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Abstract— This paper presents a novel appearance and shape
feature, RISAS, which is robust to viewpoint, illumination, scale
and rotation variations. RISAS consists of a keypoint detector
and a feature descriptor both of which utilise texture and
geometric information present in the appearance and shape
channels. A novel response function based on the surface
normals is used in combination with the Harris corner detector
for selecting keypoints in the scene. A strategy that uses
the depth information for scale estimation and background
elimination is proposed to select the neighbourhood around
the keypoints in order to build precise invariant descriptors.
Proposed descriptor relies on the ordering of both grayscale
intensity and shape information in the neighbourhood. Com-
prehensive experiments which confirm the effectiveness of the
proposed RGB-D feature when compared with CSHOT [1] and
LOIND[2] are presented. Furthermore, we highlight the utility
of incorporating texture and shape information in the design
of both the detector and the descriptor by demonstrating the
enhanced performance of CSHOT and LOIND when combined
with RISAS detector.

I. INTRODUCTION

Feature matching is a fundamental problem in both com-

puter vision applications (e.g., object detection and image

retrieval ) and robotic tasks (e.g., vision based Simultaneous

Localisation and Mapping). Two critical steps toward find-

ing robust and reliable correspondences are: 1) extracting

discriminative keypoints, 2) building invariant descriptors.

Over the past decades, there have been enormous progress

in developing robust features in two-dimensional image

space such as SIFT(Scale Invariant Feature Transform) [3],

SURF(Speed-Up Robust Feature) [4] and ORB(Oriented

FAST and Rotated BRIEF) [5]. These methods achieve ex-

cellent performance under significant scale and rotation vari-

ations when rich texture information is available, however,

their performances dramatically degrade under illumination

variations or in environments with poor texture information.

With the development of low-cost, real-time depth sensors

such as Kinect and Xtion, the geometric information of the

environment can be accessed easily, thus it is now prudent to

consider geometric information in building local descriptors.

Spin Image[6] is one of the well-known 3D descriptors which

is widely used in 3D surface registration tasks. Rusu et
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Fig. 1: Feature matching results using RISAS. The correct

matches are shown using green lines and incorrect matches

are denoted by red lines.

al. [7][8][9] also made contributions and proposed various

depth descriptors such as PFH (Persistent Feature Histogram)

and NARF (Normal Aligned Radial Feature). Despite the

above developments, relying on depth information alone

makes the correspondence problem more challenging due

to two facts: 1) sensor information from Kinect and Xtion

is generally incomplete 2) depth image is much less in-

formative compared with RGB/grayscale image, particularly

on regular shaped surfaces. Due to their complementary

nature, combining appearance and geometric information

to build descriptors with the aim of improved matching

performance has been explored by a number of researchers.

CSHOT(Color Signature of Histogram and OrienTation) and

BRAND(Binary Robust Appearance and Normal Descriptor)

are examples of such RGB-D descriptors. However, there has

been no attempt specifically to design keypoint detectors for

these descriptors. Thus the selected keypoints may not reflect

the best available regions in the scene for generating a robust

descriptor.

The main contribution of this paper is a novel Rotation,

Illumination and Scale invariant Appearance and Shape fea-

ture (RISAS) which tightly couples a discriminative RGB-D

keypoint detector and an invariant feature descriptor. As a

result of using texture and shape information in the design of

both the detector and the descriptor, RISAS shows superior

performance over current state-of-the-art methods under vari-

ous conditions. Fig. 1 demonstrates the capability of RISAS

for obtaining correspondences under severe rotation, scale

and illumination changes. Furthermore, benefits of using a

RGB-D keypoint detector is highlighted by the enhanced

performance of CSHOT descriptor when combined with the

RISAS detector. In addition, a public domain dataset which

can be used for future evaluations of RGB-D features is also

made available.

The paper is structured as follows: Section II reviews
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the related work on both texture and shape based features.

Section III introduces the novel keypoint detector com-

puted using both grayscale image and depth information.

A novel RGB-D descriptor, that is built on LOIND(Local

Ordinal Intensity and Normal Descriptor)[2] with significant

enhancements is also described in Section III. In Section

IV, the proposed feature is experimentally evaluated using

an existing public dataset as well as with a new dataset

that includes variations in viewpoint, illumination, scale and

rotation separately. Conclusion and future work are discussed

in Section V.

