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Abstract— Temporal asynchrony between two cameras in the 

vision system is a usual problem in practice. In some vision task 

such as estimating fast moving targets, the estimation error 

caused by the tiny temporal asynchrony will become 

non-ignorable essentials. This paper will address on the 

asynchrony in the stereo vision system of humanoid Ping-Pong 

robot, and present a real-time accurate Ping-Pong ball 

trajectory estimation algorithm. In our approach, the complex 

Ping-Pong ball motion model is simplified by a polynomial 

parameter function of time t due to the limited observing time 

interval and the requirement of real-time computation. We then 

use the perspective projection camera model to re-project the 

ball’s parameter function on time t into its image coordinates on 

both cameras. Based on the assumption that the time gap of two 

asynchronous cameras will maintain a const during very short 

time interval, we can obtain the time gap value and also the 

trajectory parameters of the Ping-Pong ball in a short time 

interval by minimizing the errors between the images of the ball 

in each camera and their re-projection images from the modeled 

parameter function on time t. Comprehensive experiments on 

real Ping-Pong robot cases are carried out, the results show our 

approach is more proper for the vision system of humanoid 

Ping-Pong robot, when concerning the accuracy and real-time 

performance simultaneously. 

I. INTRODUCTION 

Building the vision system equipped on the body of a 
humanoid robot is a challengeable task. In previous work [1], 
we have built two humanoid robots, see figure 1, which are 
160cm in height, 55kg in weight and contain 30 degrees of 
freedom (DOF), and can rally to each other with 114 rounds at 
most and rally to human with 145 rounds at most1. Generally 
speaking, there are three main successive tasks for the vision 
system of a humanoid robot, i.e. pose estimation for the 
onboard vision system, real-time accurate ball trajectory 
estimation, prediction for the arriving time, position, velocity 
of the Ping-Pong ball. The pose estimation, which can be used 
to identify the ball’s world coordinate and the initial pose of 
the arm in the world coordinate, requires to obtain the robot’s 
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6DOF pose in the world coordinate in real-time. Based on the 
world pose of the vision system, the trajectory estimation will 
use stereo cameras to localize the ball and fit its motion model 
to estimate the trajectory of the ball. Then the last task of the 
vision system will focus on predicting the ball’s status 
(including arriving time, position, velocity), which can be 
used as visual servo for the arm of robot to hit the ball back. 
Obviously, the accuracy of prediction is highly relying on the 
results of trajectory estimation. 

 

Figure 1.  Humanoid Ping-Pong Robot with two cameras on the head. 

This paper will focus on the problem of estimating the 
trajectories of Ping-Pong ball accurately in real-time. 
Basically, there are two main difficulties in estimating the 
trajectories of the ball for a humanoid robot. 

The first difficulty is how to reach an optimal compromise 
between the accuracy of estimation and the capability of 
real-time output the trajectory results. Obviously, increasing 
the capturing frame rate of the vision system or increasing the 
number of cameras will promote the accuracy of trajectory 
estimation, but add heavy burdens and delay the output of the 
trajectory results due to the strict limitations on the 
transferring bandwidth and the computation capability of the 
onboard computer. In fact, it will cost less 600ms that the 
Ping-Pong ball flies over the table in the normal rallying. And 
the robot need reserve more than 400ms to move the arm to the 
planned hit point. Besides the computation on prediction, there 
are only about 150ms left for the trajectory estimation. Thus, 
in our vision system, we use two cameras2 to compose a stereo 
camera system working at a resolution of 640x480, 60 frame/s, 
which can provide enough accuracy on the ball’s localizations 
while keeping the real-time output of the trajectory results.  

The second difficulty is how to reduce the trajectory 
estimation errors caused by the asynchrony in the stereo 
camera system. In our system, those two single cameras are 

 
2 These two cameras are mounted with a rigid constraint, which can be 

calibrated in previous. 
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setting to work at the same frame rate (60HZ). It can be 
regarded as a synchronous stereo camera system when 
proceeding normal tasks without fast motions. However, in 
our case of Ping-Pong robot, the tiny time gap of the interval 
[0,1/60s)  between the two cameras will also affect the 
estimation accuracy of trajectories greatly. The estimation 
errors will be amplified by the prediction and lead to failure 
when the robot’s arm hits ball back to the specific position. 

