lgip + VAA. The
complete implementation of our method. We add VAA module
based on method 5.

Influence of online distillation. To evaluate the effectiveness
of online distillation, we compare the first three rows in Tables 3
and 4. For the IXMAS dataset, we observe that using the distillation
training strategy proposed by Hinton et al. [28] does not improve
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Table 1
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Average accuracy comparison to the state-of-the-art action classification on IXMAS. cam, indicates that camy is used as the test, while the other camera views are used as the train
test, and so on. camy — cam; are the horizontal views, and cam, is the top view. The seventh column of the table is the average accuracy values of the 5 camera views
(camg — camy), while the rightmost column is the average accuracy values except for the horizontal camera views (camg — cams).

Method camg camy cam, cams camy Avgy_4 Avgy_3
VKT [52] 11.6 10.8 10.3 103 114 109 10.7
DVV [53] 47.5 49.1 233 433 27.6 38.2 40.8
CVP [54] 52.0 53.5 25.9 47.6 31.9 422 44.7
Hankelets [55] 60.9 60.8 65.0 57.4 38.0 56.4 61.0
nCTE [2] 73.5 75.4 72.5 724 42.6 67.3 73.4
NKTM [33] 79.4 75.4 80.8 76.8 50.2 72.5 78.1
TDL [13] 72.9 79.8 74.3 77.0 51.8 71.1 76.0
Avola et al. [56] 80.5 76.4 73.2 78.0 - 77.0 -
Temporal 3D [57] 80.0 76.5 80.0 79.2 60.2 78.9 75.2
13D [9] 95.3 94.1 914 90.9 434 83.0 929
Ours 98.5 96.5 96.5 97.6 50.1 87.8 97.3
Table 2

Average accuracy comparison to the state-of-the-art action classification on N-UCLA dataset. cam; indicates that cam, is used as the test, while the other camera views are used as
the train test, and so on. The rightmost column of the table are the average accuracy values of 3 camera views (cam; — cam3).

Method camy camy cams Avg,_3
DVV [53] 39.3 55.2 58.5 51.0
CVP [54] 39.5 55.8 60.6 52.0
H-RNN [58] - - - 78.5
motion+STD [59] 83.4 88.2 84.5 85.4
DA-Net [27] 83.1 82.7 86.5 84.1
Enhanced viz. [60] - - - 86.1
Glimpse Clouds [61] 834 89.5 90.1 87.6
13D [9] 75.1 81.2 89.3 81.9
Ours 85.2 87.0 91.1 87.8
the accuracy compared with the baseline. The reason could be the Table 3

relatively small size of the dataset, which makes the trained model
easily overfitted. In this case, the prediction result output from the
teacher network could not properly guide the training of the stu-
dent network. By contrast, the online distillation method trains
the two networks simultaneously so that the student network
can obtain multi-view prediction results in real-time, and update
the parameters based on multiple iterations of the teacher net-
work. The teacher network is able to gradually guide the student
network, reaching a recognition accuracy of 95.58%, outperforming
method 2 by 0.3%. For the N-UCLA dataset, when adding distilla-
tion strategy, the accuracy of method 2 is 7.97% higher than the
baseline, which illustrates that the distillation strategy works well.
Furthermore, after applying online distillation, compared with
method 2, the average accuracy increases from 83.07% to 83.27%,
which is an improvement of 0.2%. The improvement shows the
superior of the proposed online distillation.

Influence of feature supervision. Compared with the third row
and the fourth row in Tables 3 and 4, it is obvious that with the
help of feature supervision, the performance of method 4 achieves
an improvement of 0.29% for the IXMAS dataset, and 0.78% for the
N-UCLA dataset. Results demonstrate that it has more details in
feature maps than in the final probability distribution of categories.

