
Robotics and Autonomous Systems 150 (2022) 103997

a

b

p
i
g
c
f

a
b
o
r
t

c
h

Z

(

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

CL-MAPF:Multi-Agent Path Finding for Car-Like robots with kinematic
and spatiotemporal constraints
Licheng Wen a, Yong Liu a,b,∗, Hongliang Li a
College of Control Science and Engineering, Zhejiang University, Hangzhou, China
Huzhou Institute of Zhejiang University, Huzhou, China

a r t i c l e i n f o

Article history:
Received 26 May 2021
Received in revised form 21 December 2021
Accepted 22 December 2021
Available online 30 December 2021

Keywords:
Multi-agent systems
Path planning
Mobile robots

a b s t r a c t

Multi-Agent Path Finding has been widely studied in the past few years due to its broad application
in the field of robotics and AI. However, previous solvers rely on several simplifying assumptions. This
limits their applicability in numerous real-world domains that adopt nonholonomic car-like agents
rather than holonomic ones. In this paper, we give a mathematical formalization of the Multi-Agent
Path Finding for Car-Like robots (CL-MAPF) problem. We propose a novel hierarchical search-based
solver called Car-Like Conflict-Based Search to address this problem. It applies a body conflict tree
to address collisions considering the shapes of the agents. We introduce a new algorithm called
Spatiotemporal Hybrid-State A* as the single-agent planner to generate agents’ paths satisfying both
kinematic and spatiotemporal constraints. We also present a sequential planning version of our
method, sacrificing a small amount of solution quality to achieve a significant reduction in runtime.
We compare our method with two baseline algorithms on a dedicated benchmark and validate it in
real-world scenarios. The experiment results show that the planning success rate of both baseline
algorithms is below 50% for all six scenarios, while our algorithm maintains that of over 98%. It also
gives clear evidence that our algorithm scales well to 100 agents in 300 m × 300 m scenario and is
able to produce solutions that can be directly applied to Ackermann-steering robots in the real world.
The benchmark and source code are released in https://github.com/APRIL-ZJU/CL-CBS. The video of the
experiments can be found on YouTube.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Multi-Agent Path Finding, also known as MAPF, is a crucial
lanning problem in the study of multi-robot systems. Each agent
s required to move from an initial starting place to a specified
oal and avoid collisions with each other. Due to its broad appli-
ations in AI and robotics community, research on MAPF has been
lourishing in the past few years.

MAPF is known to be an NP-hard problem [1]. Famed
pproaches to solve this problem can be classified into reduction-
ased methods [2–4], A*-based methods [5–8], prioritized meth-
ds [9,10] and dedicated search-based methods [11–13]. Some
esearches also take partial kinematic constraints into considera-
ion [14–17].

MAPF can be applied to several contemporary scenarios in-
luding self-driving cars, autonomous straddle carriers [18], ware-
ouse robots [19], unmanned surface vehicles [20] and office

∗ Corresponding author at: College of Control Science and Engineering,
hejiang University, Hangzhou, China.

E-mail addresses: wenlc@zju.edu.cn (L. Wen), yongliu@iipc.zju.edu.cn
Y. Liu), lihongliang_zju@zju.edu.cn (H. Li).
ttps://doi.org/10.1016/j.robot.2021.103997
921-8890/© 2021 Elsevier B.V. All rights reserved.
robots [21]. These industrial and service robots are generally
non-holonomic and designed as car-like vehicles in practice.
However, almost all the above methods are based on assumptions
that agents are modeled as disks and are capable of rotating in
place. These solvers also adopt discrete 4-neighbor grids as their
search space.

The car-like robots, referred to agents based on the Ackermann-
steering model, are in nature with rectangle shapes and have
minimum turning radii. Original MAPF solvers can be applied
by reducing the grid-graph resolution and adopting dedicated
controllers to track generated paths. However, this may generate
coarser solutions and degrade their practical applicability since
the controllers cannot track paths precisely, especially those
with sharp turns. Also, when the planning problem extends to
the continuous workspace, the piecewise-linear path generated
by the standard A* is not guaranteed to be executable by a
non-holonomic agent. This causes these methods, which are
optimal for the original MAPF problem, to be unsolvable for
the CL-MAPF problem. These solvers also apply various types of
conflicts, including vertex conflicts and edge conflicts, to avoid
collisions between moving agents [22]. Nevertheless, the types
of conflicts adopted in different situations depending on their

https://doi.org/10.1016/j.robot.2021.103997
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2021.103997&domain=pdf
https://github.com/APRIL-ZJU/CL-CBS
https://youtu.be/KThsX04ABvc?t=3
mailto:wenlc@zju.edu.cn
mailto:yongliu@iipc.zju.edu.cn
mailto:lihongliang_zju@zju.edu.cn
https://doi.org/10.1016/j.robot.2021.103997

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

s
s

M
c
(
c
s
n
c

2

c
t
s
s
a
w
c
f
s
i
b
s
c
t
C
f
c
l
c
t
t
A
m

Fig. 1. Our proposed method tested on seven Ackermann-steering robots produced by WeTech.
pecific environments, and they cannot represent all the collision
cenarios.
To address these concerns, it is essential to formalize the

APF problem for car-like robots. We propose a novel hierar-
hical search-based solver called Car-Like Conflict-Based Search
CL-CBS) to settle this problem. It gains the advantage of short
omputation time using a binary conflict search tree while pos-
essing the ability to plan kinematic-feasible paths for a large
umber of car-like robots in a continuous workspace. Our main
ontributions are summarized as follows:

• We present a search-based CL-MAPF solver, which gains the
advantage of short computation time using a binary conflict
search tree while possessing the ability to plan kinematic-
feasible paths in a continuous workspace for a large number
of car-like robots.
• We also introduce a sequential version of our original

method, which significantly reduces search time at the
expense of a marginal loss in solution quality.
• We conduct experiments in both simulated and physical

environments. They demonstrate our method can scale well
to large amount of agents and produce solutions directly
applied to car-like robots in real-world scenes.

. Related works

MAPF problem has been widely studied in the robotic and AI
ommunity. Some methods from the early years are reduction
o other well-studied combinatorial problems [2–4]. Recently,
everal solvers using search techniques have been proposed to
olve this problem. Naive applications of such search algorithms
re variants of A*. M*[5] expands search nodes to all possibilities
hen conflict occurs. OD-recursive-M* (ODrM*) [7] adapts the
oncept of Operator Decomposition [6] to keep the branching
actor small. The Safe Interval Path Planning (SIPP) [8] runs an A*
earch in a graph where each node represents a pair of vertexes
n the workspace and a safe time interval. Another well-known
ranch of MAPF solvers nowadays is based on a two-level optimal
olver called Conflict-Based Search (CBS) [11], which conducts a
ombination search with the high-level binary search tree and
he low-level space–time A*. ICBS [12] and CBSH [13] improves
BS further by classifying conflicts and resolving cardinal con-
licts first. CBSH [13] improves it further by aggregating cardinal
onflicts and computing admissible heuristics to guide the high-
evel search. Finally, the prioritized approach [10,23,24] is also a
ommon choice in numerous cases. This kind of planner solves
he original MAPF problem swiftly and provides solutions close
o optimal, but it lacks the algorithm’s completeness guarantee.
lso, such solutions can hardly be applied to non-holonomic

ulti-robot systems.