 The reason of asynchrony is that the capturing triggers are 
controlled by the operation system, which cannot guarantee 
the absolute synchrony of both cameras. We call this vision 
system as “asynchronous” stereo camera system. 

In this paper, our approach will address on reducing the 
estimation errors caused by the “asynchrony” in humanoid 
robot vision system. We present a real-time accurate 
Ping-Pong ball trajectory estimation algorithm, which 
concerns the variable asynchrony of the cameras and the 
motion model of the Ping-Pong ball simultaneously. The 
accuracy of the proposed approach is demonstrated by 
comprehensive experiments in real Ping-Pong robotcases. 

II. RELATED WORKS 

As the vision systems of Ping-Pong robot need localize the 
positions of ball in real-time accurately, the popular vision 
systems [2-3] are almost adopting two or more than two 
cameras to construct a stereo camera system, localize the 
positions of the ball, and estimate the trajectories of the ball in 
real-time. Thus the synchronization of different cameras is 
important when the same motion is captured by different 
devices from different viewpoints which are used to localize 
the position of the ball accurately. To our best knowledge, our 
system is the first Ping-Pong robot vision system concerning 
the asynchrony between those two cameras. 

Generally speaking, the methods to synchronize 
multiple-camera system can be divided into three categories, 
i.e. physical-connection based synchronization, 
cyber-connection based synchronization, and motion 
consistency based synchronization.  

The physical-connection based synchronizations are 
intuitive approaches [4-8], which use special 
synchronous-purpose hardware to connect those cameras 
physically and control them by a microcomputer unit to trigger 
the cameras with synchronization signals. The accuracy of this 
synchronization can be guaranteed by the hardware systems, 
but it requires that all the cameras should have the function of 
capturing images controlled by the signals. Besides, the 
requirement of physical connection of the cameras will also 
limit the applicability of this approach. Furthermore, this kind 
of approach also needs to attach additional complex hardware 
devices, this may be not acceptable in our humanoid 
Ping-Pong robot vision system, which is quite sensitive to the 
size and weight of the vision system. 

The cyber-connection based synchronization methods 
[9-11] try to employ some cyber signals to trigger the cameras 
or estimate the time gap of the cameras. The typical systems of 
this kind of approach may use the binary light source based 
synchronization [9] or the network messages [10, 11]. The 
main drawback of this kind of method is the unacceptable 
accuracy due to the assumption of the constant latency, 

especially, in our humanoid robot vision system, the heavy 
capturing and calculation burden of the onboard computer 
obviously cannot guarantee the constant latency.  

The motion consistency based synchronizations [12-20] 
can be regarded as post-processing methods, which rely on the 
temporal-spacial consistency of the motions observed by 
different cameras. These methods do not require additional 
synchronization devices, but cannot be applied in real-time 
and almost need the assumption of constant time gaps among 
the cameras. Furthermore, those methods are also sensitive to 
occlusion which may be quite usual in practice. Those reasons 
prevent those approaches implemented in our vision system. 

III. TRAJECTORY ESTIMATION ALGORITHM 

A. Perspective Projection Model for Camera 

In our robot system, two cameras are used to estimate the 
trajectory of the balls, and we use perspective projection 
model [21] to recover the position of the ball’s center: 

[

𝑋𝑐

𝑌𝑐

𝑍𝑐

1

] = [
𝐑 𝐭
𝟎T 1

] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

]                           (1) 

𝑍𝑐 [
𝑢
𝑣
1

] = 𝐀 [

𝑋𝑐

𝑌𝑐

𝑍𝑐

1

]                                      (2) 

Here (𝑋𝑤 , 𝑌𝑤, 𝑍𝑤) T  is the world coordinate of point  𝑃 , 
 (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐)T is 𝑃′ corresponding camera coordinate, (𝑢, 𝑣)T is 
the image coordinate of 𝑃 and 𝐀 is a 3x4 intrinsic matrix of 
camera. 𝐑, 𝐭 are external parameters of the camera.  

