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Learning SpatioTemporal and Motion Features
in a Unified 2D Network for Action Recognition
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Abstract—Recent methods for action recognition always apply 3D Convolutional Neural Networks (CNNs) to extract spatiotemporal
features and introduce optical flows to present motion features. Although achieving state-of-the-art performance, they are expensive in
both time and space. In this paper, we propose to represent both two kinds of features in a unified 2D CNN without any 3D convolution
or optical flows calculation. In particular, we first design a channel-wise spatiotemporal module to present the spatiotemporal features
and a channel-wise motion module to encode feature-level motion features efficiently. Besides, we provide a distinctive illustration of
the two modules from the frequency domain by interpreting them as advanced and learnable versions of frequency components.
Secondly, we combine these two modules and an identity mapping path into one united block that can easily replace the original
residual block in the ResNet architecture, forming a simple yet effective network dubbed STM network by introducing very limited extra
computation cost and parameters. Thirdly, we propose a novel Twins Training framework for action recognition by incorporating a
correlation loss to optimize the inter-class and intra-class correlation and a siamese structure to fully stretch the training data. We
extensively validate the proposed STM on both temporal-related datasets (i.e., Something-Something v1 & v2) and scene-related
datasets (i.e., Kinetics-400, UCF-101, and HMDB-51). It achieves favorable results against state-of-the-art methods in all the datasets.

Index Terms—Action recognition, Spatiotemporal features, Motion features, Frequency illustration, Twins Training framework.

✦

1 INTRODUCTION

W ITH the rapid development of the cloud and edge com-
puting, we are used to engaging in social platforms and

living under the cameras. A vast amount of videos are recorded
every day, attracting more and more researchers to the video
understanding field. One of the most essential tasks in video under-
standing is human action recognition, which aims to recognize the
human actions in videos. The most significant features for action
recognition are two complementary features, the spatiotemporal
and motion features where the former is responsible for temporal
enhanced appearance modeling and the latter captures motion
information of the action subject.

Spatiotemporal features are vital for action recognition since
they encode the relationship of spatial appearance features from
different timestamps. For example, for a “long jump” action, the
video may start with a running athlete, and the sandpit always
shows in the end. It will be easily mistaken as “running” if the
features of the sandpit are not felicitously integrated into the
former frames’ appearance features. Existing approaches usually
model the spatiotemporal features through 3D CNNs [1], [2], [3],
[4], [5], [6] or (2+1)D frameworks [7], [8], [9]. 3D CNNs extend
ordinary 2D convolution with an extra temporal dimension so that
3D convolution is able to represent spatiotemporal features intu-
itively. Nevertheless, expanding the convolution kernel from 2D
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to 3D will inevitably increase the computational cost by an order
of magnitude, and the support of 3D convolutions in different
platforms is not good as conventional 2D convolutions, limiting its
real applications. The (2+1)D architectures like S3D [8], P3D [9]
and R(2+1)D [7] are proposed to extract spatiotemporal features
by factorizing a 3D convolution into a 1D temporal convolution
and a 2D spatial convolution. They can decompose the 3D CNNs
back to 2D CNNs. Lin et al. propose TSM [10] to further improve
the computational efficiency by shifting part of the channels along
the temporal dimension and facilitating information exchange
among neighboring frames. Though these methods successfully
balance the heavy computation of 3D CNNs, their performance
remains unsatisfactory if the motion features are not utilized.

Motion features present motion characteristics between neigh-
boring frames, which are important for recognizing temporal-
related actions. For instance, when given a frame like the first
image in Fig. 1 (a), it is hard to tell that the action is “pulling a
plug” or “inserting a plug” without the motion information. The
main difference between the spatiotemporal features and the mo-
tion features is that the former focuses on the temporal aggregation
of neighboring appearance features, while the latter pays more
attention to the motion edges of adjacent features and suppresses
their same static appearance features. As demonstrated in many
works [2], [5], [11], these two kinds of features are complementary
to each other. It is a typical way to represent motion features
by absorbing optical flows within two-stream neural networks
[12], [13], [14], [15], [16]. Optical flow is an effective motion
representation to describe object/scene movement. To be precise,
it is the pattern of apparent motion in a visual scene caused by the
relative motion between an observer and a scene. A classic two-
stream network [12], [13] consists of a spatial stream with RGB
frames as input and a flow stream with optical flows as input. The
spatial stream models the appearance features (not spatiotemporal
features) without considering the temporal information. The flow
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Fig. 1. Representations of STM. (a) is the first frame of all inputs (8 frames). (b) and (c) are the input features maps Ft and Ft+1 (here we
show examples of t=0) from Conv 1 block, which is just before the first STM block. (d) and (e) are the temporal low-frequency and high-frequency
components of adjacent input features maps Ft and Ft+1 (please refer to Sec. 3.3 for details), which show the appearance information and the
motion edges, respectively. (f) represents the optical flows extracted by TV-L1. (g) and (h) are the output spatiotemporal feature maps of CSTM
and the output motion feature maps of CMM, extracted from the first CSTM and CMM block. It could be found that the CSTM features share
some common characteristics with the temporal low-frequency components (d), i.e., the spatiotemporal features learned by CSTM could capture
the significant spatial features enhanced by multiple temporal inputs. Moreover, the CMM features could present the motion features of the action
subject, similar to the optical flows (f) and the high-frequency components (e).

stream is designed to model the motion cues with almost the same
network structure as the spatial stream. Since the input optical
flows are extracted between the original neighboring video frames,
it lacks the ability to capture the long-term motion relationship.
To conquer this problem, the two-stream networks [13], [14]
simply pool the features or average the predicted results of all
the input optical flows. However, the extraction of optical flow
is expensive in both time and space, and the temporal stream
brings extra parameters, limiting vast industrial applications in
the real world. In order to avoid the calculation of optical flows,
Optical Flow guided Feature (OFF) [17] contains a set of operators
including Sobel and element-wise subtraction for OFF generation.
MFNet [18] adopts five fixed motion filters as a motion block
to find feature-level motion features between two adjacent time
steps. However, the performance of these methods is limited since
they lack spatiotemporal representations, which benefit a lot to
appearance modeling.