II. RELATED WORK

In general, feature extraction can be separated into two

sub-problems: keypoint detection and descriptor construc-

tion. Some of the feature extraction algorithms such as

SIFT[3] and SURF[4] tightly couple these two steps while

methods such as FAST(Features from Accelerated Segment

Test) and BRIEF(Binary Robust Independent Elementary

Features) only focus on either keypoint detection or feature

description.

A. 2D Appearance Features

SIFT is one of the most well-known visual features [3].

SIFT combines a Difference-of-Gaussian interest region de-

tector and a gradient orientation histogram as the descriptor.

By constructing the descriptor from a scale and orientation

normalised image patch, SIFT exhibits robustness to scale

and rotation variations. SURF, proposed by Bay et al.[4],

relies on integral images for image convolution. SURF uses

a Hessian matrix-based measure for the detector and a

distribution-based descriptor. Calonder et al.[10] proposed

BRIEF which uses a binary string as the descriptor. BRIEF

feature takes relatively less memory and can be matched

fast using Hamming distance in real-time with very limited

computational resources. However, BRIEF is not designed to

be robust to scale variations. Leutenegger et al.[11] proposed

BRISK(Binary Robust Invariant Scalable Keypoints) which

has a scale invariant keypoint detector and binary string like

descriptor. ORB, another well-known binary feature, pro-

posed by Rublee et al.[12], has been widely used in SLAM

community[13]. ORB is invariant to rotation variations and

more robust to noise compared with BRIEF.

B. 3D Geometric Features

In order to select salient keypoints from geometric infor-

mation, researchers have adopted different criteria to evaluate

the distinctiveness of the points in the scene, e.g., the normal

vector of the surface and curvature of the mesh. Survey

paper from Tombari et al. [14] categorises 3D keypoint

detectors into 2 classes: fixed-scale detectors and adaptive-
scale detectors and provides a detailed comparison of exist-

ing 3D keypoint detectors. Hebert contributed several well-

known adaptive-scale detectors such as LBSS (Laplace-

Beltrami Scale-Space) and MeshDoG[15]. Zhong et al. pro-

posed Intrinsic Shape Signature (ISS)[16] to characterise a

local/semi-local region of a point cloud and ISS had been

combined with various 3D descriptors in RGB-D descriptor

evaluation[17].

Descriptors can also be constructed using 3D geometric

information. Johnson and Hebert [6] proposed spin image

which is a data level descriptor that can be used to match

surfaces represented as meshes. With the development of

low-cost RGB-D sensors, geometric information of the en-

vironment can be easily captured thus 3D shape descriptors

have attracted renewed attention. More recent developments

include PFH [7], FPFH(Fast PFH) and SHOT (Signature of

Histograms of OrienTations). Rusu et al. proposed PFH [7]

which is a multi-dimensional histogram which characterises

the local geometry of a given keypoint. PFH is invariant

to position, orientation and point cloud density. Enhanced

version of PFH, termed FPFH [8] reduces the complexity of

PFH from O(k2) to O(k) where k is the number of points

in the neighbourhood of the keypoint. SHOT descriptor

proposed by Tombari et al. [18] is another example of a

widely used local surface descriptor. SHOT encodes the

histograms of the surface normals in different partitions in

the support region.

C. Combined Appearance and Depth Features

Lai et al. [19] have demonstrated that by combining

RGB and depth channels together, better object recognition

performance can be achieved. Tombari et al. [1] developed

CSHOT via incorporating RGB information into original

SHOT descriptor. Nascimento et al. [20] proposed a binary

RGB-D descriptor BRAND which encodes local information

as a binary string thus makes it feasible to achieve low

memory consumption. They have also demonstrated the ro-

tation and scale invariance of BRAND. More recently, Feng

et al. [2] proposed LOIND which encodes the texture and

depth information into one descriptor supported by orders

of intensities and angles between normal vectors. Most of

the current RGB-D fused descriptors adopt traditional 2D

keypoint detectors that rely only on appearance information.