Rewriting formula (2) as following: 
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We then have: 
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Let H = 𝐀 [
𝐑 𝐭
𝟎T 1

] , K = [0 0 1 0] [
𝐑 𝐭
𝟎T 1

] , and the 

homograph coordinate of the image point denoted as 𝑚̃ =
(𝑢, 𝑣, 1)T , and the world homograph coordinate of the point 
denoted as 𝑀̃ = (𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤 , 1) T  , then formula (4) can be 
rewritten as: 

𝑚̃ = (K𝑀̃)
−1

H𝑀̃ =
H𝑀̃

K𝑀̃
                               (5) 

B. Modeling the Flying Motion of the Ping-Pong Ball 

As mentioned previously, the vision system of our 
Ping-Pong robot needs to obtain the accurate ball trajectory in 
real-time before the ball flying over a quarter of the table. Thus 
we should use a proper flying trajectory model which can 
consider both the accuracy and computation complexity 
simultaneously. Figure 2 shows the forces [22-23] during the 
ball flying. 

Figure 2 presents the world coordinate of our robot system,  
𝐹𝑔, 𝐹𝑏, 𝐹𝑠 , 𝐹𝑚 are the gravity, air buoyancy, air resistance, and 
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Magnus force respectively. To simplify the computation, we 
ignore the spin of the ball4, thus the Magnus force is zero. As 
the mass of the ball will be much larger than the mass of the air 
with the same volume, the air buoyancy can be ignored 
comparing with the gravity. The air resistance is proportional 
to the velocity of the ball and its force direction is contrary to 
the flying direction of the ball. In our model, air resistance can 
also be ignored due to the short time sample interval5.  

 

Figure 2.  Force analysis of flying ball 

Assuming the gravity acceleration is 𝑔, 𝑄̈(𝑡), 𝑄̇(𝑡), 𝑄(𝑡) are 
the acceleration, velocity, and position of the ball in time 𝑡, 
and the motions of the ball can be presented as follow:  

𝑄̈(𝑡) = [

𝑋̈(𝑡)

𝑌̈(𝑡)

𝑍̈(𝑡)

] = [
0
0

−𝑔
]                                        (6) 
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𝑄(𝑡) = [
𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
] = [

𝑋̇(𝑡0)(𝑡 − 𝑡0) + 𝑋(𝑡0)

𝑌̇(𝑡0)(𝑡 − 𝑡0) + 𝑌(𝑡0)

−
𝑔

2
(𝑡 − 𝑡0)2 + 𝑍̇(𝑡0)(𝑡 − 𝑡0) + 𝑍(𝑡0)

]        (8) 

Thus we use a polynomial model to present the motion of 
the flying Ping-Pong ball. In this model, 𝑡0 is the time stamp 
of the initial moment. And there are seven parameters: the 
gravity acceleration 𝑔 , the ball’s initial position 

𝑋(𝑡0), 𝑌(𝑡0), 𝑍(𝑡0), the ball’s initial velocity 𝑋̇(𝑡0), 𝑌̇(𝑡0), 𝑍̇(𝑡0), 
which are needed to be estimated in this model. 

C. Ball Trajectory Estimation on “Asynchronous” Stereo 

Camera System 

Assuming the left camera’s time interval among two 
successive frames is 𝑡1, and the right camera’s time interval 
among two successive frames is 𝑡2. The time gap between the 
left camera and the right camera is 𝑡1,2. In our Ping-Pong robot 

system, the capturing cycles 𝑡1  and 𝑡2  are easy to obtain. 
However, the vision system is not able to guarantee both 
cameras capturing images at the exact same time, furthermore, 
the time gaps are also varied affected by the overload 
condition of the operation system, CPU and Bus etc. Thus, 𝑡1,2 
is not zero in practice and will be varied randomly. In our 
approach, we make a reasonable assumption that the image 
capturing time gaps between two cameras will be a const in a 
short time quantum. That means 𝑡1,2 will keep steady state 

value in a very short observation. 

 
4 In our robot, the Ping-Pong bat is bare wooden, which will reduce the 

spin of the ball greatly when hitting. 
5 In our following algorithm, the model will only concern at most 5 frames 

of the observations, thus the time window is less than 90ms, in this condition, 
the air resistance can be ignored. 

