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Abstract— This paper presents a novel appearance and shape
feature, RISAS, which is robust to viewpoint, illumination, scale
and rotation variations. RISAS consists of a keypoint detector
and a feature descriptor both of which utilise texture and
geometric information present in the appearance and shape
channels. A novel response function based on the surface
normals is used in combination with the Harris corner detector
for selecting keypoints in the scene. A strategy that uses
the depth information for scale estimation and background
elimination is proposed to select the neighbourhood around
the keypoints in order to build precise invariant descriptors.
Proposed descriptor relies on the ordering of both grayscale
intensity and shape information in the neighbourhood. Com-
prehensive experiments which confirm the effectiveness of the
proposed RGB-D feature when compared with CSHOT [1] and
LOINDI2] are presented. Furthermore, we highlight the utility
of incorporating texture and shape information in the design
of both the detector and the descriptor by demonstrating the
enhanced performance of CSHOT and LOIND when combined
with RISAS detector.

I. INTRODUCTION

Feature matching is a fundamental problem in both com-
puter vision applications (e.g., object detection and image
retrieval ) and robotic tasks (e.g., vision based Simultaneous
Localisation and Mapping). Two critical steps toward find-
ing robust and reliable correspondences are: 1) extracting
discriminative keypoints, 2) building invariant descriptors.
Over the past decades, there have been enormous progress
in developing robust features in two-dimensional image
space such as SIFT(Scale Invariant Feature Transform) [3],
SURF(Speed-Up Robust Feature) [4] and ORB(Oriented
FAST and Rotated BRIEF) [5]. These methods achieve ex-
cellent performance under significant scale and rotation vari-
ations when rich texture information is available, however,
their performances dramatically degrade under illumination
variations or in environments with poor texture information.

With the development of low-cost, real-time depth sensors
such as Kinect and Xtion, the geometric information of the
environment can be accessed easily, thus it is now prudent to
consider geometric information in building local descriptors.
Spin Image[6] is one of the well-known 3D descriptors which
is widely used in 3D surface registration tasks. Rusu et
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Fig. 1: Feature matching results using RISAS. The correct
matches are shown using green lines and incorrect matches
are denoted by red lines.

al. [7][8][9] also made contributions and proposed various
depth descriptors such as PFH (Persistent Feature Histogram)
and NARF (Normal Aligned Radial Feature). Despite the
above developments, relying on depth information alone
makes the correspondence problem more challenging due
to two facts: 1) sensor information from Kinect and Xtion
is generally incomplete 2) depth image is much less in-
formative compared with RGB/grayscale image, particularly
on regular shaped surfaces. Due to their complementary
nature, combining appearance and geometric information
to build descriptors with the aim of improved matching
performance has been explored by a number of researchers.
CSHOT(Color Signature of Histogram and OrienTation) and
BRAND(Binary Robust Appearance and Normal Descriptor)
are examples of such RGB-D descriptors. However, there has
been no attempt specifically to design keypoint detectors for
these descriptors. Thus the selected keypoints may not reflect
the best available regions in the scene for generating a robust
descriptor.

The main contribution of this paper is a novel Rotation,
Ilumination and Scale invariant Appearance and Shape fea-
ture (RISAS) which tightly couples a discriminative RGB-D
keypoint detector and an invariant feature descriptor. As a
result of using texture and shape information in the design of
both the detector and the descriptor, RISAS shows superior
performance over current state-of-the-art methods under vari-
ous conditions. Fig. 1 demonstrates the capability of RISAS
for obtaining correspondences under severe rotation, scale
and illumination changes. Furthermore, benefits of using a
RGB-D keypoint detector is highlighted by the enhanced
performance of CSHOT descriptor when combined with the
RISAS detector. In addition, a public domain dataset which
can be used for future evaluations of RGB-D features is also
made available.