For instance, BRAND is combined with CenSurE(Centre

Surround Extremas[21]) detector and LOIND uses keypoints

from multi-scale Harris detector. In CSHOT, in order to

eliminate the influence of detector, the keypoints are selected

randomly from the model. Clearly, selecting keypoints by ex-

ploiting geometrically information-rich regions in the scene

has the potential to enhance the matching performance of a

RGB-D descriptor.

Deep learning methods have been found to be very ef-

fective in object detection tasks using RGB-D images[22],

[23]. However, these are not directly comparable to low-

level RGB-D information processing which is the focus of

the present work.

III. METHOD

In this section, we describe the proposed Rotation, Illumi-

nation and Scale invariant Appearance and Shape feature,

RISAS, in detail. RISAS is built on our previous work

[2]. The detector and descriptor are explained in detail in

Section.III-A and Section.III-B.
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A. Keypoint Detector

The main advantage of using depth information in key-

point detection is the fact that information rich regions in the

depth channel are also given due consideration without being

ignored when these regions lack texture information.Both the

proposed detector and the descriptor use similar information

and thus are tightly coupled giving rise to superior matching

performance.

Fig. 2: Flowchart of the proposed RGB-D keypoint detec-

tor. Irgb is the original RGB image and Igrayscale is the

converted grayscale image. Inormal is the 3 channel normal

vector image and Idp is the dot product image.

The flowchart of the keypoint detection method is shown

in Fig. 2 and the key steps are listed below:

1) For each point in the depth image Idepth, we calculate

the surface normal vector. From the three components

of the normal vector, we create the corresponding

normal image Inormal with three channels.

2) Using Inormal, we compute the three angles [α, β, γ]
between each normal vector and the [x, y, z] axis of

the camera coordinate system respectively. The angle

range [0, π] is segmented into ns sectors labelled with

[1, ..., ns] and each computed angle is mapped into

one of these sectors. In this work, ns is set to be 4
as shown in Fig. 3. For example, normal vector n =[√

3
3 ,

√
3
3 ,

√
3
3

]
has the [α, β, γ] = [54.7◦, 54.7◦, 54.7◦]

will be labelled as [2, 2, 2];

ݕݔ
ݖ

ߛߚߙ
ߙ

ߚ
ߛ

main normal

1234

1234

1234

Discretized labeling

3D Histogram 
Computation

(for all normal 
vectors)

Select the dominant value 
as the main normal vector

Fig. 3: Flowchart of calculating the main normal.

3) Using this labelled image, we build a statistical his-

togram to capture the distribution of labels along each

channel. From this histogram, we choose the highest

entry for each channel and use the corresponding

label [nX , nY , nZ ] to represent the most frequent label

where nX , nY , nZ ∈ {1, ..., ns}. Using these three

values, we define the “main” normal vector nmain of

the depth image Idepth.

4) Calculate the dot-product between nmain and each

normal vector in Inormal. This describes the variation

of information in depth channel. We then normalise the

dot product value into range [0, 255]. Using this value,

we create the novel dot-product image Idp which is

approximately invariant to the viewpoint of the sensor.

5) We adopt the similar principle as in the Harris detec-

tor to compute the response value E(u, v) using the

grayscale image Igrayscale and the dot product image

Idp. E(u, v) is thresholded to select points that show

an extreme value in the weighted sum of two response

values from Igrayscale and Idp, as shown in (1):

E (u, v) =
∑
x,y

ω(x, y)[τ (I(x+ u, y + v)− I(x, y))
2

+ (1− τ) (P (x+ u, y + v)− P (x, y))
2
]

(1)

where (u, v) is the keypoint coordinate in image space

and ω(x, y) is the window function centred at (u, v)
which is selected to be a Gaussian function. I(u, v) is

the intensity value at (u, v) and P (u, v) is the normal-

ized dot product value at (u, v). Empirical study shows

that τ plays a critical role in balancing appearance

information and geometric information in keypoint

detection. Fig. 4 provides precision-recall curves for

different τ value for the same scenario. We selected

τ = 0.8 after numerical experimental evaluations.
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Fig. 4: Precision-Recall curves for difference τ value.

This strategy clearly identifies keypoints from regions that

are information rich in both appearance and geometry.