Based on the motion model of the ball, we can obtain the 
homograph coordinate of the flying ball as follow: 

𝑄̃(𝑡) = [𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 1]T                          (9) 
In our vision system, although the accurate capturing time 

of each frame in both cameras is not available, the captured 
successive sequence of each camera is known8. That means 
we can know the true sequence of each frames from the 
cameras. In a short time quantum, we assume the left camera 
can obtain the sequenced image points of the ball, denoted as 
𝑚1

𝑖  (𝑖 = 1,2,3, ⋯ , 𝑘) and the corresponding world coordinate of 
those image points are denoted as 𝑄̃(𝑡𝑚1

𝑖 ) . Similarly, the 

sequenced image points of the right camera and their world 

coordinate can be denoted as 𝑚2
𝑗
 and 𝑄̃(𝑡

𝑚2
𝑗 ) (𝑗 = 1,2,3, ⋯ , 𝑞). 

Recalling the formula (5), we can re-project the ball’s 
world coordinates into their corresponding image coordinates:  

{

𝑚̃1
𝑖 =

H1
𝑖 𝑄̃((𝑖−1)∗𝑡1)

K1
𝑖 𝑄̃((𝑖−1)∗𝑡1)

, (𝑖 = 1,2,3, ⋯ , 𝑘)  
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𝑗

=
H2

𝑗
𝑄̃(𝑡1,2+(𝑗−1)∗𝑡2)

K2
𝑗

𝑄̃(𝑡1,2+(𝑗−1)∗𝑡2)
, (𝑗 = 1,2,3, ⋯ , 𝑞)

           (10) 

Here, 𝑚̃1
𝑖  and 𝑚̃2

𝑗
 are the re-projections of the ball’s world 

coordinates from the left and right cameras respectively, and 
the start time of the first point obtained from the left camera is 
𝑡0. Then estimating the trajectory of the ball in such short time 
quantum can be regarded as an optimization problem: 

arg 𝑀𝑖𝑛𝐸 (∑ ||𝑚̃1
𝑖 − 𝑚1

𝑖  ||2𝑘
𝑖=1 + ∑ ||𝑚̃2

𝑗
− 𝑚2

𝑗
 ||2𝑞

𝑗=1 )            (11) 

In formula (11), there are eight parameters ( 𝐸 =
{𝑋(𝑡0), 𝑌(𝑡0), 𝑍(𝑡0), 𝑋̇(𝑡0), 𝑌̇(𝑡0), 𝑍̇(𝑡0), 𝑔, 𝑡1,2}) that need to be 

estimated during the optimization. This optimization problem 
can be easily solved by the Levenberg-Marquardt (LM) 
Optimization [24] method. The choosing of the initial values 
for those eight parameters will be discussed later. 

According to formula (11), estimating the whole track can 
be divided into a series of sub-trajectory estimation problems. 
That is using few pairs of the ball’s image points to estimate a 
set of parameters to represent that sub-trajectory and then a 
slider window based iterative optimization policy is adopted to 
obtain the successive parameters of sub-trajectories. 

The Slider Window based Real-time Trajectory Estimation 
Algorithm (SWRTEA) is presented as follow: 

Algorithm 1: SWRTEA 

Input: Slider window size S, successive images of the ball’s 

central points 𝑀𝑙𝑒𝑓𝑡 = {𝑚1
𝑖 , 𝑖 = 1,2,3 … }, 𝑀𝑟𝑖𝑔ℎ𝑡 = {𝑚2

𝑗
, 𝑗 = 1,2,3 … } 

Output: parameters sets, 𝐸1, 𝐸2, …, for every sub-trajectories  

1. 𝐶𝐵 ← 1; // set current beginning of the slider window 

2. while (𝐶𝐵 < |𝑀𝑙𝑒𝑓𝑡| − 𝑆 𝑜𝑟 𝐶𝐵 < |𝑀𝑟𝑖𝑔ℎ𝑡| − 𝑆 ) 

3.        𝐸𝐶𝐵 = arg 𝑀𝑖𝑛𝐸 (∑ ||𝑚̃1
𝑖 − 𝑚1

𝑖  ||2𝐶𝐵+𝑆
𝑖=𝐶𝐵 + ∑ ||𝑚̃2

𝑗
− 𝑚2

𝑗
 ||2𝐶𝐵+𝑆

𝑗=𝐶𝐵 ); 

4.        𝐶𝐵 + +; 

5. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

 
8 In the condition that the images from different cameras are captured 

asynchronous purely controlled by software, the image sequences can keep 
the same order as their temporal sequence when capturing. 
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D. Further Analysis for the SWRTEA 

In the SWRTEA, the LM optimization method is used to 
solve formula (11).  