2

Most of the methods above use some assumptions, like ig-
noring the robot’s kinematic constraints and using discrete grid
graphs. But when the planning problem extends to the continu-
ous workspace, the piecewise-linear path generated by the stan-
dard A* is not guaranteed to be executable by a non-holonomic
agent, i.e., the path is not drivable for car-like robots. Some
researchers have started lifting some of the assumptions in their
latest works. [14] takes velocity limits into account and provides
a guaranteed safety distance between robots. [15] presents a gen-
eralized version of CBS for large agents that occupy more than one
grid. It adds multiple constraints for one agent while expanding
search nodes. [25] further generalizes the classic MAPF problem
and proposes the method to plan for multiple agents with differ-
ent sizes regarding time delay in robot execution. SIPPwRT [16]
combines the token passing algorithm with SIPP for pickup and
delivery scenarios. It plans paths for non-holonomic robots in
various sizes. As for optimization-based approaches, [26] produce
time-optimal trajectories for heterogeneous quadcopters. It plans
in 2D Cartesian space instead of 3D physical space and suffers
from a long planning time. A more efficient algorithm for multi-
quadrotors trajectory planning in obstacle-dense environments is
proposed in [27]. It adopts a front-end search-based approach to
provide guidance for back-end trajectory optimization. [28] ports
such approach to non-holonomic mobile robots in the obstacle-
rich environment and presents a prioritized optimization method
which decouples the problem and improves the computational
efficiency significantly. However, optimization-based methods
are excessively time-consuming and often fail to find a feasible
solution in a limited time when the number of agents increases.

There are also noticeable studies on distributed collision avoid-
ance for multiple non-holonomic robots. Traditional approaches
for single robot can be applied, including artificial potential field
[29], dynamic window approach [30], model predictive con-
trol [31] and machine learning technique [32]. The reciprocal
velocity obstacle (RVO) [33] is a decentralized algorithm allowing
multiple robots to avoid each other without any communication.
Optimal reciprocal collision-avoidance (ORCA) [34] succeeds the
concept of velocity obstacle and solves the problem faster by
casting into a low-dimensional linear program. Bicycle recipro-
cal collision avoidance (B-ORCA) [35] and ϵCCA [36] are two
adaptions of ORCA for car-like vehicles. They combine velocity
obstacles with generic tracking control and generate collision-
free motions under vehicles’ kinematic constraints. Nevertheless,
these ORCA-type methods need global path planners to avoid
deadlocks in obstructed scenarios, and it does not guarantee that
every robot will reach its goal.

3. CL-MAPF problem

Classic MAPF solvers usually consider holonomic agents mov-
ing in cardinal directions and neglect agents’ sizes. This will cause

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

t
a
t
p
r

3

r
i
p
u
i
r

[

o
y
t
a
r

a

ω

Fig. 2. Ackermann-steering model.
he generated solutions cannot be executed on real-world multi-
gent systems, especially for those composed of car-like robots. In
his section, we first present the robot kinematic model and then
resent the definition of Multi-Agent Path Finding for Car-Like
obot (CL-MAPF) problem.

.1. Robot kinematic model

Kinematic constraints must be considered for non-holonomic
obots. Several path models like circular trajectories, asymptot-
cally heading trajectories apply to different kinds of robots in
ractice. For car-like robots discussed in this paper, we commonly
se Ackermann-steering geometry as the kinematic model shown
n Fig. 2. The kinematic constraints forbid it to move laterally and
otate in place [37].

The state for an Ackermann-steering robot is denoted by z =
x, y, θ]T. The origin of rigid body frame (x, y) places at the center
f robot’s rear axle. The x-axis of body frame points alongside
aw angle θ , y-axis points to the left side of the robot. We use v
o represent the robot’s velocity, and φ to represent the steering
ngle of front wheels. When the steering angle is fixed at φ,
adius of the circular trajectory r which robot moves along can
be calculated by r = L/ tanφ. L denotes agent’s body length.

The kinematic relation between the steering angle φ and the
ngular velocity of yaw ω is defined as:

= θ̇ =
v

L
tanφ (1)

We assume that time is discrete in the multi-agent system.
The control input of the robot is defined as u = [v, ω]T. By
discretizing and recursively integrating, we can calculate robot
state at timestep t as following:

zt = [x, y, θ]T = zt−1 + [v cos θ, v sin θ, ω]T (2)

The robot’s velocity v is bounded as vbmax ≤ v ≤ vfmax, where
vbmax < 0 and vfmax > 0 represent the max speed when robot
moves forward or backward, respectively. The steering angle is
restricted by φmax, which implies each Ackermann-steering robot
should maintain a minimum turning radius rmin during the whole
path.

3.2. Problem definition

We formalize the CL-MAPF problem as follows. Consider a
multi-agent system containing N car-like agents {a1, a2, . . . , aN}
operating in a continuous workspace W . The obstacles in the
workspace are assumed to be known and occupy an arbitrary
region O ⊂ W . The free workspace for agents is F = W\O. The
state for an agent in the system is denoted as z = [x, y, θ]T.
3

We assume that time is discrete in the multi-agent system,
and each agent keeps moving at its constant speed unless it is
in a stop state at that time step. We also assume that the agent
can reach a constant speed immediately after a stop state without
additional acceleration time and vice versa. Given a car-like agent
ai, the region in W occupied by the body of ai is denoted by R(zi).
The function R is impacted by the size of the robot. Let zit be the
state of agent ai at time t . A task is assigned to ai to move from
its start state si ∈ F to its goal state g i

∈ F , of course both states
are within the free workspace. It is guaranteed that for all i ̸= j,
R (si) ∩R

(
sj
)
= ∅ and R (gi) ∩R

(
gj

)
= ∅.

A path πi = [zi0, z
i
1, . . . z

i
Ti
, . . .] is feasible if all the following

three conditions are satisfied:

• πi should begin at its start state πi[0] = si and reach its goal
state after limited timesteps πi[t] = g i,∀t ≥ Ti.
• Each movement in πi should satisfy the Ackermann kine-

matic model as Eq. (2).
• Agent ai should never collide with obstacles when moving

along its path, R(πi[t]) ⊂ F,∀t .

We adopt the concept of generalized conflict proposed in [38]
and use a tuple

⟨
ai, aj, t

⟩
to denote a body conflict between agent

ai and aj. It implies those two agents collide at time t , that is
R (πi[t]) ∩R

(
πj[t]

)
̸= ∅.