Our key insight is that both spatiotemporal features and motion
features are indispensable and could be integrated into a unified
2D network so that we do not need any 3D convolution or
optical flow calculation. Specifically, we propose a Channel-wise
Spatiotemporal Module (CSTM) to present the spatiotemporal
features and a Channel-wise Motion Module (CMM) to learn
the motion representations. We visualize several examples of
these two features in Fig. 1. Compared to the original input
features (b) and (c), the CSTM (g) has learned the spatiotemporal
representations, which extract appearance features strengthened
by multiple timestamps rather than a single frame. As for the
CMM (h), it captures the feature-level motion representations of
the action subject similar to optical flows (e). We have theoreti-

cally explored the relationship between computing optical flows
and our motion features and found that the learnable channel-
wise kernels in our CMM could learn more task-relevant motion
representations. Then, we combine CSTM and CMM as well as an
identity mapping path together to form a united block and insert
it into the ordinary 2D ResNet by replacing the original residual
block with negligible extra parameters (0.8%). It comes out the
expected form of our method, a simple yet effective 2D network
for video action recognition, termed as STM network, which is
short for SpatioTemporal and Motion features integrated network.

Besides, we find CSTM and CMM could be illustrated from
the temporal frequency domain. As shown in Fig. 1, the features
encoded by CSTM have a similar denominator with the low-
frequency components (d), which present the scene information of
a video. Moreover, CMM learns similar information to the high-
frequency representations (e), which depicts the motion edges.
Interestingly, we find CSTM and CMM could be interpreted
as advanced and learnable versions of low-frequency and high-
frequency components, respectively. We demonstrate that simply
degenerating CSTM and CMM into frequency components could
also achieve a satisfactory performance but not as good as our
method.

Furthermore, we explore the training process of STM and
propose a novel Twins Training framework, which aims to fully
exploit the training data and strengthen our model. We believe that
both the architecture and the training framework are significant
for the video action recognition task. Nevertheless, most of the
previous works in the video action recognition field focus on
the architecture design but neglect the importance of the train-
ing pipeline. Multigrid [19] has also noticed this problem and
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proposed a training strategy mainly to speed up the training
process while keeping the performance. Differently, our Twins
Training framework purses to improve the performance further.
Specifically, we introduce a siamese architecture and a correlation
loss into the regular training process. When inputting a group of
sampled frames, we first generate two groups of distortions with
two groups of different augmentations. Then the two distortions
will go through a shared siamese network to obtain their repre-
sentations and the two outputs are used to calculate the normal
classification loss and also normalized to compute a correlation
loss. The siamese structure could excavate the input training data
by applying two groups of different distortions rather than only
one time in the regular training process. The correlation loss could
help to enlarge the inter-class distance and shrink the intra-class
distance. As a result, the performance will be further improved.
Note that the framework is only used in training to strengthen the
network and will not influence the normal inference process. We
experiment with the proposed Twins Training on not just our STM
but also representative TSN [12] and TSM [10] to demonstrate its
validity. It is proved to be effective on all these methods.

The main contributions of our work can be summarized as
follows:

• We propose a simple and effective network named STM
for video action recognition, integrating spatiotemporal
features and motion features together in a unified 2D CNN.

• We design a channel-wise spatiotemporal module and a
channel-wise motion module to encode complementary
spatiotemporal and motion representations. Moreover, a
distinctive illustration of the two modules is provided from
the frequency domain.

• We propose a novel Twins Training framework, which
not only makes the utmost of the training data but also
decouples the inter-class correlation and reinforces the
intra-class correlation, therefore further strengthening our
model.

• Extensive experiments demonstrate that our method con-
sistently outperforms or obtains a comparable perfor-
mance with the state-of-the-art methods on several public
benchmark datasets, including Something-Something [20],
Kinetics [2], UCF101 [21] and HMDB-51 [22].

This paper builds upon our conference paper [23] and signif-
icantly extends it in several aspects. First, we propose a novel
training framework that enlarges the inter-class correlation and
decreases the intra-class distance, therefore further improving
our model. Second, we verify the generalization ability of the
proposed framework on not only our STM but also other two
representative methods, TSN [14] and TSM [10]. Third, we inves-
tigate the relationship of our CMM and optical flow theoretically
to illustrate the insight of CMM. Fourth, an in-depth analysis
of the proposed method from a different perspective, frequency
domain. Fifth, we re-elaborate the essentiality and importance
of our insight and provide a more extensive literature survey in
deep video action recognition. Last but not least, we enrich the
experiments by (1) adding more state-of-the-art approaches for
comparison, (2) implementing variants of our preliminary version,
and (3) conducting more extensive ablation studies.

2 RELATED WORKS

With the great success of deep convolution networks in the
computer vision area, a large number of CNN-based methods have

been proposed for action recognition and have gradually surpassed
the performance of traditional methods [24], [25]. We mainly
introduce the CNN-based approaches and classify them into three
categories as follows. Besides, we discuss the spatiotemporal
modeling of some related tasks beyond our target supervised short-
range video action recognition task.

2.1 Two-stream Networks

A sequence of advances adopt 2D CNNs as the backbone and
classify a video by simply aggregating frame-wise prediction [26].
However, these methods only model the appearance feature of
each frame independently while ignoring the dynamics between
frames, which results in inferior performance when recognizing
temporal-related videos.

To handle the mentioned drawback, two-stream-based methods
[4], [13], [14], [15], [16] are introduced by modeling appearance
and dynamics separately with two networks and fusing two
streams through the middle or at last. Among these methods,
Simonyan et al. [27] first proposed the two-stream ConvNet
architecture with both spatial and temporal networks. Temporal
Segment Networks (TSN) [12], [14] proposed a sparse temporal
sampling strategy for the two-stream structure and fused the two
streams by a weighted average at the end. Feichtenhofer et al. [16],
[28] studied the fusion strategies in the middle of the two streams
in order to obtain the spatiotemporal features. However, these
types of methods mainly suffer from two limitations. First, these
methods need pre-compute optical flow, which is expensive in
both time and space. Taking Kinetics-400 dataset as an illustrative
example, storing all the optical flow images requires 4.5TB disk
space [29]. Such a massive amount of data would lead to a waste
of GPU resources and longer experiment cycles. In addition, pre-
computing optical flow is not cheap, which means all the two-
stream methods are not real-time. Second, the learned feature
and final prediction from multiple segments are fused simply
using weighted or average sum, making it inferior to temporal-
relationship modeling.