Normally, the initial values for the estimated parameters 
𝐸 = {𝑋(𝑡0), 𝑌(𝑡0), 𝑍(𝑡0), 𝑋̇(𝑡0), 𝑌̇(𝑡0), 𝑍̇(𝑡0), 𝑔, 𝑡1,2} are required. 

Obviously, in the first iteration of the SWRTEA, the gravity 
accelerate can be set as 𝑔 =9.8 m/s2, and the time gap between 

left and right cameras can be set as 𝑡1,2 =
𝑡1

2
. As the time 

beginning from the first iteration, which means 𝑄̃(𝑡0) = 𝑄̃(0) 
at the observation of 𝑚1

1. We  can assume the observations 
from both cameras are synchronous, and calculate the initial 
values of  𝑋(𝑡0), 𝑌(𝑡0), 𝑍(𝑡0)  based on 𝑚1

1  and 𝑚2
1 . And the 

initial values of 𝑋̇(𝑡0), 𝑌̇(𝑡0), 𝑍̇(𝑡0) can also be obtained by 
derivation the positions of two successive observations from 
both cameras which are assumed to be synchronous. After the 
first iteration, the following iteration can use the parameters 
estimated from its previous optimization processing as its 
initial values. 

When solving the optimization, there are two other 

parameters, i.e. H and K (H1
𝑖 , K1

𝑖  to the left camera, H2
𝑗
, K2

𝑗
 to the 

right camera) which should be clarified. Based on formula (4), 
these two parameters are related with the intrinsic matrix of 
camera and its corresponding external parameters in the time 
of observations. The intrinsic matrix of camera can be 
calibrated offline [21], while the external parameters need 
update for each capturing image. In our Ping-Pong robot 
system, we place eight green points with known structures on 
the tables and use PnP method [25] to estimate the external 
parameters of the camera in real-time. 

The dimension of the optimization problem in our 
SWRTEA is quite low. The slider window size S is almost less 
than 10, which means only no more than 20 points involving 
in the optimization. So the temporal computation for 
SWRTEA is quite low. In practice, the parameters that need to 
be estimated can be initialized very near to the optimal values, 
this will further reduce the computation in optimization. Thus 
step 3 in SWRTEA only needs to execute a few of iterations to 
guarantee the process in real-time.  

IV. EXPERIMENTS 

In this section, comprehensive experiments in real 
Ping-Pong robot system are carried out in order to evaluate the 
proposed approach. We compare our SWRTEA with the 
trajectory estimation method 9  [23] denoted as SA 
(Synchronizing on Asynchronous condition) in the following 
experiments, whtch directly calculates the positions of the 
balls from a pair of images captured by two different cameras 
without concerning the asynchrony between the cameras.  

Figure 3 shows the scene of experiments on practical 
Ping-Pong robot vision system, which equips with two 
cameras working at 60HZ with a resolution of 640x480. To 
capture the ground true trajectories of the ball, we add a 
verified external vision system with two high speed cameras 
mounted on the ceiling over the table, these two cameras are 
working at 120HZ, and synchronized by a hardware triggering 
system. The trajectories obtained from the external vision 

 
9 To compare fair, both methods use the same ball motion model. 

system are carefully calculated offline and can be regarded as 
the ground truths. 

 

Figure 3.   The scene of Experiments on Practical Ping-Pong Robot Vision 

System. 1,2: Two color CCD cameras working at 120HZ are mounted on the 
ceiliing; 3,4: The trigger line transmitting synchronization signal to guarantee 

those two camera are capturing synchronously; 5,6: The 1394 data line 

transmitting capturing images to computer ; 7: Pitching machine giving out 
repeatable ball flying trajectory; 8: The world coordinate.  