A solution for CL-MAPF problem is a set of feasible paths for all
N agents where each two of them have no body conflict at any
timestep. That is

R (πi[t]) ∩R
(
πj[t]

)
= ∅, ∀t ≥ 0, i ̸= j. (3)

A CL-MAPF example is shown in problem input of Fig. 3. With
reference to the classic MAPF problem [22], the solutions can be
evaluated using two commonly used functions: makespan and
average flowtime.

Makespan is the same as its original definition, which is de-
fined as the time for all agents to reach their goals:

max
1≤i≤N

Ti (4)

Average flowtime is a metric used to evaluate the mean per-
formance of the entire solution, defined as the average time for
each agent reaching their goal:

1
N

N∑
i=1

Ti (5)

4. Methodology

The aforementioned optimal methods in Section 2 are aimed
at solving the original MAPF problem in the discrete space. For

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

s
c

t
S
s
t
t
t
d

t
i

d⟨
m
a

Fig. 3. A pipeline of Car-like CBS. Agents’ start states are denoted as solid colored rectangle and goal states as dotted outline rectangles. Gray area represents the
obstacle region O. A body conflict between blue agent and green agent is detected in middle figure. Then two child nodes are expanded with each contains a new
constraint and spatiotemporal hybrid-state A* is performed for the agent receiving it. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
l
a
c
c
m
N
b

w
F
t
a
m
s

example, several methods adopt the standard A* algorithm as the
lower-level planner, which is optimal in the grid world. But when
the planning problem extends to the continuous workspace, the
piecewise-linear path generated by the standard A* is not guaran-
teed to be executable by a non-holonomic agent, i.e., the path is
not drivable for car-like robots. This causes these methods, which
are optimal for the original MAPF problem, to be unsolvable for
the CL-MAPF problem.

We introduce a novel solver for the CL-MAPF problem called
Car-Like CBS (CL-CBS). The high-level body conflict search tree is a
variant of the conflict tree in original CBS. It only needs to handle
inter-agent collisions, in particular, whether there is a body con-
flict in the whole solution without considering specific kinematic
constraints. As for the low-level pathfinding method for a single
agent, we proposed Spatiotemporal Hybrid-State A* algorithm to
cope with both kinematic and spatiotemporal constraints. We
also introduce a sequential planning version of our method at
the end of this section. It remarkably shortens the searching time
with little sacrifice on solution quality.

4.1. Body conflict tree

The classic MAPF solvers apply various types of conflicts (the
most common ones are vertex conflicts and edge conflicts) to
avoid collisions between two single-agent paths. Yet these con-
flicts cannot represent all situations of agent colliding. Benefit
from planning in a continuous workspace, we can simply use
body conflicts to describe all inter-agent collision scenarios. We
propose a binary body conflict tree (BCT) and perform best-first
earch on it. Each node on BCT contains a set of inter-agent
onstraints and a solution that satisfies these constraints.
The expansion of the BCT works is shown in Fig. 3. First,

he root node contains no inter-agent constraints for all agents.
ubsequently, the path planner generates feasible paths from the
tart state to the goal state for each agent. When the BCT is not
he empty set, node N with the smallest cost among all nodes in
he BCT is popped out. In general, we define the cost of a node as
he sum of all path lengths in it. We then conduct a body conflict
etection for all paths in the node N .
If there are no body conflicts in N , then N.path is a solution to

he problem. Conversely, if there are one or more body conflicts
n node N , we locate the earliest conflict in time as the body
conflict to be handled at node N . Say the earliest conflict is
enoted as

⟨
ai, aj, t

⟩
, we produce two inter-agent constraints:

aj,N.path[j](t), t
⟩
for ai and ⟨ai,N.path[i](t), t⟩ for aj. The for-

er constraint denote that ai is expected to avoid the specified
rea R N.path[j](t) at timestep t , likewise the latter. Then two
()

4

Algorithm 1: Body Conflict Tree
1 Root.constraints← ∅;
2 Root.path← path_planner(ai,∅), for each ai in system;
3 BCT← {Root};
4 while BCT ̸= ∅ do
5 N ← mincost N ′, ∀N ′ ∈ BCT;
6 BCT← BCT \{N};
7 C ← search for first body conflict in N.path;
8 if C = ∅ then
9 return N.path;

10 end
11 foreach ai appears in C do
12 N ′ ← N;
13 Add

⟨
aj,N.path[j](t), [t − k, t + k]

⟩
to

N ′.constraint[i];
14 N ′.path[i] ← path_planner(ai,N ′.constraint[i]);
15 if N ′.path[i] ̸= ∅ then
16 BCT← BCT ∪

{
N ′

}
;

17 end
18 end
19 end
20 return ∅;

child node of N are generated, each contains one of inter-agent
constraints. At last, we perform a low-level replanning process
in each of the child nodes for the agent receiving the extra
constraint. The pseudocode of BCT is shown in Algorithm 1.

Surely, it is possible that more than two agents in node N col-
ide at the same moment t , especially when the system contains
large number of agents. Although our definition of the body

onflict only represents the collision of two agents, the above
ase of more than two agents’ collision can be decomposed into
ultiple body conflicts between two agents. For the current node
, we still handle only one body conflict and leave the remaining
ody conflicts to the child nodes of N for processing.
Due to factors such as communication interference, the robots

ill not execute paths as precisely as we scheduled in practice.
or example, agent ai is scheduled to arrive at πi[t] at time
, but due to a 2-timestep execution delay, it actually arrives
t the location at t + 2. We assume that each robot in the
ulti-agent system will have a total execution delay of up to k
econds. When an inter-agent conflict

⟨
ai, aj, t

⟩
occurs, we need

to ensure that no further collisions due to execution delays occur

within k seconds before or after time t . Thus in the algorithm

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

p

4

s

s
d
c
p

a
s
e
f
i
d
t
f
n
i
O
e

c
l

m
C
i
S
C
i

n
a
c
w
m
b
G
i
N
f
b

e
T
a
i
1

t
f
s
i
f
t

a
o
i
t

Algorithm 2: Spatiotemporal Hybrid-State A* for ai
1 Root.state← si;
2 Root.time← 0;
3 Open← {Root};
4 while Open̸= ∅ do
5 N ← argminN ′. f, ∀N ′ ∈Open;
6 if N.state near g i then
7 Ngoal ← Analytic_Expand(N.state, g i);
8 πi ← Backtracking search from Ngoal;
9 if No collision in πi then

10 return πi;
11 end
12 end
13 States← Get_ChildNode(N .state,mi);
14 foreach s ∈ States do
15 N ′.state← s;
16 N ′.time← N.time +1;
17 if Check_Collison(N ′.state ,N ′.time) = ∅ then
18 N ′.h← Admissible_Heuristic(N ′.state,g i);
19 Update N ′.g,N ′.f ;
20 if N ′.state not appear in Open then
21 Open← Open ∪

{
N ′

}
;

22 else if N ′.g < NinOpen.g then
23 Update NinOpen with N ′.state, N ′.f ;
24 end
25 end
26 end
27 end
28 return ∅;

implementation, the inter-agent constraints last for a certain time
window

⟨
aj,N.path[j](t), [t − k, t + k]

⟩
to ensure the safety of the

assage, see Line 13 in Algorithm 1.