The paper is structured as follows: Section II reviews
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the related work on both texture and shape based features.
Section III introduces the novel keypoint detector com-
puted using both grayscale image and depth information.
A novel RGB-D descriptor, that is built on LOIND(Local
Ordinal Intensity and Normal Descriptor)[2] with significant
enhancements is also described in Section III. In Section
IV, the proposed feature is experimentally evaluated using
an existing public dataset as well as with a new dataset
that includes variations in viewpoint, illumination, scale and
rotation separately. Conclusion and future work are discussed
in Section V.

II. RELATED WORK

In general, feature extraction can be separated into two
sub-problems: keypoint detection and descriptor construc-
tion. Some of the feature extraction algorithms such as
SIFT[3] and SURF[4] tightly couple these two steps while
methods such as FAST(Features from Accelerated Segment
Test) and BRIEF(Binary Robust Independent Elementary
Features) only focus on either keypoint detection or feature
description.

A. 2D Appearance Features

SIFT is one of the most well-known visual features [3].
SIFT combines a Difference-of-Gaussian interest region de-
tector and a gradient orientation histogram as the descriptor.
By constructing the descriptor from a scale and orientation
normalised image patch, SIFT exhibits robustness to scale
and rotation variations. SURF, proposed by Bay et al.[4],
relies on integral images for image convolution. SURF uses
a Hessian matrix-based measure for the detector and a
distribution-based descriptor. Calonder et al.[10] proposed
BRIEF which uses a binary string as the descriptor. BRIEF
feature takes relatively less memory and can be matched
fast using Hamming distance in real-time with very limited
computational resources. However, BRIEF is not designed to
be robust to scale variations. Leutenegger et al.[11] proposed
BRISK(Binary Robust Invariant Scalable Keypoints) which
has a scale invariant keypoint detector and binary string like
descriptor. ORB, another well-known binary feature, pro-
posed by Rublee et al.[12], has been widely used in SLAM
community[13]. ORB is invariant to rotation variations and
more robust to noise compared with BRIEF.

B. 3D Geometric Features

In order to select salient keypoints from geometric infor-
mation, researchers have adopted different criteria to evaluate
the distinctiveness of the points in the scene, e.g., the normal
vector of the surface and curvature of the mesh. Survey
paper from Tombari et al. [14] categorises 3D keypoint
detectors into 2 classes: fixed-scale detectors and adaptive-
scale detectors and provides a detailed comparison of exist-
ing 3D keypoint detectors. Hebert contributed several well-
known adaptive-scale detectors such as LBSS (Laplace-
Beltrami Scale-Space) and MeshDoG[15]. Zhong et al. pro-
posed Intrinsic Shape Signature (ISS)[16] to characterise a
local/semi-local region of a point cloud and ISS had been

combined with various 3D descriptors in RGB-D descriptor
evaluation[17].

Descriptors can also be constructed using 3D geometric
information. Johnson and Hebert [6] proposed spin image
which is a data level descriptor that can be used to match
surfaces represented as meshes. With the development of
low-cost RGB-D sensors, geometric information of the en-
vironment can be easily captured thus 3D shape descriptors
have attracted renewed attention. More recent developments
include PFH [7], FPFH(Fast PFH) and SHOT (Signature of
Histograms of OrienTations). Rusu et al. proposed PFH [7]
which is a multi-dimensional histogram which characterises
the local geometry of a given keypoint. PFH is invariant
to position, orientation and point cloud density. Enhanced
version of PFH, termed FPFH [8] reduces the complexity of
PFH from O(k?) to O(k) where k is the number of points
in the neighbourhood of the keypoint. SHOT descriptor
proposed by Tombari et al. [18] is another example of a
widely used local surface descriptor. SHOT encodes the
histograms of the surface normals in different partitions in
the support region.