As we need to evaluate the accuracies of the continuous 
trajectories of the balls, a new evaluation metric is desired. We 
introduce a timeline error to estimate the accuracy of the 
trajectory estimation. Assuming the observation of a piece of 
the trajectory can be represented as 𝑄(𝑡) = [𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)]T 
and the true trajectory is 𝑄′(t)=[𝑋′(𝑡), 𝑌′(𝑡), 𝑍′(𝑡)]T. Then the 
errors on a piece of trajectory can be defined as follows: 

𝐸𝑥=(
1

𝑛
∑ |𝑥𝑖(𝑡𝑖) − 𝑥𝑖

′(𝑡𝑖)|2)𝑛
𝑖=1

1

2                            

               𝐸𝑦=(
1

𝑛
∑ |𝑦𝑖(𝑡𝑖) − 𝑦𝑖

′(𝑡𝑖)|2)𝑛
𝑖=1

1

2                    (12) 

𝐸𝑧=(
1

𝑛
∑ |𝑧𝑖(𝑡𝑖) − 𝑧𝑖

′(𝑡𝑖)|2)𝑛
𝑖=1

1

2                             

𝐸𝑚 =
1

𝑛
∑ ||𝑄(𝑡𝑖) − 𝑄′(𝑡𝑖)||𝐹

𝑛
𝑖=1                           

Here, n is the sample points on the ground true trajectory. 
Then we can evaluate the errors of those sub-trajectories in the 
slider windows and we also set the sample points number 
equal to the size of windows, that is n=s.  

In the first experiment, we use the data captured from the 
external verified vision system, and choose the stagger frames 
from each camera. As we can obtain the accurate time stamp 
of each observation in the external verified vision system with 
the hardware synchronization. So those selected frames from 
both cameras, which are working at 120HZ, can construct 
perfect real observations from a vision system working at 
60HZ and with a time gap of 5/600s. We then apply both SA 
and SWRTEA on those data, the results of trajectory timeline 
estimation errors are shown in figure 4. 

The experimental results in figure 4 show that SWRTEA 
can achieve better performances than the SA. It also shows the 
size of the slider window will also affect the accuracy of 
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estimation. In our experiment, we use three window sizes, 5, 
10, and 15, and the size of 5 can achieve the best results.  

 

Figure 4.  Comparison results of the trajectory estimation timeline errors on 

SA and SWRTEA under different window sizes on 𝑡1,2 = 5/600s. CB is the 

current beginning of the slider window. The circles in this figure represent 

the 𝐸𝑚 of SA, and the stars represent the 𝐸𝑚 of SWRTEA. 

In the second experiments, we compare the methods 
SWRTEA and SA by using the data captured from both vision 
systems. As it is impossible to synchronize the time clock of 
these two vision systems accurately, we cannot use the 
formula (12) to calculate trajectory errors. We then try to unify 
the y-coordinate and consider the trajectories from observation 
and ground truth as two functions 𝑄(𝑌) = [𝑋(𝑌), 𝑌, 𝑍(𝑌)]T and 
𝑄′(𝑌) = [𝑋′(𝑌), 𝑌, 𝑍′(𝑌)]T . Then the error on a piece of 
trajectory can be calculated as follow: 

𝐸′𝑥=(
1

𝑛
∑ |𝑥𝑖(𝑌𝑖) − 𝑥𝑖

′(𝑌𝑖)|2)𝑛
𝑖=1

1

2                       

               𝐸′𝑧=(
1

𝑛
∑ |𝑧𝑖(𝑌𝑖) − 𝑧𝑖

′(𝑌𝑖)|2)𝑛
𝑖=1

1

2                (13) 

𝐸′𝑚 =
1

𝑛
∑ ||𝑄(𝑌𝑖) − 𝑄′(𝑌𝑖)||𝐹

𝑛
𝑖=1                      

Here 𝑌𝑖 is the sample point on the ground true trajectory, 
and n is the number of these sample points. And we call the 
error calculated by formula (13) as unified Y error. 

In figure 5, we use formula (13) to calculate the errors and 
the sample point 𝑌𝑖  is obtained from the observation of the 
external vision system. And we also consider three kinds of 
window size, 5, 10, and 15.  

 

Figure 5.  Comparison results of the trajectory estimation unified Y errors 
on SA and SWRTEA under different window sizes.  