.2. Spatiotemporal hybrid-state A*

As mentioned above, the high-level body conflict tree requires
ingle-agent planner to:

• Plan paths satisfying the kinematic constraint to be executed
by Ackermann-steering agents;
• Plan paths satisfying spatiotemporal inter-agent constraints

with other agents;

A well-known path planner applied to the continuous 3D state
pace for car-like robots is Hybrid-State A* [39], but it cannot
eal with spatiotemporal constraints. We proposed an adaptation
alled Spatiotemporal Hybrid-State A* (SHA*) as the single-agent
lanner for Car-like CBS.
The SHA* path planner maintains an open list and conducts
best-first search in it. Each node N in the open list contains

everal key elements. The state and time of N represent the agent
xpanding to the given location at the specified time. The g , h and
function are the same as the original definitions of A*, where g

s the cost of the path from the start node to N , h is the heuristic
istance that estimates the cost of the cheapest path from N to
he goal and N.f = N.g + N.h. When the node with the smallest
is popped out from the open list, we first check whether it is
ear the goal state. If so, the Analytical_Expand function is
nvoked to complete the path from the current state to the goal.
therwise, we expand the node and perform a collision check on

ach newly generated node. If it satisfies the requirements, we

5

ompute the heuristic function of the node and update the open
ist. The detailed pseudocode is shown in Algorithm 2.

For a node in an open list, an overwhelming issue is to deter-
ine whether its status is legal. The robot model utilizes custom
heck_Collision function to determine whether the state fits
n the free workspace F and satisfies the inter-agent constraints.
pecifically, node N is legal if and only if R(N.state)∩C = ∅,∀C ∈
N.time and R(N.state) ⊂ F , where CN.time denotes the set of
nter-agent constraints at time N.time.

Given the continuous nature of the workspace and the discrete
ature of time, we employ the concept of motion primitives [40]
nd discretize the agent’s control inputs into an action set U . For
ar-like robots, there are seven steering actions in action set U ,
hich are: forward max-left(FL), forward straight(FS), forward
ax-right(FR), backward max-left(BL), backward straight(BS),
ackward max-right(BR), and wait, as shown in Fig. 2. Employing
et_ChildNode function, we extend N.state using each action u
n the action set U and generate new states in the child nodes
′.state. It is worth noted that we add three penalties to cost
unction g when the agent performs turning actions, driving
ackwards, and switching the moving direction.
When adopting discrete actions, we expect the length of each

xtension to be small enough for combining a fine trajectory.
herefore, we limit the node extension length to be less than the
gent’s body length L in one time step, which implies that there
s an overlap between the robot’s two states R(πi[t]) ∩R(πi[t +
]) ̸= ∅.
The admissible heuristic function design and the analytical

expand technique of our method are the same as the original
hybrid-state A*. We use the max of the non-holonomic without-
obstacles cost and 2D Euclidean distance as our heuristic function,
as described in [39]. Besides, using fixed steps to extend the
path in a continuous workspace suffers from the problem of not
being able to reach the goal state precisely. Hence, we employ
Analytical_Expand function to reach the target state accu-
rately when the agent is near its goal. The function disregards ob-
stacles and inter-agent constraints and generate a Reeds–Shepp
path [41] to connect the current position to the goal. If the path
passes the collision check, it indicates that the planner has found
a feasible path to the goal.

4.3. Sequential car-like CBS

As a result of expanding workspace from discrete space to
continuous space, the computational time of single-agent planner
suffers from scalability problems when the number of obstacles
increasing and the workspace getting larger. Besides, the high-
level search tree expands more nodes when multiple agents
visiting the same region at the approximately same time. These
will lead to a noticeable increase in the searching time of Car-like
CBS.

Though the scalability problem of the single-agent planner is
unavoidable, we propose a sequential planning method to reduce
high-level search time inspired by [27]. We divide the K agents
into Kb batches, and each batch contains ⌈K/Kb⌉ agents except
he last batch. Then we sequentially solve these sub problems
or each batch and combines result paths together as the final
olution of the whole problem. For a batch b, the actions of agents
n subsequent batches are ignored. The paths planned out in
ormer batches act as dynamic obstacles in the workspace, and
hey are added to the constraint set of the root node in BCT.

The procedure of this method is exhibited in Fig. 4(a). The
gents are divided into three batches. The paths in gray planned
ut in the first batch act as dynamic obstacles for agents planning
n the second batch (colored). Black agents denote agents of the
hird batch. As a result of avoiding solver to deal with too many

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

b
R
p
e
p
s
w
b
m

5

t
b
f
e

i
(
p
5
m
i

u
a
s
a

b
s
U

5

m
C
p
t
H
t
l

e
m
s
c
t
C
t
a
r

o
C
a
t
c
u
a
d
t
p
w
m
a

b

Fig. 4. (a) Sequential CL-CBS. (b) A simple fail case for sequential CL-CBS. The
blue agent cannot reach its goal when the gray agent planned in former batch
arrives at its goal (which locates between the obstacles) before the blue one
passing through those obstacles. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

agents at the same time, the sequential method shortens search-
ing time by nearly an order of magnitude in our experiment.
However, it should be noted that this sequential method may
encounter failure in some cases. A simple fail case is shown and
explained in Fig. 4(b).

5. Experiments

In this section, we implement Car-like CBS solver in C++ using
oost library1 for math calculation and OMPL library2 to produce
eeds-Shepp paths. Since there is no benchmark for the CL-MAPF
roblem, we first generated a novel benchmark for subsequent
xperiments. We then compare our algorithm with two baseline
lanning algorithms and one suboptimal MAPF planner in the
imulated environment and conduct performance tests. Finally,
e perform field tests using seven Ackermann-steering robots in
oth obstacle-free and obstructed rooms. The source code of our
ethod and benchmark are open source at Github3.

.1. Benchmarks

The classic MAPF benchmark, like DAO map sets taken from
he game Dragon Age Origin [22], are all 4-neighbor grid-based
enchmarks thus cannot be used for the CL-MAPF problem. There-
ore we generate a novel CL-MAPF benchmark for simulated
xperiments.
The whole benchmark contains 3000 different instances, which

nvolves workspaces with and without obstacles. Each scenario
w/ and w/o obstacles) includes 25 map sets. These map sets
ossess three types of map size (300 m× 300 m, 100 m× 100 m,
0 m × 50 m) and distinct agent numbers from 5 to 100. Every
ap set has 60 unique instances. The benchmark is also included

n the Github repository.
For each instance in the benchmark, (i) it describes a contin-

ous workspace; (ii) the start and goal states of agents are guar-
nteed not collide with each other (for agents under 5 m × 5 m
ize); (iii) the Euclidean distance between start and goal state of
n agent is greater than 1/4 of the map width; (iv) for instances

1 https://www.boost.org/.
2 https://ompl.kavrakilab.org/.
3 https://github.com/APRIL-ZJU/CL-CBS.
6

with obstacles, it contains 100 randomly generated obstacles
with different radius. To be specific, it is 0.5 m, 1 m, and 2 m
corresponding to the map from small to large, respectively. We
use 300x300_agents80_obs to denote mapset with 80 agents in a
300 m × 300 m workspace with obstacles.