2.2 3D CNN-based Networks

It is intuitive to learn spatiotemporal features from RGB frames
directly with 3D CNNs [1], [2], [3], [5], [30], [31] which extend
the common 2D CNNs with an extra temporal dimension. [32]
was a pioneer work to use 3D CNNs for action recognition, but
the network was not deep enough to show its potential. C3D
[1] extended [32] to a deeper 3D network, VGG16. However,
with tremendous parameters to be optimized and a lack of high-
quality, large-scale datasets, the performance of C3D remains
unsatisfactory. I3D [2] inflated the ImageNet pre-trained 2D kernel
into 3D to capture spatiotemporal features and modeled motion
features with another flow stream. I3D achieved very competitive
performance in benchmark datasets with the help of the large-scale
Kinetics dataset and the two-stream setting. Since 3D CNNs try
to learn local correlation along the input channels, STCNet [30]
inserted its STC block into 3D ResNet to capture both spatial-
channel and temporal-channel correlation information throughout
network layers. Slowfast [5] involved a slow path to capture spatial
semantics and a fast path to capture motion at fine temporal
resolution. D3D [3] introduced knowledge distillation to tune the
spatial stream to mimic the temporal stream, effectively combining
both models into a single stream. More recently, Feichtenhofer

Authorized licensed use limited to: Zhejiang University. Downloaded on June 28,2022 at 07:15:34 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3173658, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

proposed X3D [6] to progressively expand a tiny base 2D im-
age architecture into a spatiotemporal one by expanding along
multiple possible axes. Although 3D CNN-based methods have
achieved state-of-the-art performance, they are still hard to train
and challenging to deploy. For training, it requires lots of GPUs
and the experiment cycle is very long. For instance, a standard
SlowFast network trained on Kinetics400 dataset using a high-end
8-GPU machine takes 10 days [29], or a 64-GPU machine takes
54.3 hours [33] to complete. For deployment, 3D convolution is
not as well supported as 2D convolution for different platforms.

2.3 Compute-efficient Models
To reduce the high computation cost of 3D CNNs, several methods
are proposed to find the trade-off between precision and speed
[7], [8], [9], [11], [34], [35], [36], [37], [38], [39]. Tran et al.
[7] and Xie et al. [8] discussed several forms of spatiotemporal
convolutions, including employing 3D convolution in early layers
and 2D convolution in deeper layers (bottom-heavy) or reversed
the combinations (top-heavy). P3D [9], S3D [8] and R(2+1)D [7]
tried to reduce the cost of 3D convolution by decomposing it into
2D spatial convolution and 1D temporal convolution. TSM [10]
further introduced the temporal convolution by shifting part of
the channels along the temporal dimension. Our proposed CSTM
module is similar to these methods in learning spatiotemporal
features, while we employ channel-wise 1D convolution to capture
different temporal relationships for different channels.

Though the above methods are successful in balancing the
heavy computation of 3D CNNs, they inevitably need the help of
two-stream networks with a flow stream to incorporate the motion
features to obtain their best performance [10]. Motion information
is the key difference between video-based recognition and image-
based recognition task. However, calculating optical flow [40]
is expensive in both time and space. Recently many approaches
have been proposed to estimate optical flow with CNN [41], [42],
[43], [44] or explored alternatives of optical flow [14], [17], [18],
[45]. TSN frameworks [14] involved RGB difference between
two frames to represent motion in videos. Zhao et al. [45] used
cost volume processing to model apparent motion. Optical Flow
guided Feature (OFF) [17] contained a set of operators including
Sobel and element-wise subtraction for OFF generation. MFNet
[18] adopted five fixed motion filters as a motion block to find
feature-level temporal features between two adjacent time steps.
CorrNet [18] proposed a learnable correlation operator for motion
modeling. Our proposed CMM module is also designed for finding
better yet lightweight alternative motion representation in the
feature level to avoid the calculation of optical flows. Our motion
filters are all learnable and we learn different motion features for
different channels between every two adjacent input frames.

A recent work TEA [11] is the most similar work to our
method. It uses motion features to recalibrate the spatiotemporal
features and enhance the motion pattern. While our STM simply
and directly adds the spatiotemporal features and motion encoding
together by treating the two kinds of features as independent and
complementary representations.

2.4 Temporal Modeling in Related Tasks
Spatiotemporal modeling is hot in several video understanding
tasks like complex action recognition and self-supervised action
recognition. A comprehensive review of these tasks is beyond

the scope of this paper and we only briefly introduce them here.
Complex action recognition contains a set of one-actions with
a weak temporal pattern that serves a specific purpose. Since
complex actions always take much longer to unfold, temporal
modeling is key to avoid missing crucial parts. A representative
method in this task is Timeception [46], which also introduces
channel-wise temporal convolution for temporal modeling. Our
CSTM could be interpreted as a special Timeception layer when
fixing the temporal convolution kernel size to 3. However, sig-
nificant motion features are not mentioned in Timeception since
they focus on the long, complex actions. Self-supervised action
recognition seeks to learn spatiotemporal features from unlabeled
videos. Without precise annotations, the methods in this task focus
on designing proxy tasks like temporal order verification [47],
motion/appearance prediction statistics [48], and relative speed
perception [49]. Since they are all designed for unsupervised in-
stance discrimination tasks, they mainly focus on the loss and label
design with existing backbones like ResNet [50] and C3D [1] but
neglect the architecture improvement, which is our core insight.

3 METHOD

In this section, we elaborate the technical details of our approach.
First, we describe the proposed CSTM and CMM to show how
to perform the channel-wise spatiotemporal fusion and extract
the feature-level motion information, respectively. Then, we give
an in-depth illustration of the two modules from the frequency
domain. Next, we present how to combine these two modules and
how to form our STM network. Afterward, we will introduce the
proposed Twins Training framework in detail.