B. Feature Descriptor
1) Scale Estimation and Neighbourhood Region Selection:

For grayscale images, the scale of the keypoint is estimated

by finding the extreme value in scale space using an image

pyramid. Typical examples are as SIFT[3] and SURF[4].

With the development of modern RGB-D sensors such as

Kinect and Xtion, the scale can be easily measured using

the depth information captured from the sensor. In both

LOIND[2] and BRAND[20], the following empirical equa-

tion scales the distance range between [2, 8] into scale range

[1, 0.2] in a linear relationship. Scale value for distance less

than 2m is truncated as 1.

s = max

(
0.2,

3.8− 0.4max(2, d)

3

)
(2)

After s is estimated, the neighbourhood region that is used

to build the descriptor is selected with radius R in a linear
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relationship with scale value s, as shown in [2][20]. A

critical deficiency in this approach is that the neighbour-

hood region is selected without considering the geometric

continuity. Here we present a better method for selecting the

neighbourhood region as shown in Fig. 5.

Fig. 5: Neighbourhood selection: The default strategy (left)

selects the whole region (shown in red) which covers both

foreground and background area. However, the introduced

background points have an adverse effect on the local

descriptor. Our approach (right) eliminates the background

points (shown in blue) and constructs the descriptor using

the foreground (shown in red) only, leading to more robust

descriptor matching performances.

1) Based on (2), initial value of the scale s is estimated.

The radius R of the patch is computed using (3) which

was derived using extensive experimentation.

R =

(
−5 + 25 ·min

(
3,

max(0.2, smax)

max(0.2, smin)

))
· s (3)

Where smax and smin are the maximum and minimum

scale values in the image. It is an empirical value based

on the experiments, if scale variation is small in the

neighbourhood region, we can choose a smaller R and

vice versa. We denote the patch centred at keypoint

ki in 2D image space as Puv(ki) and the correspond-

ing patch in 3D point cloud space is represented as

Pxyz(ki);
2) For each point p ∈ Pxyz(ki), we remove the outlier

neighbouring points from the keypoint ki according to

(4). This step of eliminating the background was found

to produce significant improvements in the matching

performance.

f(p) =

{
1 if

∥∥∥p− ki

∥∥∥ < t

0 otherwise
(4)

where t is the threshold and set to be 0.1 meter in

this work. We only keep the neighbouring points with

f(p) = 1;

3) We conduct ellipsoid fitting for the processed 3D

neighbouring points P̄xyz(ki) based on the following

equation.

(x− xki)
2

a2
+

(y − yki)
2

b2
+

(x− zki)
2

c2
= 1 (5)

where a, b and c are the length of the axes. We project

the 3D ellipsoid into the image space for the new

accurate patch P̄uv with radius R̄ for further descriptor

construction.

2) Orientation Estimation: In LOIND[2], the dominant

orientation θ of the selected patch is computed from the

depth information only. Although it works reasonably well

under different scenarios it is sensitive to the noise in

neighbourhoods where the normal vectors are similar to

each other. In the following, we propose a new dominant

orientation estimation algorithm which is more robust and

efficient compared with LOIND[2]:

1) Given the processed 2D patch P̄uv and 3D patch

P̄xyz , we adopt PCA[24] to compute the eigenvalues

[e1, e2, e3] (in descending order) and corresponding

eigenvectors [v1,v2,v3].
2) Given the eigenvectors [v1,v2,v3], the 3D dominant

orientation d3D of the patch is computed as follows:

d3D =

⎧⎪⎨
⎪⎩

v1×v2

|v1×v2| if (e2 > γe1) ∧ (e3 ≤ γe1)

rejected if (e2 > γe1) ∧ (e3 > γe1)

v1 others

(6)

where γ is set within [0, 1]. If the e1 is significantly

larger than other two, the 3D dominant orientation is

set to be the corresponding eigenvector v1. If e2 is

close to e1, both eigenvector v1 and v2 are considered

in computing the dominant orientation by taking the

cross-product of these two vectors. Further if both

e3 and e2 are closer to e1 which means no clear

differences between 3 eigenvalues, this keypoint is

regarded as a noisy point and rejected. Threshold γ
determines when the second eigenvalues e2 can be

regarded as “close” enough to the largest eigenvalue

e1 which is set to be 0.8 through experiments.