5.2. Simulated experiments

Based on the novel benchmark described above, we can fur-
ther compare CL-CBS with the baseline algorithms and examine
its computational efficiency and quality of the solution. We as-
sume agents in the simulated experiments are homogeneous with
the following parameters: the shape of agents is 2 m × 3 m as
Lf = 2 m, Lb = 1 m, the maximum speed for both forward and
ackward vmax = 2 m/s, the minimum turning radius r = 3 m. It
hould be noted that all programs are executed on a PC running
buntu 16.04 with Intel i7-8700@3.20 GHz and 8G RAM.

.2.1. Comparison with baseline algorithms
We adopt two methods acting as the baselines of our experi-

ent. (i) The centralized method is model predictive control with
BS (CBS-MPC) based on [42]. It applies the original CBS solver to
rovide guide paths for each agent and uses MPC to generate final
rajectories. (ii) The second baseline we use is Spatiotemporal
ybrid-state A* (SHA*) using prioritized planning technique [24]
o generate a priority sequence and plan in order from highest to
owest priority.

We have chosen three different scenarios for our comparison
xperiments, which are 300 m × 300 m with 50 agents, 100
× 100 mwith 30 agents, and 50 m× 50 mwith 20 agents. Each

cene contains two sub-scenes: with and without obstacles. We
onducted 30 trials in each scenario for all three planners and set
he runtime limit for each trial as 90 s. We adopt the sequential
L-CBS algorithm, in which batch size Kb = 2 to compete with
wo baseline algorithms. We compare the success rate, makespan,
nd average flowtime in the solution of each scenario, and the
esults are shown in Table 1.

In all six scenarios, the CBS-MPC algorithm has a success rate
f less than 10% in five scenarios. This is due to the fact that the
BS front-end planning does not consider kinematic constraints,
nd the model predictive control causes the execution trajectory
o deviate from the original path, which eventually leads to
ollisions between agents and task failure. The SHA* algorithm
sing the prioritized planning technique performs slightly better,
chieving a success rate close to 50% in some scenarios. However,
ue to the more complex environment in obstructed scenarios,
he agent with lower priority may not be able to find a feasible
ath. Therefore the success rate of SHA* then significantly drops,
hich is even inferior to that of CBS-MPC. In contrast, our method
aintains a 100% success rate in four of the six scenarios and
chieves a 98.3% success rate in two obstacle scenarios.
As for the solution quality, our approach surpasses the two

aseline algorithms. In 300 m × 300 m and 50 m × 50 m sce-
narios, our method outperforms the baseline algorithms in both
makespan and average flowtime. While in the 100 m × 100 m
scenario, the metrics of our method are slightly higher than the
baseline algorithm, which is due to the lower success rate of the
baseline algorithms resulting in the failed instances’ data are not
included in the calculation of the solution quality metrics.

In summary, our method performs a much higher success
rate compared to the two baseline algorithms, and the resulting
multi-agent planning solution has superior quality.

https://www.boost.org/
https://ompl.kavrakilab.org/
https://github.com/APRIL-ZJU/CL-CBS

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

T
C

a
t
w

5

s
m
b
s
t
t
T
p

able 1
omparison with baselines.
Map size (m2) Agents Method Without obstacle With obstacles

Success rate (%) Makespan (s) Average flowtime (s) Success rate (%) Makespan (s) Average flowtime (s)

300 × 300 50
CBS-MPC 7.5 206.626 144.90 3.3 205.451 143.13
SHA* 45.0 188.27 137.66 10 189.47 138.44
Ours 100 179.36 134.77 98.3 181.27 134.68

100 × 100 30
CBS-MPC 6.7 69.9192 49.27 3.3 67.91 47.00
SHA* 36.7 70.90 50.18 8.33 70.38 48.67
Ours 100 83.73 56.32 100 85.76 56.60

50 × 50 20
CBS-MPC 28.2 46.38 35.64 8.3 55.35 34.51
SHA* 15.0 49.88 32.15 3.33 54.38 32.54
Ours 100 46.25 30.25 98.3 47.32 30.81
Fig. 5. The key snapshots illustrates the result trajectories of 16 car-like agents in the warehouse scenario. The makespan of the whole solution is 12 s, and the
gents need to move from the edge of the scenarios to the middle of each shelf. The complexity of this scenario lies in the fact that all agents are concentrated in
he center of the scene and avoid each other from t = 4 to t = 8. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
.2.2. Comparison with MAPF planner
To compare with other MAPF planner, there are currently few

uboptimal solvers for the CL-MAPF problem. Another subopti-
al algorithm other than our CL-CBS algorithm was proposed
y Li et al. [28]. Their method adopts enhanced conflict-based
earch (ECBS) as the multi-robot discrete path planner and uses
rajectory optimization with safe corridor construction technique
o convert the discrete path to kinematically feasible trajectories.
heir methods include two planners: the coupled version and the
rioritized version. The latter planner has a shorter computation
7

time than the former one, but it suffers from a loss in the solution
quality. We use the same warehouse scenario in their paper and
compare our results with those of the two planners mentioned
above.

The warehouse scenario, as shown in Fig. 5, has a size of
120 m× 100 m, and six shelves with 30 m× 6 m each are placed
at the center of it. The agent size is 3 m× 2.5 m, which maximum
speed is limited to 2.5 m/s. The agent number in one group is
set to 3 in Li’s coupled version planner. Other parameters of Li’s
planners are set to the program default. We use the sequential

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

T
C

i
p
g
d
a
6
a
a

o
t
E
r
g
W
t
m
g
s

h
s
2
g
t
o
r
T
i
t
w

5

w
c

able 2
omparison in warehouse scenario.
Agents Method Success rate (%) Runtime (s) Makespan (s)

20
Li’s coupled 100 4.04 71.2
Li’s prioritized 100 1.12 74.4
Ours 100 1.87 56.2

30
Li’s coupled 100 16.73 86.4
Li’s prioritized 100 8.06 88.8
Ours 100 6.13 61

40
Li’s coupled 60 57.32 104.8
Li’s prioritized 90 17.63 107.2
Ours 100 11.22 61.6

method of our approach for Comparison with Li’s planners, and
the number of robots per batch is set to 2, Kb = 3.