3.1 Channel-wise SpatioTemporal Module
To represent the spatiotemporal features, previous methods intu-
itively utilize 3D CNNs [1], [2], [3], [5], [30] or leverage (2+1)D
structures [7], [8], [9]. According to the above analyses, the
tremendous parameters of 3D CNNs make it hard to train and
deploy. Therefore, we choose the (2+1)D structure to formulate
our Channel-wise SpatioTemporal Module (CSTM).

CSTM is designed for efficient spatial and temporal modeling.
It could extract rich spatiotemporal features, which can signif-
icantly boost action recognition performance. As illustrated in
Fig. 2(a), a 1D channel-wise temporal convolution and a 2D spa-
tial convolution operation are applied sequentially inside CSTM.
Specifically, given an input feature map F ∈ RN×T×C×H×W ,
where N,T,C,H,W are the batch size, time, spatial height
and width, respectively, we first reshape F as: F → F∗ ∈
RNHW×C×T and then apply a channel-wise 1D convolution on
the T dimension to model the temporal relationship. There are
mainly two advantages to adopting the channel-wise convolu-
tion rather than the ordinary convolution for temporal modeling.
Firstly, compared to the ordinary convolution, the computation
cost can be reduced by a factor of G, where G is the number of
groups. In our settings, G equals the number of input channels.
Secondly, for the feature map F∗, the semantic information of
different channels is typically different [51]. We believe that the
combination of temporal information for different channels should
be independent, which is also validated in the experiments. Thus
the channel-wise convolution is adopted to learn independent
kernels for each channel. Formally, the channel-wise temporal
fusion operation can be formulated as:

Gc,t =
∑
i

Kc,iF
∗
c,t+i (1)
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Fig. 2. The architecture of the Channel-wise SpatioTemporal Module
and Channel-wise Motion Module. The feature maps are shown as the
shape of their tensors. ”⊖” denotes element-wise subtraction.

where t, c denote temporal, channel dimensions of the feature map
respectively. Kc,i are temporal combination kernel weights of c-th
channel, i is the index of temporal kernel, F∗

c,t+i is the input c-
th channel features and Gc,t is the output channel-wise temporal
fusion features. Here the temporal kernel size of Kc,i is set to 3
thus i ∈ [−1, 1]. Next, G will be reshaped to the original input
shape (i.e. [N,T,C,H,W ]) and model spatial information via a
2D convolution whose kernel size is 3x3.

We visualize the output feature maps of CSTM to help un-
derstand this module in Fig. 1 (f). We can find that the CSTM
has learned the spatiotemporal features which absorb important
appearance information from different timestamps.

3.2 Channel-wise Motion Module
As discovered in [2], [52], the motion features are complementary
to spatiotemporal features. Therefore, we propose a lightweight
Channel-wise Motion Module (CMM) to extract feature-level
motion patterns between adjacent input frames. Note that our goal
is to find the motion representation that can help to recognize
actions in an efficient way rather than accurate motion information
(optical flow) between two frames. Therefore, we will only use the
RGB frames and not involve any pre-computed optical flow.

Given the input feature maps F ∈ RN×T×C×H×W , we will
first leverage a 1x1 convolution layer to reduce the channels by
a factor of r to ease the computing cost and we still use F
to present the features in the following for simplicity. Then we
generate feature-level motion information from every two con-
secutive feature maps. The feature-level motion representations
at time step t could be approximately considered as the difference
between the two adjacent features Ft and Ft+1. Instead of directly
subtracting the original features, we employ learnable channel-
wise transformation on Ft+1 first and then perform the subtraction
operation. Taking Ft and Ft+1 for example, for every channel c,

we first apply a 2D channel-wise convolution on Ft+1,c and then
subtracts it from Ft,c to obtain the motion representation Ht,c:

Ht,c = Ft,c −
∑
i,j

Kc,i,jFt+1,c,h+i,w+j (2)

where c, t, h, w denote channel, temporal and two spatial dimen-
sions of the feature map. Kc,i,j denotes the c-th motion filter with
the subscripts i, j denote the spatial indices of the kernel. Here
Kc

i,j is shared among different timestamps and its kernel size is set
to 3×3 thus i, j ∈ {−1, 0, 1}. As shown in Fig. 2(b), we perform
the proposed CMM to every two adjacent feature maps over the
temporal dimension, i.e., Ft and Ft+1, Ft+1 and Ft+2, etc.
Therefore, the CMM will produce T − 1 motion representations.
To keep the temporal size compatible with the input feature maps,
we simply use zero to represent the motion information of the last
time step and then concatenate them together over the temporal
dimension. In the end, another 1x1 2D convolution layer is applied
to restore the number of channels to C.

We find that the proposed CMM can boost the performance
of the whole model even though the design is quite simple,
which proves that the motion features obtained with CMM are
complementary to the spatiotemporal features from CSTM. We
visualize the motion features learned by CMM in Fig. 1 (g). From
which we can see that compared to the output of CSTM, CMM is
able to capture the motion features of the action subjects between
neighboring frames.
Relationship with Optical Flow. Comparing (g) and (f) of Fig.
1, we could find that the motion features learned by CMM look
similar to the optical flows. This phenomenon makes us think
more deeply about the relationship between our motion features
and optical flows. Typically, the brightness consistency constraint
of optical flow is defined as follows:

I (x, y, t) = I (x+ i, y + j, t+ k) (3)

where I (x, y, t) denotes the pixel at the location (x, y) of a
frame at time t. For frames t and (t + k), i and j are the spatial
pixel displacement in horizontal and vertical axes respectively. It
assumes that for any point that moves from (x, y) at frame t to
(x+ i, y+ j) at frame t+ k, its brightness keeps unchanged over
time. Then, the optical flow (i, j) that meets Eq. (3) is calculated
between two image frames at time t and t + k at every location
of an image, finding the optimal solution (i∗, j∗) through an
optimization technique. When we extend Eq. (3) to the feature
space by replacing an image I (x, y, t) with the corresponding
feature maps Fc (x, y, t) (c-th channel) and define a residual
features Rop (x, y, t+ k) as follows:

Rop (x, y, t+ k) = Fc (x, y, t)− Fc (x+ i, y + j, t+ k) (4)