C. Combined Appearance and Depth Features

Lai et al. [19] have demonstrated that by combining
RGB and depth channels together, better object recognition
performance can be achieved. Tombari et al. [1] developed
CSHOT via incorporating RGB information into original
SHOT descriptor. Nascimento et al. [20] proposed a binary
RGB-D descriptor BRAND which encodes local information
as a binary string thus makes it feasible to achieve low
memory consumption. They have also demonstrated the ro-
tation and scale invariance of BRAND. More recently, Feng
et al. [2] proposed LOIND which encodes the texture and
depth information into one descriptor supported by orders
of intensities and angles between normal vectors. Most of
the current RGB-D fused descriptors adopt traditional 2D
keypoint detectors that rely only on appearance information.
For instance, BRAND is combined with CenSurE(Centre
Surround Extremas[21]) detector and LOIND uses keypoints
from multi-scale Harris detector. In CSHOT, in order to
eliminate the influence of detector, the keypoints are selected
randomly from the model. Clearly, selecting keypoints by ex-
ploiting geometrically information-rich regions in the scene
has the potential to enhance the matching performance of a
RGB-D descriptor.

Deep learning methods have been found to be very ef-
fective in object detection tasks using RGB-D images[22],
[23]. However, these are not directly comparable to low-
level RGB-D information processing which is the focus of
the present work.

IIT. METHOD

In this section, we describe the proposed Rotation, Illumi-
nation and Scale invariant Appearance and Shape feature,
RISAS, in detail. RISAS is built on our previous work
[2]. The detector and descriptor are explained in detail in
Section.III-A and Section.III-B.
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A. Keypoint Detector

The main advantage of using depth information in key-
point detection is the fact that information rich regions in the
depth channel are also given due consideration without being
ignored when these regions lack texture information.Both the
proposed detector and the descriptor use similar information
and thus are tightly coupled giving rise to superior matching
performance.

Sensor input

self-correlation

e ) ayscale pi=iehied
" B sum

self-correlation

Fig. 2: Flowchart of the proposed RGB-D keypoint detec-
tor. I,.4, is the original RGB image and Iy,qyscale 1s the
converted grayscale image. I, ,,mq; 1S the 3 channel normal
vector image and I, is the dot product image.

The flowchart of the keypoint detection method is shown
in Fig. 2 and the key steps are listed below:

1) For each point in the depth image 4,1, We calculate
the surface normal vector. From the three components
of the normal vector, we create the corresponding
normal image I,,o;mq; With three channels.

2) Using Ipormai, We compute the three angles [a, 53, 7]
between each normal vector and the [z,y, 2] axis of
the camera coordinate system respectively. The angle
range [0, 7] is segmented into n, sectors labelled with
[1,...,ns] and each computed angle is mapped into
one of these sectors. In this work, ng is set to be 4

as shown in Fig. 3. For example, normal vector n =
V3 M5 5 has the [, 8,7] = [54.7°,54.7°, 54.7°]
will be labelled as [2, 2, 2];

Discretized labeling

Select the dominant value
as the main normal vector

3D Histogram
Computation
(for all normal
vectors)

Fig. 3: Flowchart of calculating the main normal.

3) Using this labelled image, we build a statistical his-
togram to capture the distribution of labels along each
channel. From this histogram, we choose the highest
entry for each channel and use the corresponding
label [nx,ny,nz| to represent the most frequent label
where nx,ny,nz € {l,...,ns}. Using these three
values, we define the “main” normal vector n,,4;, of
the depth image Igepip.

4) Calculate the dot-product between n,,.;, and each
normal vector in I,,,mq;. This describes the variation

of information in depth channel. We then normalise the
dot product value into range [0, 255]. Using this value,
we create the novel dot-product image I4, which is
approximately invariant to the viewpoint of the sensor.
5) We adopt the similar principle as in the Harris detec-
tor to compute the response value F(u,v) using the
grayscale image Iyrqyscale and the dot product image
Iip. E(u,v) is thresholded to select points that show
an extreme value in the weighted sum of two response
values from Igrqyscale and Iy, as shown in (1):

E(u,v) =) wlzy)lr ([ +uy+v) — I(z,y))’
+(1=7) (P(x +uy +v) - Pla,y))’]
(D

where (u,v) is the keypoint coordinate in image space
and w(zx,y) is the window function centred at (u,v)
which is selected to be a Gaussian function. I(u,v) is
the intensity value at (u,v) and P(u,v) is the normal-
ized dot product value at (u, v). Empirical study shows
that 7 plays a critical role in balancing appearance
information and geometric information in keypoint
detection. Fig. 4 provides precision-recall curves for
different 7 value for the same scenario. We selected
7 = 0.8 after numerical experimental evaluations.

e—7=09
S—7=08 |1
—5—7r=07
—+—7=06 |

705
——7=04 ||
—+—7=03

702
06 - —*—7=01 |7

precision

0 o1 02 03 04 05 06 07 08 09 1
recall

Fig. 4: Precision-Recall curves for difference 7 value.