We create a set containing 40 locations evenly distributed
n the warehouse scenario. For each trial, every robot randomly
icks two locations from the set as the start and goal state. It is
uaranteed that the start and goal states of any two robots are
ifferent. We performed tests with the agent number at 20, 30
nd 40, respectively. The runtime of each planner is limited to
0 seconds. For each test, we conduct 10 trials for each planner
nd calculate the success rate, average runtime, and makespan,
s shown in Table 2.
Our method maintains a 100% success rate as the number

f robots increases, while Li’s planers fail several times when
he number of robots reaches 40. All failures are caused by the
CBS module in their planner running out of time. Regarding the
untime, the coupled version of Li’s planner shows exponential
rowth while the other two planners maintain a linear increase.
hen planning for 40 robots, Li’s planner’s prioritized version

akes 17.6 s caused by the infeasible grouping process, while our
ethod takes only 11.2 s. The advantages of our approach become
reater when it comes to metrics for evaluating the optimality of
olutions, i.e., makespan.
When the number of robots becomes larger and the ware-

ouse becomes more crowded, both two versions of Li’s planner’s
olution have a noticeable increase in makespan. When there are
0 robots in the system, the makespan of Li’s planner is 32.3%
reater than our method, while the difference reaches 74% for
he robot’s number equals 40. As Li’s method uses a framework
f discrete path planning followed by trajectory optimization, the
esulting trajectories rely on the paths planned in the grid map.
he grid map discretely samples the continuous space, resulting
n unnecessary detours in the optimized trajectory. Furthermore,
he time robots wait for others to pass will grow significantly
hen the agent number increases.

.2.3. Performance tests
In this section, we measure the performance of our approach

hen extended to a large number of agents. Four scenarios were
hosen for testing: the 300 m × 300 m and 100 m × 100 m
dataset, with each dataset divided into obstructed and obstacle-
free scenarios. The two algorithms tested include the original
CL-CBS and its sequential version (which batch size Kb = 2). We
conduct 30 trials on the measured planners at each agent quantity
(from 10 to 100) and set the runtime limit for each trial to 90 s.
We calculate the success rate, average runtime, makespan, and
average flowtime of the two methods in different scenarios, and
the results are shown in Figs. 6 and 7.

In 300 m × 300 m scenarios, all planners have a 100% success
rate when there are relatively few robots. When there are more
than 50 robots, the original planner exceeds the runtime limit
in some cases, and the success rate starts to decrease due to
the increase in body conflicts. With more than 70 robots, the
original planner merely finds out solutions in less than 20% of
8

cases within the time limit. However, the sequential version of
our method maintains an over 80% success rate for up to 100
robots in both obstructed and obstacle-free scenarios. The original
planner’s runtime tends to increase exponentially as the number
of robots increases, while those of the sequential CL-CBS planner
are shorter. The original planner takes an average of 59.62 s to
compute a solution for 75 agents in the obstacle-free scenario,
while the sequential version takes only 18.98 s, which is one-third
of the former time.

As the number of agents increases, the behavior of avoidance
and detours in the planning solution also rises, which eventu-
ally manifests itself as a rise in makespan (from less than 170
to a maximum of 187.9). The makespan does not differ much
between two planners in the same test case of 300 m × 300 m
scenarios. The solution’s average flowtime of the sequential CL-
CBS is slightly higher than that of the original planner in both
obstructed and obstacle-free scenarios due to the fact that the
sequential version reduces the quality of the solution in exchange
for a shorter program runtime. However, the maximum difference
between these two planners on this metric lies in 1.5%.

The results of 100 m × 100 m scenarios are shown in Fig. 7.
The trend of solution quality with the increasing agents is similar
to that of the 300 m × 300 m cases. The success rate of original
CL-CBS drops sharply after the number of agents exceeds 20,
while the sequential version can still maintain a success rate of
73.3% in cases with 50 agents. The success rate in the empty
scenarios is generally greater than that in the obstacle ones owing
to the larger feasible workspace. A visible difference in makespan
and average flowtime is produced between sequential and orig-
inal CL-CBS. There is no doubt that the original CL-CBS has a
lower makespan and better solution quality in the same scenario,
but the sequential CL-CBS keeps the solution’s average flowtime
within 117% of the original version. Therefore, we believe that it
is worth sacrificing a small amount of solution quality to achieve
a significant reduction in runtime and a considerable increase in
success rate.

5.3. Field test

We conduct field tests using seven 23 cm× 20 cm Ackermann-
steering robots produced by WeTech as shown in Fig. 1(a). The
robot is able to move at 0.3 m/s, and the minimum turning radius
is 0.26 m. All the robots are equipped with a 2D Lidar from
Slamtec, a 5-megapixel camera, and a Raspberry Pi 4 running
Ubuntu 18.04. We use a PC laptop running ROS Melodic as the
central computing station to communicate with all agents using
2.4 GHz Wifi.

Experiments are performed in a 5 m × 3 m room, including
both obstacle-free and obstructed scenarios. The obstacle-free
scenario contains six Ackermann-steering agents, while there are
seven agents operating in the obstructed scenario. We adopt
the gmapping algorithm to create 2D occupancy maps for both
scenarios. After the mapping was completed, 194 obstacles with
a diameter of 0.05 m made up the room boundaries, and 86
obstacles of the same diameter represent the cardboard boxes
placed in the obstructed scenario.

After appointing start and goal states for all agents, a solution
is computed on the laptop with Intel i5-9300@2.40 GHz. For both
scenarios, we apply the original CL-CBS instead of its sequential
version and perform five attempts with 60 s time limit. The
planner runs in a single thread on one core of the CPU, and
then we calculate the average running time of the program. In
the obstacle-free scenario, all five attempts are successful, with
an average runtime of 2.204 s. There are six kinematic con-
straints in this scenario, which is equal to the agents’ number,
and the minimum average flowtime is 18.98 after adding seven

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

t

t

s
i
t
t
a

Fig. 6. Experiment results in the 300 m × 300 m dataset. The legend containing the word original means that it is the result obtained by the original method, and
he word sequential for results obtained by the sequential method. obstacle and empty represent obstructed and obstacle-free scenarios respectively.
Fig. 7. Experiment results in the 100 m × 100 m dataset. The legend containing the word original means that it is the result obtained by the original method, and
he word sequential for results obtained by the sequential method. obstacle and empty represent obstructed and obstacle-free scenarios respectively.
t
a
c

patiotemporal constraints. As for the obstructed scenario, there
s also a 100% success rate in five trials with an average run-
ime of 4.774 s. Seven kinematic constraints are constructed in
his scenario, and the minimum average flowtime is 20.67 after
dding nine inter-agent spatiotemporal constraints. Compared to
 a

9

he former one, the obstructed scenario is more complex, and the
gents’ paths are more prone to collision. Thus more inter-agent
onstraints are needed to complete the solution.
We transfer agents’ paths to a sequence of velocity commands

nd send them to robots in the system for execution. Amcl

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997

h

p
t
F

6

p
c
p
I
c
f
p
t
i

b
o
o
t
a
t
p
u
(
a
u
o

m
u
a
(
s
t

D

c
t

Fig. 8. Glimpses of field tests. Snapshots in the upper row show four keyframes during an experiment, and pictures in the lower row plot the trajectories agents
ave driven at the corresponding frame. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ackage is used when robots are running so that we can get the
rajectory. A snapshot taken from one of the field tests is shown in
ig. 8, and full experiments are presented in the YouTube video4.