We use Rop to abbreviate Rop (x, y, t+ k) in the following. Con-
sidering that one pixel in the feature space at a higher hierarchy of
a CNN can capture larger movement than the images as it looks
at a larger receptive field, we restrict the searching space in a 3×3
local window P = {−1, 0, 1}. After that, solving an optical flow
problem is to find the optimal solution to minimize the residual
Rop:

Rop =Fc (x, y, t)−
∑
i,j∈P

Oc,i,jFc (x+ i, y + j, t+ k) ,

s.t.Oc,i,j ∈ {0, 1} ,
∑
i,j

Oc,i,j = 1
(5)
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Fig. 3. The overall architecture of the STM network. The input video is first split into N segments equally and then one frame from each segment is
sampled. We adopt 2D ResNet-50 as the backbone and replace all residual blocks with STM blocks. The last score fusion stage applies a temporal
average pooling operation to reduce the temporal dimension.

where Oc,i,j indicates the corresponding weight inside P for
channel c and it becomes 1 when (i, j) is the most matched
displacement otherwise 0. Our motion representation Ht,c in Eq.
(2) could be interpreted as the residual features similar to Rop.
The difference is that the kernels Kc,i,j of CMM is learnable and
supervised by the action classification loss, while the Oc,i,j of
optical flow is fixed once Eq. (5) is solved by some optimization
techniques. That is to say, our CMM could learn more task-
relevant motion features than optical flows since the optimization
target of our CMM is exactly the final classification task, while
the Eq. (5) is to find the most matched displacement and this may
not match the final target of the video action recognition task.

3.3 Illustration from Frequency Domain

From the visualization in Fig. 1, we find that the features from
CSTM and CMM present similarities with the low-frequency and
high-frequency components of the adjacent inputs, respectively.
Therefore, we show an in-depth analysis of the proposed method
from a different perspective, frequency domain. Mathematically,
we derive the frequency spectrum based on the neighboring
video features to explain these two modules explicitly. We apply
the Discrete Fourier Transform (DFT) to transfer the extracted
features from the temporal domain to the frequency domain. For a
video feature F, the expansion of DFT function is written as:

F̂[n] =
K−1∑
k=0

F[k]e−j 2π
K nk, n = 0, 1, 2, ...,K − 1 (6)

where F̂ denotes the DFT of F. When considering two adjacent
input features F={Ft,Ft+1}, we have K=2. Then n = 0 presents
the low frequency and n = 1 shows the high frequency. Formally,

F̂[0] = Ft + Ft+1

F̂[1] = Ft − Ft+1

(7)

It shows that the sum of neighboring features Ft and Ft+1

could represent the low-frequency information, while the differ-
ence of them reveals the high-frequency representation. As shown
in Fig. 1, the low-frequency representation retains most scene
information, while the high-frequency one presents the distinct
motion edges. Interestingly, from the visualization, we find the
features from our CSTM share common characters with the low-
frequency temporal component, and the CMM shows the motion
features like the high-frequency temporal component. In fact, our
CSTM and CMM could be interpreted as advanced and learnable
version of F̂[0] and F̂[1], respectively. More specifically, when we
set the kernels of Eq. (1) to [0,1,1], CSTM degenerates into F̂[0].
Moreover, CMM becomes F̂[1] if only the center elements of the
weights of Eq. (2) are set to 1 while the others are zeroes.

With learnable weights, the proposed CSTM and CMM could
continuously learn to obtain better representations rather than
directly apply Eq. (7), which is the raw information of different
frequency bands. When the kernels are learnable parameters,
the weights of CSTM and CMM are supervised and guided
by the action classification loss, i.e., our target task, to achieve
optimal performance. In contrast, the low-frequency and high-
frequency components are special cases of fixed weights and are
not adjusted by the target training loss. Therefore, our CSTM and
CMM could perform better than the degenerated version. We also
demonstrate this in our experiments (Sec. 5.3). Besides, as the
features of CSTM and CMM correspond to low-frequency and
high-frequency signals, respectively, it further proves why the two
complement each other.

3.4 STM Network

In order to keep the framework effective yet lightweight, we
combine the proposed CSTM and CMM together to build a
united block named STM block that can encode spatiotemporal
and motion features together. It can be easily inserted into the
existing ResNet architectures. The overall design of the STM

Authorized licensed use limited to: Zhejiang University. Downloaded on June 28,2022 at 07:15:34 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3173658, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 4. Twins Training Framework. The input frames are first augmented into two distortions and then go through a shared siamese network to obtain
their representations. Next, the two outputs are used to calculate the normal classification loss and also normalized to compute a correlation loss.
The framework is only used in training to strengthen the network and will not influence the normal inference process.

block is illustrated in the bottom half of Fig. 3. In this STM
block, a 1x1 2D convolution layer is responsible for reducing the
channel dimensions first. The compressed feature maps are then
passed through the CSTM and CMM to extract spatiotemporal
and motion features, respectively. Typically, there are two ways to
fuse different types of information: summation and concatenation.
We experimentally found that summation works better than con-
catenation to fuse these two modules. Therefore, an element-wise
sum operation is applied after the CSTM and CMM to aggregate
the information. Then another 1x1 2D convolution layer is used
to restore the channel dimensions. Similar to the ordinary residual
block, we also add a parameter-free identity shortcut from the
input to the output.

Since the proposed STM block is compatible with the ordinary
residual block, we can simply insert it into any existing ResNet
architectures to form our STM network. Compared to original
ResNet (we consider the 50-layer ResNet-50 here), it brings very
limited extra computation cost (1.2%, 32.9G FLOPs vs. 33.3G
FLOPs) and parameters (0.8%, 23.8M vs. 24M). We illustrate the
overall architecture of the STM network in the top half of Fig. 3.
The STM network is a 2D convolutional network that encodes both
spatiotemporal features and motion features together without any
3D convolution or pre-computing optical flow. Unless specified,
we choose the 2D ResNet-50 [50] as our backbone for its trade-off
between accuracy and speed. We replace all residual blocks with
the proposed STM blocks. A temporal average pooling operation
is applied in the last score fusion stage to reduce the temporal
dimension.