This strategy clearly identifies keypoints from regions that
are information rich in both appearance and geometry.

B. Feature Descriptor

1) Scale Estimation and Neighbourhood Region Selection:
For grayscale images, the scale of the keypoint is estimated
by finding the extreme value in scale space using an image
pyramid. Typical examples are as SIFT[3] and SURF[4].
With the development of modern RGB-D sensors such as
Kinect and Xtion, the scale can be easily measured using
the depth information captured from the sensor. In both
LOIND[2] and BRANDI[20], the following empirical equa-
tion scales the distance range between [2, 8] into scale range
[1,0.2] in a linear relationship. Scale value for distance less
than 2m is truncated as 1.

2

< — max <0'2’ 3.8 — O‘4max(2,d)>

3

After s is estimated, the neighbourhood region that is used
to build the descriptor is selected with radius R in a linear
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relationship with scale value s, as shown in [2][20]. A
critical deficiency in this approach is that the neighbour-
hood region is selected without considering the geometric
continuity. Here we present a better method for selecting the
neighbourhood region as shown in Fig. 5.

Fig. 5: Neighbourhood selection: The default strategy (left)
selects the whole region (shown in red) which covers both
foreground and background area. However, the introduced
background points have an adverse effect on the local
descriptor. Our approach (right) eliminates the background
points (shown in blue) and constructs the descriptor using
the foreground (shown in red) only, leading to more robust
descriptor matching performances.

1) Based on (2), initial value of the scale s is estimated.
The radius R of the patch is computed using (3) which
was derived using extensive experimentation.

. max (0.2, Symaz)
= (= 25 . aMV-S omaz ) )
R ( 5+ 25 - min (3, max(02, i) )) s (3)

Where S,,,4, and $,,i, are the maximum and minimum
scale values in the image. It is an empirical value based
on the experiments, if scale variation is small in the
neighbourhood region, we can choose a smaller R and
vice versa. We denote the patch centred at keypoint
k; in 2D image space as P“¥(k;) and the correspond-
ing patch in 3D point cloud space is represented as
Pryz ( k, ) :

2) For each point p € P?¥*(k;), we remove the outlier
neighbouring points from the keypoint k; according to
(4). This step of eliminating the background was found
to produce significant improvements in the matching
performance.

f(p)Z{1
0

where ¢ is the threshold and set to be 0.1 meter in
this work. We only keep the neighbouring points with
flp)=1;

3) We conduct ellipsoid fitting for the processed 3D
neighbouring points P*¥#(k;) based on the following
equation.

4)

otherwise

(x_xki)2 (y_yki)2 ?

([E - Zkz)

a? + b2 2
where a, b and c are the length of the axes. We project
the 3D ellipsoid into the image space for the new
accurate patch P“ with radius R for further descriptor

construction.

=1 (5

2) Orientation Estimation: In LOINDI[2], the dominant
orientation 6 of the selected patch is computed from the
depth information only. Although it works reasonably well
under different scenarios it is sensitive to the noise in
neighbourhoods where the normal vectors are similar to
each other. In the following, we propose a new dominant
orientation estimation algorithm which is more robust and
efficient compared with LOIND[2]:

1) Given the processed 2D patch P“Y and 3D patch
P7v% we adopt PCA[24] to compute the eigenvalues
[e1,e2,e3] (in descending order) and corresponding
eigenvectors [vq, va, V3.