. Conclusion and future work

In this paper, we formalize the CL-MAPF problem, which is to
lan for multiple car-like robots in a continuous workspace while
onsidering the kinematic and spatiotemporal constraints. We
ropose a novel hierarchical search-based solver called CL-CBS.
t gains the advantage of short computation time using a binary
onflict search tree while possessing the ability to plan kinematic-
easible paths for a large number of car-like robots. We also
resent a sequential version of our method that further reduces
he algorithm computation time at the expense of a marginal loss
n solution quality.

The experiment results show that the planning success rate of
oth baseline algorithms is below 50% for all six scenarios, while
ur algorithm maintains that of over 98%. The solution quality of
ur approach also surpasses the two baselines’ quality. Compared
o the other suboptimal MAPF solver, our method not only has an
dvantage in runtime but also has an average solution makespan
hat is more than 33% smaller than the comparison method. In
erformance tests, the sequential version of CL-CBS can solve for
p to 100 agents (in 300 m × 300 m scenario) or 50 agents
in 100 m × 100 m scenario) agents in an acceptable runtime
nd keep a 60+% success rate. Finally, we perform field tests
sing seven Ackermann-steering robots in both obstacle-free and
bstructed rooms.
One of the directions of future research is extending our

ethod in order to plan for holonomic and non-holonomic agents
nder the same scenario. Another one is applying the proposed
pproach to the combined target-assignment and path-finding
TAPF) problem [43]. The TAPF problem first assigns agents in the
ystem to suitable targets and then plans collision-free paths to
he targets for the agents.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

4 https://youtu.be/KThsX04ABvc.
10
Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grant 62088101 and the Key Research and
Development Program of Zhejiang Province, China under Grant
2021C01035.

References

[1] J. Yu, S.M. LaValle, Structure and intractability of optimal multi-robot path
planning on graphs, in: Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013.

[2] J. Yu, S. LaValle, Planning optimal paths for multiple robots on graphs,
in: 2013 IEEE International Conference on Robotics and Automation, IEEE,
2013, pp. 3612–3617.

[3] P. Surynek, Reduced time-expansion graphs and goal decomposition
for solving cooperative path finding sub-optimally, in: Twenty-Fourth
International Joint Conference on Artificial Intelligence.

[4] E. Erdem, D.G. Kisa, U. Oztok, P. Schüller, A general formal framework
for pathfinding problems with multiple agents, in: Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[5] G. Wagner, H. Choset, M*: A complete multirobot path planning algorithm
with performance bounds, in: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2011, pp. 3260–3267.

[6] T.S. Standley, Finding optimal solutions to cooperative pathfinding
problems, in: AAAI, Vol. 1, Atlanta, GA, 2010, pp. 28–29.

[7] C. Ferner, G. Wagner, H. Choset, Odrm* optimal multirobot path planning
in low dimensional search spaces, in: 2013 IEEE International Conference
on Robotics and Automation, IEEE, 2013, pp. 3854–3859.

[8] M. Phillips, M. Likhachev, Sipp: Safe interval path planning for dynamic
environments, in: 2011 IEEE International Conference on Robotics and
Automation, IEEE, 2011, pp. 5628–5635.

[9] S.-H. Ji, J.-S. Choi, B.-H. Lee, A computational interactive approach to
multi-agent motion planning, Int. J. Control Autom. Syst. 5 (3) (2007)
295–306.

[10] M. Čáp, P. Novák, A. Kleiner, M. Seleckỳ, Prioritized planning algorithms
for trajectory coordination of multiple mobile robots, IEEE Trans. Autom.
Sci. Eng. 12 (3) (2015) 835–849.

[11] G. Sharon, R. Stern, A. Felner, N.R. Sturtevant, Conflict-based search for
optimal multi-agent pathfinding, Artificial Intelligence 219 (2015) 40–66.

[12] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, E.
Shimony, Icbs: The improved conflict-based search algorithm for multi-
agent pathfinding, in: Eighth Annual Symposium on Combinatorial Search,
Citeseer, 2015.

[13] A. Felner, R. Stern, S.E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon,
N. Sturtevant, G. Wagner, P. Surynek, Search-based optimal solvers for
the multi-agent pathfinding problem: Summary and challenges, in: Tenth
Annual Symposium on Combinatorial Search, 2017.

[14] W. Hönig, T.S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, S. Koenig, Multi-
agent path finding with kinematic constraints, in: ICAPS, Vol. 16, 2016, pp.
477–485.

[15] J. Li, P. Surynek, A. Felner, H. Ma, T.S. Kumar, S. Koenig, Multi-agent
path finding for large agents, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33, 2019, pp. 7627–7634.

https://youtu.be/KThsX04ABvc?t=3
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb10
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb10
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb10
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb10
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb10
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb11
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb11
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb11
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb12

L. Wen, Y. Liu and H. Li Robotics and Autonomous Systems 150 (2022) 103997
[16] H. Ma, W. Hönig, T.S. Kumar, N. Ayanian, S. Koenig, Lifelong path planning
with kinematic constraints for multi-agent pickup and delivery, in: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019,
pp. 7651–7658.

[17] K. Yakovlev, A. Andreychuk, V. Vorobyev, Prioritized multi-agent path
finding for differential drive robots, in: 2019 European Conference on
Mobile Robots, ECMR, IEEE, 2019, pp. 1–6.

[18] Y. Dobrev, M. Vossiek, M. Christmann, I. Bilous, P. Gulden, Steady delivery:
Wireless local positioning systems for tracking and autonomous navigation
of transport vehicles and mobile robots, IEEE Microw. Mag. 18 (6) (2017)
26–37.

[19] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T.S. Kumar, S. Koenig, H. Choset,
PRIMAL: PAthfinding via reinforcement and imitation multi-agent learning,
IEEE Robot. Autom. Lett. 4 (3) (2019) 2378–2385.

[20] L. Wen, J. Yan, X. Yang, Y. Liu, Y. Gu, Collision-free trajectory planning for
autonomous surface vehicle, in: 2020 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), 2020, pp. 1098–1105, http:
//dx.doi.org/10.1109/AIM43001.2020.9158907.

[21] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, CoBots: Robust symbiotic
autonomous mobile service robots, in: Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[22] R. Stern, N.R. Sturtevant, A. Felner, S. Koenig, H. Ma, T.T. Walker, J.
Li, D. Atzmon, L. Cohen, T.S. Kumar, et al., Multi-agent pathfinding:
definitions, variants, and benchmarks, in: Twelfth Annual Symposium on
Combinatorial Search, 2019.