3) Project the 3D dominant direction d3D into the image

plane and get the 2D dominant direction d2D. We use

θ to denote the angle between d2D and u axis in image

space.

3) Descriptor Construction: Based on the results from

the above steps, we can construct the descriptor of keypoint

ki = [u, v] using the neighbourhood region with radius R and

the angle θ. We follow the main ideas used in LOIND[2].

The descriptor is based on the relative order information

in both grayscale and depth channels. The descriptor is

constructed in a three-dimensional space, as show in Fig.

6 below where [x, y, z] axes denote the spatial labelling, the

intensity labelling and the angles labelling respectively.

Spatial Distribution

Intensity ordinal labeling

Normal vector ordinal labeling

Rasterization

3-D histogram

݊௩௘௖ ݊௩௘௖݊௩௘௖ ݊௩௘௖

݊௩௘௖ ݊௩௘௖ ݊௩௘௖ ݊௩௘௖

݊௕௜௡ ݊௕௜௡ ݊௕௜௡ ݊௕௜௡

݊௕௜௡݊௕௜௡݊௕௜௡݊௕௜௡

݊௣௜௘ = 1 ݊௣௜௘ = 2 ݊௣௜௘ = 3 ݊௣௜௘ = 4

݊௣௜௘ = 8݊௣௜௘ = 7݊௣௜௘ = 5 ݊௣௜௘ = 6

Fig. 6: Flowchart of the RGB-D descriptor.
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- Encoding Spatial Distribution
For spatial distribution, the pixels in the region

(u, v,R, θ) are labeled based on npie equal-size spa-

tial sectors. Larger the number of sectors, the more

discriminative the descriptor, but this clearly effects

on timing for both construction and matching.

- Encoding Grayscale Information
Instead of constructing the descriptor in the absolute

intensity space, we build the statistical histogram using

the relative intensity with respect to the intensity

value of the keypoint, in order to enhance illumination

invariance. According to the rank of all the pixels in the

patch, we group the intensity values into nbin equally

sized bins. For example, given 100 intensity levels and

10 bins, each bin has 10 intensity levels (i.e., orderings

of [1, 10], [11, 20], . . . , [91, 100] ).

- Encoding Geometric Information
Given the normal vector of each point, we first com-

pute the dot product between the normal vector of the

selected keypoint npk
and the normal vector of each

point in the neighbourhood patch npi .

ρi = |〈npk
,npi

〉| (7)

Due to the fact that normal vectors from small patches

are similar to each other, thus the distribution of ρi
is highly unbalanced where the majority of ρi falling

into the range close to 1. We set a threshold ρ̄ = 0.9
and any ρi ≥ ρ̄ are grouped in to one category. The

remaining dot products are ranked and grouped into

nvec bins. Points are then labelled based on the group

they belong to respectively. Therefore, in normal vector

space encoding, there are overall nvec + 1 labels.

During the empirical study, we tested 12 different com-

binations of parameters npie = {4, 8, 12} , nbin = {8, 16}
and nvec = {1, 2}. Corresponding precision-recall curves

are presented in Fig. 7. Considering both performance and

efficiency, we set parameters as npie = 8, nbin = 8, nvec = 2
thus we use a 192-dimensional ( dim = npie·nbin·(nvec+1))
descriptor for the experiments reported.
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Fig. 7: Parameter selection for descriptor construction.

IV. EXPERIMENTAL RESULTS

In this section, we compare the performance of RISAS

against CSHOT, LOIND and other methods. We also report

the results obtained using SIFT, to highlight the value of

using both appearance and depth channels. We use a public

RGB-D dataset which has been designed for object detec-

tion1. This dataset does not include examples of rotation,

scale or illumination changes independently and therefore is

not able to fully illustrate the effectiveness of the RISAS in

such situations. Therefore we have designed our own dataset

for further detailed evaluations2.

A. Evaluation Method

First we extract keypoints from two frames and construct

the descriptors for all these keypoints. Nearest Neighbour

Distance Ratio (NNDR) is used to establish the correspon-

dences of keypoints between a pair of images. We use the

reprojection error to determine whether a correspondence is

correct using the equation below:

||pi − (Rpj + t) || ≤ dmin (8)

where pi and pj are 3d points from frames i and j. R
and t denote the groundtruth rotation and translation and

are given during the evaluation. If the re-projection error is

less than dmin(set to be 0.05 m), the match is regarded as a

correct one. In the next subsection, we use the percentage of
inliers to describe the invariance of the features w.r.t scale

variations and we adopt Precision-Recall curves to evaluate

the performance of the RGB-D features under other types of

variations as used in [25] .