2) Given the eigenvectors [v1, Vs, v3], the 3D dominant
orientation dsp of the patch is computed as follows:

Iziigl if (e2 > ve1) A (eg < veq)
d3p = { rejected if (ex > vey) A (e3 > vey) (6)
Vi others

where -+ is set within [0,1]. If the ey is significantly
larger than other two, the 3D dominant orientation is
set to be the corresponding eigenvector vy. If es is
close to e1, both eigenvector v and vo are considered
in computing the dominant orientation by taking the
cross-product of these two vectors. Further if both
ez and ey are closer to e; which means no clear
differences between 3 eigenvalues, this keypoint is
regarded as a noisy point and rejected. Threshold -~y
determines when the second eigenvalues e can be
regarded as “close” enough to the largest eigenvalue
e which is set to be 0.8 through experiments.

3) Project the 3D dominant direction dsp into the image
plane and get the 2D dominant direction dop. We use
6 to denote the angle between dsp and u axis in image
space.

3) Descriptor Construction: Based on the results from
the above steps, we can construct the descriptor of keypoint
k; = [u, v] using the neighbourhood region with radius R and
the angle 6. We follow the main ideas used in LOINDI[2].
The descriptor is based on the relative order information
in both grayscale and depth channels. The descriptor is
constructed in a three-dimensional space, as show in Fig.
6 below where [x,y, 2] axes denote the spatial labelling, the
intensity labelling and the angles labelling respectively.

_sdﬁlak '

I t Rasterization

-gt@k% JMLL

3-D histogram

Fig. 6: Flowchart of the RGB-D descriptor.
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- Encoding Spatial Distribution
For spatial distribution, the pixels in the region
(u,v, R, 0) are labeled based on n,;. equal-size spa-
tial sectors. Larger the number of sectors, the more
discriminative the descriptor, but this clearly effects
on timing for both construction and matching.

- Encoding Grayscale Information
Instead of constructing the descriptor in the absolute
intensity space, we build the statistical histogram using
the relative intensity with respect to the intensity
value of the keypoint, in order to enhance illumination
invariance. According to the rank of all the pixels in the
patch, we group the intensity values into ny;, equally
sized bins. For example, given 100 intensity levels and
10 bins, each bin has 10 intensity levels (i.e., orderings
of [1,10],[11,20],...,[91,100] ).

- Encoding Geometric Information
Given the normal vector of each point, we first com-
pute the dot product between the normal vector of the
selected keypoint n,, and the normal vector of each
point in the neighbourhood patch n,,,.

Pi = |<npk7npi> (7

Due to the fact that normal vectors from small patches
are similar to each other, thus the distribution of p;
is highly unbalanced where the majority of p; falling
into the range close to 1. We set a threshold p = 0.9
and any p; > p are grouped in to one category. The
remaining dot products are ranked and grouped into
Nyec bins. Points are then labelled based on the group
they belong to respectively. Therefore, in normal vector
space encoding, there are overall n,.. + 1 labels.
During the empirical study, we tested 12 different com-
binations of parameters n,,. = {4,8,12},n4, = {8,16}
and nye. = {1,2}. Corresponding precision-recall curves
are presented in Fig. 7. Considering both performance and
efficiency, we set parameters as npje = 8, Npin = 8, Nyec = 2
thus we use a 192-dimensional ( dim = ;e Npin - (Nvect1))
descriptor for the experiments reported.

precision

0 o1 02 03 04 05 06 07 08 09 1
recall

Fig. 7: Parameter selection for descriptor construction.

IV. EXPERIMENTAL RESULTS

In this section, we compare the performance of RISAS
against CSHOT, LOIND and other methods. We also report

the results obtained using SIFT, to highlight the value of
using both appearance and depth channels. We use a public
RGB-D dataset which has been designed for object detec-
tion'. This dataset does not include examples of rotation,
scale or illumination changes independently and therefore is
not able to fully illustrate the effectiveness of the RISAS in
such situations. Therefore we have designed our own dataset
for further detailed evaluations”.