3.5 Twins Training

Based on the proposed STM network, we further explore the train-
ing framework and propose a novel training framework aiming at
further improving the performance, named Twins Training. It fully
stretches the training samples and exploits the abundant power of
the proposed STM. As shown in Fig. 4, Twins Training employs a
siamese network to make the utmost of the training data by jointly
encoding two distorted versions XA and XB of all video frames
X , which are sampled from a batch randomly selected videos V .
The distortions are generated from a distribution of group data
augmentations A. Next, the two batches of XA and XB are fed

into the siamese network, which consists of two weights-shared
(Twins) STM fθ , conducting two batches of classification repre-
sentations YA and YB , where each feature dimension corresponds
to one specific category.

We employ two losses in Twins Training to supervise the
whole learning process. The first one is the common cross-entropy
loss Lcls aiming at classification. Lcls is applied on both YA

and YB and calculated with the target classification label T . The
second one is a label-free correlation loss Lcor inspired by [53]
to decouple the inter-class correlation and reinforce the intra-class
correlation. Unlike [53], we add the correlation loss as an auxiliary
loss function into the supervised video representation learning
framework under a supervised video classification setting and
constraine it with the normal cross-entropy loss in the meantime.
While [53] applies the correlation loss as the only loss function to
the field of instance-aware self-supervised image representation
learning for avoiding the collapse of trivial constant represen-
tations. Since the correlation loss is only used as an auxiliary
function in our Twins Training framework, the feature dimension
does not need to be set to a particularly large dimension like 8k
or 16k in [53], such as Something-Something V1 has only 174
categories and Kinectis-400 has only 400 categories. However,
the correlation loss can still effectively improve our accuracy. We
first normalize YA and YB along the batch dimension with L2

normalization, producing ZA and ZB . Next, the cross-correlation
matrix can be calculated between ZA and ZB along the batch
dimension. Formally,

Cij =
∑

n z
A
n,iz

B
n,j√∑

n

(
zAn,i

)2
√∑

n

(
zBn,j

)2 (8)

where n indexes batch dimension, i, j are the class index. C is
a square matrix with the dimensionality of the network’s output
(categories), and with values comprised between -1 (i.e., perfect
anti-correlation) and 1 (i.e., perfect correlation). Then, Lcor can
be formulated as:

Lcor =
∑
i

(1− Cii)2︸ ︷︷ ︸
intra−class term

+ β
∑
i

∑
j ̸=i

C2
ij︸ ︷︷ ︸

inter−class term

(9)
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Cii actually shows the intra-class feature correlation inside i-th
class and Cij presents the inter-class feature correlation between
i-th and j-th classes. The first term of Lcor tries to make the
diagonal elements of C to be 1, pulling features from the same
category towards or even equal to each other. Thus it could shrink
the intra-class distance and reinforce the correlation inside a class.
The second term of Lcor tries to equate the off-diagonal elements
of C to 0, pushing features of different categories further away
and making them independent to each other, so it could reduce
the inter-class redundancy and decouple the correlation among
different categories. This is quite different to the similar works
of the correlation loss applications like [53], which applies the
correlation loss function to an extra three-layer MLP Predictor and
uses only the backbone before the Predictor as feature encoding
network, i.e., the correlation loss function does not directly affect
their final used features. In the Twins Training framework of
our STM, the correlation loss function is directly applied to the
final classification features, so that it could achieve our goal of
reducing the correlation of different categories and aggregating
the correlation of the same classes.

The final objective of Twins Training is:

L =
1

2

(
LA
cls + LB

cls

)
+ λLcor (10)

where the parameter λ is used to balance the two kind of losses.
LA
cls and LB

cls are the cross entropy losses of the two distorted
batches.

Besides, it is worth to notice that Twins Training is a training
framework used in the training phase and it will bring no changes
like extra parameters or computational burdens in the inference
process.

4 EXPERIMENTS

In this section, we first introduce the datasets and the implemen-
tation details of our approach. Then we perform extensive experi-
ments to demonstrate that the proposed STM consistently outper-
forms or obtains a comparable performance with the state-of-the-
art methods on both temporal-related datasets (i.e., Something-
Something v1 & v2) and scene-related datasets (i.e., Kinetics-
400, UCF-101, and HMDB-51). The baseline method in our
experiments is Temporal Segment Networks (TSN) [14] where
we re-implement it by replacing its backbone to ResNet-50 for
fair comparisons. Finally, we give runtime analyses to show the
efficiency of STM.

4.1 Datasets
We evaluate the performance of the proposed STM on several pub-
lic action recognition datasets. We classify these datasets into two
categories: (1) temporal-related datasets, including Something-
Something v1 & v2 [20]. For these datasets, temporal motion
interaction of objects is the key to action understanding. Most of
the actions cannot be recognized without considering the temporal
relationship; (2) scene-related datasets, including Kinetics-400
[2], UCF-101 [21] and HMDB-51 [22] where the background
information contributes a lot for determining the action label in
most of the videos. Temporal cues in scene-related datasets are
not as important as temporal-related datasets. We give examples
in Figure 5 to show the difference between them. Since our
method is designed for effective spatiotemporal fusion and motion
information extraction, we obtain a large margin performance

Fig. 5. Examples of temporal-related datasets and scene-related
datasets. Top: action for which temporal feature matters. Reversing the
order of frames gives the opposite label (opening something vs. closing
something). Bottom: action for which scene feature matters. Even with
only one frame, we can easily predict its label (horse riding).

gain than our baseline TSN in the temporal-related datasets.
Nevertheless, for those scene-related datasets, our method also
achieves competitive results.