B. Experimental Results and Analysis

In this section, we present the following comparative

experiments to evaluate RISAS:

1) 3D ISS keypoint detector and RGB-D CSHOT de-

scriptor: ISS has been combined with different 3D

descriptors for evaluation in Guo et al.’s survey [17].

Implementations of these in PCL [26] were used in our

experiments.

2) Uniform sampled keypoints and RGB-D CSHOT de-

scriptor: Uniform sampling method for keypoint de-

tection was used in Aldoma et al.’s work [27] for 3D

object recognition3 In our experiments, the uniform

sampling method was adopted and the methods pro-

vided in PCL were used.

3) 2D SIFT keypoint detector and RGB-D CSHOT de-

scriptor: We used publically available implementations

of SIFT detector from VLFeat [28] and CSHOT de-

scriptor from PCL [26]. This was used as an example

of combination between a 2D keypoint detector and a

RGB-D descriptor.

4) Proposed RISAS keypoint detector and RGB-D

CSHOT descriptor: Matlab implementation of the

RISAS detector together with the PCL implementation

of CSHOT was used.

1http://rgbd-dataset.cs.washington.edu/
2This dataset can be downloaded from http://kanzhi.me/

rgbd-descriptor-dataset/ to make it possible for the community
to use this in future research

3Random sampling is used in the SHOT [18] paper and CSHOT paper[1].
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5) 2D SIFT feature (detector and descriptor) as imple-

mented in VLFeat.

6) Proposed RISAS keypoint detector and LOIND de-

scriptor that were implemented in Matlab.

All of the experiments were performed on a standard

desktop PC equipped with an Intel i5-2400 CPU.

C. Object Recognition Dataset

We selected the information-rich sequence table 1 from

the RGB-D scene dataset [19] and we present some of

the results in Fig. 8. As the figure indicates, RISAS and

the combination of RISAS detector and CSHOT descriptor

show larger area under the curve thus demonstrate the best

performance.

(a) Image 33 and 38.
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(c) Image 25 and 32.
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Fig. 8: Evaluation results on RGB-D scene dataset.

D. RGB-D Feature Evaluation Dataset

In the constructed dataset, we consider four common

variations: 1) viewpoint, 2) illumination, 3) scale and 4)

rotation.

1) Viewpoint Invariance: We collected 24 images by

moving the sensor around the objects in approximately 60◦

at 0.7 meters away from the objects. The angle between each

pair of consecutive frames is approximately 3◦. In order to

estimate the true transformation between each pair of frames

and to further evaluate the performance of descriptors, we

adopted RGBD-SLAM [29] to compute the optimised poses

and regarded the optimised poses as the ground-truth. We

selected the image which faces straight forward to the object

(in the middle with index 12) as the reference image and

matched two images on both left and right side (with indices

1, 6, 18 and 24) to the reference one. Image 12 and 24 are

presented in Fig. 9. The Precision-Recall curves of these four

pairs of images are shown in Fig. 10. RISAS is significantly

superior compared with all other methods. CSHOT performs

well when used with the RISAS detector while performing

surprisingly poor with SIFT and ISS detectors, and also with

uniform sampling. We also noticed that SIFT doesn’t perform

as expected under these scenarios with approximate 30◦ of

viewpoint change.

(a) Image 12 (b) Image 24

Fig. 9: Example images of viewpoint variations.
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(a) Between image 12 and 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

Uniform Sample+CSHOT

ISS detector+CSHOT

SIFT detector+CSHOT

RISAS detector+CSHOT

SIFT

RISAS detector+LOIND

RISAS

(b) Between image 12 and 6
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(c) Between image 12 and 18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

Uniform Sample+CSHOT

ISS detector+CSHOT

SIFT detector+CSHOT

RISAS detector+CSHOT

SIFT

RISAS detector+LOIND

RISAS

(d) Between image 12 and 24

Fig. 10: Precision-Recall curves under viewpoint variations.