A. Evaluation Method

First we extract keypoints from two frames and construct
the descriptors for all these keypoints. Nearest Neighbour
Distance Ratio (NNDR) is used to establish the correspon-
dences of keypoints between a pair of images. We use the
reprojection error to determine whether a correspondence is
correct using the equation below:

where p; and p; are 3d points from frames ¢ and j. R
and t denote the groundtruth rotation and translation and
are given during the evaluation. If the re-projection error is
less than dpin(set to be 0.05 m), the match is regarded as a
correct one. In the next subsection, we use the percentage of
inliers to describe the invariance of the features w.r.t scale
variations and we adopt Precision-Recall curves to evaluate
the performance of the RGB-D features under other types of
variations as used in [25] .

B. Experimental Results and Analysis

In this section, we present the following comparative
experiments to evaluate RISAS:

1) 3D ISS keypoint detector and RGB-D CSHOT de-
scriptor: ISS has been combined with different 3D
descriptors for evaluation in Guo et al.’s survey [17].
Implementations of these in PCL [26] were used in our
experiments.

2) Uniform sampled keypoints and RGB-D CSHOT de-
scriptor: Uniform sampling method for keypoint de-
tection was used in Aldoma et al.’s work [27] for 3D
object recognition® In our experiments, the uniform
sampling method was adopted and the methods pro-
vided in PCL were used.

3) 2D SIFT keypoint detector and RGB-D CSHOT de-
scriptor: We used publically available implementations
of SIFT detector from VLFeat [28] and CSHOT de-
scriptor from PCL [26]. This was used as an example
of combination between a 2D keypoint detector and a
RGB-D descriptor.

4) Proposed RISAS keypoint detector and RGB-D
CSHOT descriptor: Matlab implementation of the
RISAS detector together with the PCL implementation
of CSHOT was used.

'http://rqbd—dataset.cs.washington.edu/

2This dataset can be downloaded from http://kanzhi.me/
rgbd-descriptor-dataset/ to make it possible for the community
to use this in future research

3Random sampling is used in the SHOT [18] paper and CSHOT paper[1].
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5) 2D SIFT feature (detector and descriptor) as imple-
mented in VLFeat.

6) Proposed RISAS keypoint detector and LOIND de-
scriptor that were implemented in Matlab.

All of the experiments were performed on a standard
desktop PC equipped with an Intel i5-2400 CPU.

C. Object Recognition Dataset

We selected the information-rich sequence table_1 from
the RGB-D scene dataset [19] and we present some of
the results in Fig. 8. As the figure indicates, RISAS and
the combination of RISAS detector and CSHOT descriptor
show larger area under the curve thus demonstrate the best
performance.

—s—risas

\\\\\

(c) Image 25 and 32.

Fig. 8: Evaluation results on RGB-D scene dataset.

D. RGB-D Feature Evaluation Dataset

In the constructed dataset, we consider four common
variations: 1) viewpoint, 2) illumination, 3) scale and 4)
rotation.

1) Viewpoint Invariance: We collected 24 images by
moving the sensor around the objects in approximately 60°
at 0.7 meters away from the objects. The angle between each
pair of consecutive frames is approximately 3°. In order to
estimate the true transformation between each pair of frames
and to further evaluate the performance of descriptors, we
adopted RGBD-SLAM [29] to compute the optimised poses
and regarded the optimised poses as the ground-truth. We
selected the image which faces straight forward to the object
(in the middle with index 12) as the reference image and
matched two images on both left and right side (with indices
1,6,18 and 24) to the reference one. Image 12 and 24 are
presented in Fig. 9. The Precision-Recall curves of these four
pairs of images are shown in Fig. 10. RISAS is significantly
superior compared with all other methods. CSHOT performs
well when used with the RISAS detector while performing
surprisingly poor with SIFT and ISS detectors, and also with
uniform sampling. We also noticed that SIFT doesn’t perform
as expected under these scenarios with approximate 30° of
viewpoint change.

(b) Image 24

(a) Image 12

Fig. 9: Example images of viewpoint variations.
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(c) Between image 12 and 18  (d) Between image 12 and 24

Fig. 10: Precision-Recall curves under viewpoint variations.