4.2 Implementation Details

Network Details. Given an input video, we first divide it into
T segments of equal durations to conduct long-range temporal
structure modeling. Then, we randomly sample one frame from
each segment to construct the input sequence with T frames. In
our experiments, T is set to 8 or 16. r in CMM is set to 16.
Training Details. We train our model with 8 Geforce RTX 3090
GPUs and each GPU processes a mini-batch of 8 video clips
(when T = 8) or 4 video clips (when T = 16). For Kinetics,
Something-Something v1 & v2, we start with a learning rate of
0.01 and reduce it by a factor of 10 at 30,40,60 epochs and
stop at 70 epochs. For these large-scale datasets, we only use
the ImageNet pre-trained model as initialization. For UCF-101
and HMDB-51, we use Kinetics pre-trained model as initialization
and start training with a learning rate of 0.001 for 50 epochs. The
learning rate is decayed by a factor of 10 every 15 epochs. We use
mini-batch SGD as the optimizer with a momentum of 0.9 and a
weight decay of 5e-4. The size of the short side of input frames
is fixed to 256. Then, we apply augmentation on them and resize
the cropped regions to 224×224 for network training. Therefore,
the input size of the network is N × T × 3 × 224 × 224, where
N is the batch size and T is the number of the sampled frames
per video. For the Twins Training framework, β is set to 0.0039
as [53] and λ is set to 0.01. The data argumentation A consists of
corner cropping, scale-jittering, horizontal flipping, color jittering
and grayscale.
Inference Details. Following [5], [57], we first scale the shorter
spatial side to 256 pixels and take three crops of 256 × 256 to
cover the spatial dimensions and then resize them to 224 × 224.
We randomly sample 10 times from the full-length video for the
temporal domain and compute the softmax scores individually.
The final prediction is the averaged softmax scores of all clips.

4.3 Results on Temporal-Related Datasets

This section compares our approach with state-of-the-art methods
on temporal-related datasets including Something-Something v1
& v2. Something-Something v1 is a large collection of densely
labeled video clips that show fundamental human interactions
with daily objects. This dataset contains 174 classes with 108,499
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TABLE 1
Performance of the STM on the Something-Something v1 and v2 datasets compared with the state-of-the-art methods. We report the inference

cost with a single “view” (a temporal clip with a spatial crop) × the number of such views used (FLOPs×views). ‘-’ indicates that the values are not
available to us.

Method Backbone Flow Pre-training Frames FLOPs×views Something-Something v1 Something-Something v2
Top-1 Top-5 Top-1 Top-5

3D
C

N
N

s

S3D-G [8] Inception ImageNet 64 71.38G×1 48.2 78.7 - -
ECO [34]

Kinetics

8 32G×1 39.6 - - -
ECO [34] BNInception+ 16 64G×1 41.4 - - -

ECOENLite [34] 3D ResNet-18 92 267G×1 46.4 - - -
ECOENLite Two-Stream [34] ✓ 92+92 - 49.5 - - -

ShuffleNetV1 2x [54] 3D ShuffleNetV1

Scratch

32 0.78G×1 33.9 62.5 - -
ShuffleNetV2 2x [54] 3D ShuffleNetV2 32 0.72G×1 31.9 61.0 - -
MobileNetV1 2x [54] 3D MobileNetV1 32 0.92G×1 29.8 56.9 - -
MobileNetV2 1x [54] 3D MobileNetV2 32 0.91G×1 30.8 59.8 - -

I3D [2] 3D ResNet-50 ImageNet 32 153G×6 41.6 72.2 - -
I3D+GCN [2] +Kinetics 32 303G×6 43.4 75.1 - -

2D
C

N
N

s

TSN [14] ResNet-50 Kinetics 8 16G×1 19.7 46.6 27.8 57.6
16 33G×1 19.9 47.3 30.0 60.5

TRN Multiscale [55] BNInception ImageNet 8 16.37G×1 34.4 - 48.8 77.6
TRN Two-Stream [55] ✓ 8+8 - 42.0 - 55.5 83.1

MFNet-C101 [18] ResNet-101 Scratch 10 - 43.9 73.1 - -
TSM [10]

ResNet-50
ImageNet 8 32.9G×1 45.6 74.2 59.1 85.6

TSM [10] + 16 65.8G×1 47.2 77.1 63.4 88.5
TSM Two-Stream [10] ✓ Kinetics 16+16 - 52.6 81.9 66.0 90.5

TEA [11] ResNet-50 ImageNet 8 35G×30 51.7 80.5 - -
16 70G×30 52.3 81.9 - -

STFT [37] BN-Inception Kinetics 64 41.21G×1 52.4 81.8 64.7 90.8
TPN [56]+TSN ResNet-50 ImageNet 8 - 40.6 - 55.2 -
TPN [56]+TSM 8 - 49.0 - 62.0 -

STM ResNet-50 ImageNet 8 33.3G×30 50.4 80.6 62.8 89.1
16 66.5G×30 53.3 81.9 64.9 90.7

videos. Something-Something v2 is an updated version of v1 with
more videos (220,847 in total) and greatly reduced label noise.

Table 1 lists the results of our method compared with the
state-of-the-art on Something-Something v1 and v2. The results of
the baseline method TSN are relatively low compared with other
methods, which demonstrates the importance of temporal model-
ing for these temporal-related datasets. Compared with TSN, our
STM network gains 30.7% and 33.4% top-1 accuracy improve-
ment with 8 and 16 frames inputs respectively on Something-
Something v1. On Something-Something v2, 8-frame and 16-
frame STM also gain 35% and 34.9% improvement compared to
TSN, respectively. The methods can be classified into two types as
shown in the two parts of Table 1. The upper part presents the 3D
CNN-based methods, including S3D-G [8], ECO [34], I3D models
[58] 3D ShuffleNet and 3D MobileNet [54]. The lower part is
2D CNN-based methods, including TSN, TRN [55], MFNet [18]
TSM [10], TEA [11], STFT [37] and TPN [56]. Even our STM
with 8 RGB frames as input surpasses all the 3D CNN-based
methods in the upper part, which usually take more frames or
optical flow as input. With 16 frames as input, STM achieves the
best performance in Something-Something v1. In the Something-
Something v2, our results are just slightly lower than the TSM
two-stream with a 1.1% top-1 accuracy gap and the STFT with
a 0.1% top-5 accuracy gap. However, TSM two-stream relies on
optical flow to their best results and its 16 RGB frames version
performs worse than our 16-frame STM. STFT gains the best top-
5 accuracy with much more frames (64 frames) than ours (16
frames), while our STM surpasses STFT in the top-1 accuracy
(64.9% vs. 64.7%).

4.4 Results on Scene-Related Datasets
We evaluate our STM on three scene-related datasets: Kinetics-
400, UCF-101, and HMDB-51. Kinetics-400 is a large-scale
human action video dataset with 400 classes. It contains 236,763

clips for training and 19,095 clips for validation. UCF-101 is a
relatively small dataset that contains 101 categories and 13,320
clips in total. HMDB-51 is also a small video dataset with 51
classes and 6766 labeled video clips. For UCF-101 and HMDB-
51, we followed [14] to adopt the three training/testing splits for
evaluation.