The results in both figure 4 and figure 5 show SWRTEA 
will perform much better than SA under those three window 
sizes. Although the error results presented by the unified Y 
errors is less than the error results presented by the timeline 
errors on the numerical values10, these two types of errors can 
represent the same performance relations among those 
evaluated methods. We observe that the results in figure 5 
show that the unified Y error of the SWRTEA on size 5 are all 
less than 3mm, which is almost less than 1/10 of the ball’s 
radius. 

In the third experiment, we use the Ping-Pong robot vision 
system to estimate the trajectories of ball, and the ground 
truths are obtained from the external verified vision system 
offline. In our experiment, the window size s=5, and each 
sample point 𝑌𝑖  is obtained from the observation of the 
external vision system when calculating the errors by formula 
(13). The results are shown in figure 6. 

 

Figure 6.  Real comparison results of the trajectory estimation errors on SA 

and SWRTEA.  

The trajectories estimated by SWRTEA and SA are shown 
in figure 7, which is the projections of the trajectories on Y-Z 
plane. The results show that the SWRTEA can perfect 
approach the ground truth. 

 

Figure 7.  Trajectory comparison results on SWRTEA, SA and ground truth. 
The red dots are the ground truths, blue circles are the results estimated by SA, 

and green circles are the results estimated by SWRTEA. 

We also carried out the experiment to consider the overall 
performances of both approaches in real vision system. This 
experiment only considers the trajectory’s section, which the 
ball flies into the table and flies over a quarter of the table. We 
first use our Ping-Pong robot’s onboard vision system to 
capture 48 trajectories, which are launched by a Ping-Pong 
ball pitching machine. And the unified Y errors for these 48 
trajectories are calculated by SA and SWRTEA respectively. 
We then average the total errors on each estimation method. 

 
10 The reason is the unified Y error only concerns the errors on X and Z, 

and the errors on Y is only indirectly coupled in the unified Y error. 
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The results are shown in Table I. To evaluate the performance 
of our approach by comparing with other synchronization 
method, we also use the same pitching machine to launch 
another 36 trajectories, which are launched from the same 
position, angle and parameters as the previous 48 trajectories. 
These 36 trajectories are also observed by our humanoid robot 
vision system, the only difference is that both cameras are 
connected with a hardware synchronization triggering which 
can provide accurate control signals to capture synchronous 
frames from both cameras at a frame rate of 60. We then 
estimate the unified Y error from those synchronous frames 
offline and also obtain the average errors, shown in Table I, 
denoted as HS (hardware synchronization). In both 
observations, the ground truths are obtained from the external 
verified vision system working at a frame rate of 120. 

TABLE I.  AVERAGE TRAJECTORIES UNIFIED Y ERRORS ON SA, HS, 
AND SWRTEA 

  HS SA SWRTEA 

Average 𝐸′𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 /mm 4.19 21.30 5.56 

STD/mm 0.397 2.19 0.804 

 

The results in table I show that our SWRTEA’s overall 
performance will be much better than the SA and can 
approach to the performance of hardware synchronization 
based method, which needs to calculate offline.  

V. CONCLUSION AND FUTURE WORKS 

We presented a novel approach to accurately estimate ball 

trajectory with concerning the asynchrony between two 

cameras on humanoid Ping-Pong robot in real-time. The 

accuracy of our approach has been verified by practical 

experiments in this paper. The results obtained through those 

experiments also demonstrated that the performance of our 

SWRTEA is able to well approach to hardware 

synchronization based method. In some cases which need the 

cameras synchronous strictly while the hardware connection 

is not available, our SWRTEA will be usually helpful. 

As our SWRTEA is estimated under the framework of 

optimization, it is easy to be extended to the conditions with 

more than two cameras that need to be synchronized.   

Future work will be focused on a further integration of the 

ball trajectory estimation and the pose estimation of the 

onboard cameras. It will then include the rigid constraint of 

the stereo cameras equipped on the robot into the 

optimization of the estimation of the ball trajectories. Thus all 

the visual servo information, i.e. ball trajectories, pose of the 

cameras, required by the moving humanoid robot to play 

Ping-Pong will be obtained simultaneously.  
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