2) Illumination Invariance: In order to validate the per-
formance of RISAS under illumination variations, we con-
structed a dataset which consists of five different levels of
illumination variations: 1) square 2) square root 3) cube, 4)
cube root and 5) natural illumination variation, as shown
in the left column in Fig. 11. The lightning condition of
reference image is similar to that is shown in Fig. 12(a). As
Fig. 11 demonstrates, the proposed RISAS feature shows the
best performance compared with other approaches, i.e. the
precision value of RISAS is almost equal to 1.0 when the
recall value is 0.7 regardless of the extent of the illumination
variation. It is interesting to note that SIFT performs quite
well while at the same time performance of CSHOT is
significantly enhanced by using it together with the RISAS
detector.

3) Scale Invariance: In this experiment, we collected 10
images with the variations in z axis of the sensor coordinate
system. The first frame captured at 1.1 m from the object was
selected as the reference image and all other images were
captured by moving the camera backwards in step of 0.1 m.
A pair of images of scale variations is shown in Fig. 12 and
the matching accuracy w.r.t the scale variation is shown in
Fig. 13. While RISAS gives the best performance, RISAS
detector used with CSHOT also demonstrates good results.
All the other methods are significantly inferior.
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Fig. 12: Example images of scale variations.
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Fig. 11: RISAS evaluation under illumination variations.

4) Rotation Invariance: We evaluated RISAS under 3D
rotation as illustrated in Fig. 14. The reference image is sim-
ilar to that is shown in Fig. 11(i). Precision-recall curves are
presented in Fig. 15. RISAS and the combination of RISAS
detector and CSHOT performs best under 3D rotations.

Discussion

Results from the experiments shows that overall, RISAS
provides the best results when compared with other ap-
proaches. RISAS shows clear advantages over other methods
under viewpoint variations. Under illumination variations,

Fig. 15: Precision-Recall curves corresponding to Fig. 14.

RISAS outperforms other methods significantly except for
LOIND. For the case of LOIND results are comparable. Un-
der scale and rotation variations, RISAS and the combination
of RISAS detector and CSHOT descriptor demonstrate the
best performance.

It is clear that using the RISAS detector with CSHOT sig-
nificantly enhances its matching performance. This confirms
our view that a suitable RGB-D detector is critical for the
performance of a RGB-D descriptor. In RISAS, the descrip-
tor performs well if the neighbourhood of the keypoint shows
higher normal vector variations. This variation is precisely
what we consider in developing the detector.

In its current unoptimised Matlab based implementation,
RISAS takes 20 seconds to complete both keypoint detection
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and descriptor construction for an image 640 x 480 captured
from Kinect/Xtion. On the same PC with C/C++ implemen-
tations in PCL [26], ISS[16] takes nearly 6 seconds and
CSHOT takes almost 1 second to process a similar frame.
Our expectation is that RISAS can be speeded up to about
2 seconds/frame when implemented in C/C++.

V. CONCLUSION

This paper presents an RGB-D feature which consists of a
highly coupled RGB-D keypoint detector and descriptor. A
novel 3D representation, dot-product image is combined with
grayscale image to extract the keypoints using a principle
similar to that of the Harris detector. We also propose an
enhanced RGB-D descriptor based on our previous LOIND
descriptor which significantly improves the matching perfor-
mance. RISAS is demonstrated to be invariant to viewpoint,
illumination, scale and rotation. RISAS detector is shown
to enhance the performance of CSHOT and LOIND that are
currently the best performing RGB-D descriptors. The future
work will focus on adopting RISAS in various robotic appli-
cations such as object detection and point cloud alignment
under challenging illumination conditions.

ACKNOWLEDGMENT

This work was supported by Joint Research Centre for
Robotics Research between University of Technology Syd-
ney and Zhejiang University. This work was also supported
in part by the National Natural Science Foundation of China
under Grant U1509210 and Grant U1609210, and in part by
the Natural Science Foundation of Zhejiang Province under
Grant LR13F030003.