Influence of cross-modality data. In the fourth row and the
fifth row in Tables 3 and 4, RGB means only the RGB video
sequences are used, and Mix means RGB and DensePose are both
used in the experiments. When the teacher network is given the
multi-view DensePose sequences, the student network achieves
an accuracy of 97.05% for the IXMAS dataset and 84.24% for the
N-UCLA dataset, which is 1.18% and 0.19% higher than method 4,
respectively. This group of comparative experiments proves that
multi-modality input can really improve the performance of
multi-view action recognition. Our method utilizes the geometric
information in DensePose human body representation and
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Ablation study of our approach based on the IXMAS dataset. The evaluation is
performed in the case when cam, serves as the test set and the others as the train
tests.

Modality Accuracy
L RGB 95.28
Lys + Lxip, ﬁXEd RGB 95.28
Ls + Lkip, online RGB 95.58
Las + Lxip + Lpear RGB 95.87
CAT: Lys + Lxip + Lfeat Mix 97.05
MFS: Lys + Lxip Mix 97.35
CAT: Ls + Lkip + Lpear *VAA Mix 97.94
MFS: Ls + Lxp+VAA Mix 98.53

Table 4

Ablation study of our approach based on the N-UCLA dataset. The evaluation is
performed in the case when cam; serves as the test set and the other ones as the train
tests.

Modality Accuracy
Les RGB 75.10
L + Ly, fixed RGB 83.07
L5 + Lyip, online RGB 83.27
Lis + Lxip + Lpeat RGB 84.05
CAT: Lys + Lxp + Lyear Mix 84.24
MEFS: L + Liip Mix 84.82
CAT: Las + Liap + Lepear*VAA Mix 84.44
MFS: Ls + Lxip+VAA Mix 85.21

captures essential view-invariance features, which alleviates the
over-fitting of the model when data size is quite small.

Influence of two-stage structure. By comparing the fifth row
and the sixth row or the seventh row and the eighth row of Tables
3 and 4, the accuracies of the methods using the two-stage
structure are all improved. For the IXMAS dataset, the model with
the two-stage structure performs better than that with the
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single-stage structure by 0.3% without VAA and 0.59% with VAA,
respectively. For the N-UCLA dataset, the two-stage-based method
has an improvement of 0.58% without VAA and 0.77% with VAA,
respectively. It is worth noting that our two-stage based method
further brings a significant boost in multi-view action recognition.

Influence of VAA. As shown in Tables 3 and 4, it is obvious that
the VAA module contributes to a much better performance than
without it. In detail, the train test of the IXMAS dataset includes
a camy view, in which the DensePose sequences are inaccurate.
Our attention module can weaken the useless information and
strengthen the useful information. The average accuracy increases
from 97.35% to 98.53%, with an improvement of 1.18%. Similarly,
for the N-UCLA dataset, the features of the three views are equally
critical. The attention module could fine-tune the weights of differ-
ent views to get a much higher average accuracy. In our test, the
average accuracy is improved by 0.39% with VAA.

6. Conclusion

In this paper, we address the challenge of learning critical rep-
resentations leveraging multi modalities at train time, while miss-
ing modalities at test time. Specifically, our method takes
DensePose sequences as 3D modal data. The entire training process
is divided into two stages and are both optimized in an online dis-
tillation manner. In the first stage, we propose a Cross-modality
Aggregated Transfer (CAT) network that contains a Viewpoint-
Aware Attention (VAA) module to effectively aggregate multi-
view features. The teacher network of CAT learns multi-view
geometry-and-texture features and transfers to the student net-
work by feature loss and online distillation loss, the student net-
work is only fed with single-view RGB sequences. In the second
stage, a Multi-view Features Strengthen (MFS) network that con-
tains VAA as well is designed to further strengthen the multi-
view features of the student network with classified loss and
online distillation loss. Through our proposed learning paradigm,
the student network captures more discriminative features and
could be deployed in real life without increasing cost. Extensive
experiments based on two multi-view datasets demonstrate the
superiority of our proposed method. Besides, we conduct ablation
study to verify that all parts of our paradigm contribute to the
model performance.
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