[23] D. Silver, Cooperative pathfinding, AIIDE 1 (2005) 117–122.
[24] J.P. Van Den Berg, M.H. Overmars, Prioritized motion planning for multiple

robots, in: 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2005, pp. 430–435.

[25] D. Atzmon, Y. Zax, E. Kivity, L. Avitan, J. Morag, A. Felner, Generalizing
multi-agent path finding for heterogeneous agents, in: Thirteenth Annual
Symposium on Combinatorial Search, 2020.

[26] D.R. Robinson, R.T. Mar, K. Estabridis, G. Hewer, An efficient algorithm
for optimal trajectory generation for heterogeneous multi-agent systems
in non-convex environments, IEEE Robot. Autom. Lett. 3 (2) (2018)
1215–1222.

[27] J. Park, J. Kim, I. Jang, H.J. Kim, Efficient multi-agent trajectory planning
with feasibility guarantee using relative Bernstein polynomial, in: 2020
IEEE International Conference on Robotics and Automation, ICRA, IEEE,
2020, pp. 434–440.

[28] J. Li, M. Ran, L. Xie, Efficient trajectory planning for multiple non-
holonomic mobile robots via prioritized trajectory optimization, IEEE
Robot. Autom. Lett. 6 (2) (2021) 405–412, http://dx.doi.org/10.1109/LRA.
2020.3044834.

[29] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, in: Autonomous Robot Vehicles, Springer, 1986, pp. 396–404.

[30] O. Brock, O. Khatib, High-speed navigation using the global dynamic
window approach, in: Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), 1, 1999, pp. 341–346
vol.1, http://dx.doi.org/10.1109/ROBOT.1999.770002.

[31] D. Morgan, S.-J. Chung, F.Y. Hadaegh, Model predictive control of swarms
of spacecraft using sequential convex programming, J. Guid. Control Dyn.
37 (6) (2014) 1725–1740.

[32] J.-S. Park, B. Tsang, H. Yedidsion, G. Warnell, D. Kyoung, P. Stone, Learning
to improve multi-robot hallway navigation, in: Proceedings of the 4th
Conference on Robot Learning (CoRL), 2020.

[33] J. Van den Berg, M. Lin, D. Manocha, Reciprocal velocity obstacles for real-
time multi-agent navigation, in: 2008 IEEE International Conference on
Robotics and Automation, IEEE, 2008, pp. 1928–1935.

[34] J. Van Den Berg, S.J. Guy, M. Lin, D. Manocha, Reciprocal n-body collision
avoidance, in: Robotics Research, Springer, 2011, pp. 3–19.

[35] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, R. Siegwart, Reciprocal
collision avoidance for multiple car-like robots, in: 2012 IEEE International
Conference on Robotics and Automation, IEEE, 2012, pp. 360–366.
11
[36] J. Alonso-Mora, P. Beardsley, R. Siegwart, Cooperative collision avoidance
for nonholonomic robots, IEEE Trans. Robot. 34 (2) (2018) 404–420.

[37] L. Marin, M. Vallés, A. Soriano, A. Valera, P. Albertos, Event-based local-
ization in ackermann steering limited resource mobile robots, IEEE/ASME
Trans. Mechatronics 19 (4) (2013) 1171–1182.

[38] W. Hönig, J.A. Preiss, T.S. Kumar, G.S. Sukhatme, N. Ayanian, Trajectory
planning for quadrotor swarms, IEEE Trans. Robot. 34 (4) (2018) 856–869.

[39] D. Dolgov, S. Thrun, M. Montemerlo, J. Diebel, Practical search techniques
in path planning for autonomous driving, Ann Arbor 1001 (48105) (2008)
18–80.

[40] A. Botros, S.L. Smith, Computing a minimal set of t-spanning motion
primitives for lattice planners, in: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 2328–2335, http:
//dx.doi.org/10.1109/IROS40897.2019.8968150.

[41] J. Reeds, L. Shepp, Optimal paths for a car that goes both forwards and
backwards, Pacific J. Math. 145 (2) (1990) 367–393.

[42] R. Negenborn, B. De Schutter, J. Hellendoorn, Multi-agent model predictive
control: a survey, (04-010) Delft Center for Systems and Control, Delft
University of Technology, Delft, The Netherlands, 2004.

[43] H. Ma, S. Koenig, Optimal target assignment and path finding for teams of
agents, in: AAMAS ’16, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, ISBN: 9781450342391, 2016, pp.
1144–1152.

Licheng Wen received his B.S. degree in College of Con-
trol Science and Engineering from Zhejiang University
in 2019. He is currently a M.S. degree candidate of the
institute of Cyber Systems and Control, Department of
Control Science and Engineering, Zhejiang University.
His latest research interests include mobile robots and
motion planning.

Yong Liu received the B.S. degree in computer science
and engineering and the Ph.D degree in computer sci-
ence from Zhejiang University, Zhejiang, China, in 2001
and 2007, respectively. He is currently a professor of
Institute of Cyber-Systems and Control at Zhejiang Uni-
versity. His main research interests include: intelligent
robot systems, robot perception and vision, deep learn-
ing, big data analysis, and multi-sensor fusion. He has
published over 30 research papers on machine learning,
computer vision, information fusion, and robotics.

Hongliang Li received his B.S. degree in Industrial
Automation from Zhejiang University in 1999, his
M.S. degree in Control Science and Engineering from
Zhejiang University in 2002, and his Ph.D. degree in
Chemical Process Machinery and Control from Nanjing
University of Technology in 2012. He is currently an as-
sociate researcher at the Institute of Network Systems
and Control, Zhejiang University.

http://refhub.elsevier.com/S0921-8890(21)00253-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb19
http://dx.doi.org/10.1109/AIM43001.2020.9158907
http://dx.doi.org/10.1109/AIM43001.2020.9158907
http://dx.doi.org/10.1109/AIM43001.2020.9158907
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb23
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb27
http://dx.doi.org/10.1109/LRA.2020.3044834
http://dx.doi.org/10.1109/LRA.2020.3044834
http://dx.doi.org/10.1109/LRA.2020.3044834
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb29
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb29
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb29
http://dx.doi.org/10.1109/ROBOT.1999.770002
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb34
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb34
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb34
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb36
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb36
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb36
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb39
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb39
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb39
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb39
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb39
http://dx.doi.org/10.1109/IROS40897.2019.8968150
http://dx.doi.org/10.1109/IROS40897.2019.8968150
http://dx.doi.org/10.1109/IROS40897.2019.8968150
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb41
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb41
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb41
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00253-0/sb43

	CL-MAPF: Multi-Agent Path Finding for Car-Like robots with kinematic and spatiotemporal constraints
	Introduction
	Related works
	CL-MAPF problem
	Robot kinematic model
	Problem definition

	Methodology
	Body conflict tree
	Spatiotemporal hybrid-state A*
	Sequential car-like CBS

	Experiments
	Benchmarks
	Simulated experiments
	Comparison with baseline algorithms
	Comparison with MAPF planner
	Performance tests

	Field test

	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