REFERENCES

[1] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape
descriptor for enhanced 3d feature matching,” in Proc. IEEE Interna-
tional Conference on Image Processing (ICIP’2011), Sep 2011, pp.
809-812.

[2] G. Feng, Y. Liu, and Y. Liao, “Loind: An illumination and scale
invariant rgb-d descriptor,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA’ 2015), May 2015, pp. 1893-1898.

[3] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

[4] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Proc. European Conference on Computer Vision (ECCV’
2006), 2006, vol. 3951, pp. 404—417.

[5]1 E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in Proc. IEEE International Conference on
Computer Vision (ICCV’ 2011), Nov 2011, pp. 2564-2571.

[6] A. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” IEEE Transaction on Pattern
Analysis and Machine Intelligence (PAMI), vol. 21, no. 5, pp. 433—
449, May 1999.

[71 R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Persistent
point feature histograms for 3d point clouds,” in Proc. International
Conference on Intelligent Autonomous Systems (IAS’2008), 2008.

[8] R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in IEEE International Conference on
Robotics and Automation (ICRA’ 2015), May 2009, pp. 3212-3217.

[9]1 R. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition and
pose using the viewpoint feature histogram,” in Proc. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS’2010),
Oct 2010, pp. 2155-2162.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

4015

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary
robust independent elementary features,” Proc. European Conference
on Computer Vision (ECCV’2010), pp. 778-792, 2010.

S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. 1EEE, 2011, pp. 2548-2555.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in [EEE International Conference on
Computer Vision (ICCV’2011). 1EEE, 2011, pp. 2564-2571.

R. Mur Artal and J. D. Tardos, “Probabilistic Semi-Dense Mapping
from Highly Accurate Feature-Based Monocular SLAM,” in Proc.
Robotics: Science and Systems (RSS), Rome, Italy, Jul 2015.

F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of
3d keypoint detectors,” International Journal of Computer Vision, vol.
102, no. 1-3, pp. 198-220, 2013.

R. Unnikrishnan and M. Hebert, “Multi-scale interest regions from un-
organized point clouds,” in Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on.
IEEE, 2008, pp. 1-8.

Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object
recognition,” in Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on. 1EEE, 2009, pp. 689-696.
Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, “A
comprehensive performance evaluation of 3d local feature descriptors,”
International Journal of Computer Vision, vol. 116, no. 1, pp. 66-89,
2016.

F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of his-
tograms for local surface description,” in Proc. European Conference
on Computer Vision (ECCV’2010), 2010, pp. 356-369.

K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learning for object
recognition combining rgb and depth information,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA’2011),
May 2011, pp. 4007—4013.

E. Nascimento, G. Oliveira, M. Campos, A. Vieira, and W. Schwartz,
“Brand: A robust appearance and depth descriptor for rgb-d images,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’ 2012), Oct 2012, pp. 1720-1726.

M. Agrawal, K. Konolige, and M. R. Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in European
Conference on Computer Vision. Springer, 2008, pp. 102-115.

S. Gupta, R. Girshick, P. Arbeldez, and J. Malik, “Learning rich
features from rgb-d images for object detection and segmentation,”
in European Conference on Computer Vision.  Springer, 2014, pp.
345-360.

M. Schwarz, H. Schulz, and S. Behnke, “Rgb-d object recognition and
pose estimation based on pre-trained convolutional neural network fea-
tures,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on. 1EEE, 2015, pp. 1329-1335.

1. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
K. Mikolajezyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 10, pp. 1615-1630, 2005.

R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1-4.

A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast,
B. Zeisl, R. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point
cloud library: Three-dimensional object recognition and 6 dof pose
estimation,” IEEE Robotics & Automation Magazine, vol. 3, no. 19,
pp. 80-91, 2012.

A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library
of computer vision algorithms,” http://www.vlfeat.org/, 2008.

F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” Robotics, IEEE Transactions on,
vol. 30, no. 1, pp. 177-187, Feb 2014.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 03:45:19 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