2) Illumination Invariance: In order to validate the per-

formance of RISAS under illumination variations, we con-

structed a dataset which consists of five different levels of

illumination variations: 1) square 2) square root 3) cube, 4)

cube root and 5) natural illumination variation, as shown

in the left column in Fig. 11. The lightning condition of

reference image is similar to that is shown in Fig. 12(a). As

Fig. 11 demonstrates, the proposed RISAS feature shows the

best performance compared with other approaches, i.e. the

precision value of RISAS is almost equal to 1.0 when the

recall value is 0.7 regardless of the extent of the illumination

variation. It is interesting to note that SIFT performs quite

well while at the same time performance of CSHOT is

significantly enhanced by using it together with the RISAS

detector.

3) Scale Invariance: In this experiment, we collected 10
images with the variations in z axis of the sensor coordinate

system. The first frame captured at 1.1 m from the object was

selected as the reference image and all other images were

captured by moving the camera backwards in step of 0.1 m.

A pair of images of scale variations is shown in Fig. 12 and

the matching accuracy w.r.t the scale variation is shown in

Fig. 13. While RISAS gives the best performance, RISAS

detector used with CSHOT also demonstrates good results.

All the other methods are significantly inferior.
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(a) Square root illumination
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(b) Precision-Recall curve

(c) Square illumination
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(d) Precision-Recall curve

(e) Cube root illumination
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(f) Precision-Recall curve

(g) Cube illumination
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(h) Precision-Recall curve

(i) Illumination change using
ND mirror
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(j) Precision-Recall curve

Fig. 11: RISAS evaluation under illumination variations.

4) Rotation Invariance: We evaluated RISAS under 3D

rotation as illustrated in Fig. 14. The reference image is sim-

ilar to that is shown in Fig. 11(i). Precision-recall curves are

presented in Fig. 15. RISAS and the combination of RISAS

detector and CSHOT performs best under 3D rotations.

Discussion
Results from the experiments shows that overall, RISAS

provides the best results when compared with other ap-

proaches. RISAS shows clear advantages over other methods

under viewpoint variations. Under illumination variations,

(a) Original image as reference,
captured at distance ≈ 1.1m

(b) Image captured at the dis-
tance ≈ 1.9m

Fig. 12: Example images of scale variations.
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Fig. 13: Comparative matching results under scale variations.

Fig. 14: Example images of 3D rotations.
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Fig. 15: Precision-Recall curves corresponding to Fig. 14.

RISAS outperforms other methods significantly except for

LOIND. For the case of LOIND results are comparable. Un-

der scale and rotation variations, RISAS and the combination

of RISAS detector and CSHOT descriptor demonstrate the

best performance.

It is clear that using the RISAS detector with CSHOT sig-

nificantly enhances its matching performance. This confirms

our view that a suitable RGB-D detector is critical for the

performance of a RGB-D descriptor. In RISAS, the descrip-

tor performs well if the neighbourhood of the keypoint shows

higher normal vector variations. This variation is precisely

what we consider in developing the detector.

In its current unoptimised Matlab based implementation,

RISAS takes 20 seconds to complete both keypoint detection
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and descriptor construction for an image 640×480 captured

from Kinect/Xtion. On the same PC with C/C++ implemen-

tations in PCL [26], ISS[16] takes nearly 6 seconds and

CSHOT takes almost 1 second to process a similar frame.

Our expectation is that RISAS can be speeded up to about

2 seconds/frame when implemented in C/C++.

V. CONCLUSION

This paper presents an RGB-D feature which consists of a

highly coupled RGB-D keypoint detector and descriptor. A

novel 3D representation, dot-product image is combined with

grayscale image to extract the keypoints using a principle

similar to that of the Harris detector. We also propose an

enhanced RGB-D descriptor based on our previous LOIND

descriptor which significantly improves the matching perfor-

mance. RISAS is demonstrated to be invariant to viewpoint,

illumination, scale and rotation. RISAS detector is shown

to enhance the performance of CSHOT and LOIND that are

currently the best performing RGB-D descriptors. The future

work will focus on adopting RISAS in various robotic appli-

cations such as object detection and point cloud alignment

under challenging illumination conditions.
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