Table 2 summarizes the results of STM and other compet-
ing methods on the Kinetics-400 dataset. From the evaluation,
we can draw the following conclusions: (1) Different from the
previous temporal-related datasets, most actions of Kinetics can
be recognized by scenes and objects even with one still frame
of videos. Therefore the baseline method without any temporal
modeling can achieve acceptable accuracy; (2) Though our method
mainly focuses on temporal-related actions recognition, STM still
achieves very competitive results compared with the state-of-the-
art methods. STM outperforms all the 2D CNNs-based methods
in the lower part of Table 2, including the most similar work
TEA [11] (76.9% vs. 76.1%). STM even exceeds several 3D
CNN-based methods (the upper part of the Table 2) like STC,
ARTNet, S3D and ECO. Top-1 accuracy of our 16-frame STM is
0.4% higher than the 32-frame NL (Non-local [57]) I3D, which
uses 3D ResNet-50 as the backbone. NL SlowFast [5] yields the
state-of-the-art accuracy of 79.8% on this dataset. However, they
have a much higher computational cost than STM (234G×30 vs.
66.5G×30). Besides, our 16-frame STM achieves comparable top-
1 accuracy against SlowFast with 3D ResNet-50 as backbone and
no non-local operation (76.9% vs. 77.0%). One may notice that
X3D [6] achieves a slightly better results than our STM (77.5%
vs. 75.5%) with a bit lower inference cost than ours. However, the
training process of X3D is resource-consuming which needs 128
GPUs and trains with 256 epochs. Although its inference cost is
slightly lower than ours, the training cost is much more than ours.

We also conduct experiments on the UCF-101 and HMDB-51
to study the generalization ability of our STM. We evaluate our
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TABLE 2
Performance of the STM on the Kinetics-400 dataset compared with the state-of-the-art methods. We report the inference cost with a single “view”

(a temporal clip with a spatial crop) × the number of such views used (FLOPs×views). ‘-’ indicates that the values are not available to us.

Method Backbone Flow Frames FLOPs×views Top-1 Top-5
3D

C
N

N
s

ECO-RGBen [34] BNInception 92 267G×1 70.0 -+3D ResNet-18
I3D RGB [2] 3D BN-Inception 64 107.89G×- 72.1 90.3

I3D Two-Stream [2] ✓ 64+64 216G×- 75.7 92.0
NL I3D [57] 3D ResNet-50 32 282G×30 76.5 92.6
NL I3D [57] 3D ResNet-101 32 359G×30 77.7 93.3

STC [30] 3D ResNext101 32 - 68.7 88.5
ARTNet [59] 3D ResNet-18 32 23.7G×250 69.2 88.3

S3D [8] BN-Inception 64 66.38G×- 72.2 90.6
S3D-G [8] 64 71.38G×- 74.7 93.4

SlowFast 8x8 [5] 3D ResNet-50 8+8 65.7G×30 77.0 92.6
NL SlowFast 8x8 [5] 3D ResNet-101 8+8 116G×30 78.7 93.5
NL SlowFast 16x8 [5] 16+8 234G×30 79.8 93.9

X3D-L [6] 3D ResNet-based 16 24.8G×30 77.5 92.9
X3D-XL [6] 16 48.4G×30 79.1 93.9

TPN [56] 3D ResNet-101 64 - 78.9 93.9

2D
C

N
N

s

StNet [60] ResNet-101 25 310.5G×- 71.4 -
Disentangling [45] BNInception - - 71.5 89.9
R(2+1)D RGB [7] ResNet-34 32 152G×115 72.0 90.0

R(2+1)D Two-Stream [7] ✓ 32+32 304G×115 73.9 90.9

TSM [10] ResNet-50 8 65.8G×10 74.1 91.2
ResNet-50 16 65.8G×10 74.7 -

TSN RGB [14] BNInception 25 53G×10 69.1 88.7
TSN Two-Stream [14] ✓ - 80G×10 73.9 91.1

TEA [11] ResNet-50 8 35G×30 75.0 91.8
16 70G×30 76.1 92.5

STFT [37] BN-Inception 64 41.21G×30 75.0 91.1
TPN [56]+TSN ResNet-50 8 - 73.5 -

STM ResNet-50 8 33.3G×30 75.5 92.0
16 66.5G×30 76.9 92.7

method over three splits and report the averaged results in Table 3.
First, compared with the ImageNet pre-trained model, Kinetics
pre-train can significantly improve the performance on small
datasets. Then, compared with the state-of-the-art methods, STM
with 16 frames as inputs outperforms all the methods, including
the 3D CNN-based and 2D CNN-based approaches in Table 3.
It demonstrates that our STM achieves superior generalization
ability on small datasets.

4.5 Runtime Analysis

Our STM achieves the new state-of-the-art or comparable results
on several benchmark datasets compared with other methods.
More importantly, it is a unified 2D CNN framework without
any time-consuming 3D convolution and optical flow calculations.
Table 5 shows the accuracy and model complexity of STM and
several state-of-the-art methods on the Something-Something v1
dataset. All these tests are conducted on a single Geforce RTX
3090 GPU. For a fair comparison, we evaluate our method by
evenly sampling 8 or 16 frames from a video and then applying
the center crop. STM-18, STM-34, STM-50 indicate 18-layers,
34-layers and 50-layers versions of STM, which are similar to
ResNet-18, ResNet-34 and ResNet-50. TSN8F uses the ordi-
nary ResNet-50 as the backbone, thus it could be regarded as
our baseline method. Our STM-508F brings very limited extra
computation cost (1.2%, 32.9G FLOPs vs. 33.3G FLOPs) and
parameters (0.8%, 24M vs. 23.8M) against TSN8F , while the
performance is improved with a large margin (48.5% vs. 19.7%).
Compared to I3D64F and ECO16F , our STM-508F achieves 9.2x
and 1.9x fewer FLOPs (33.3G vs. 306G, 64G), 9.7x and 1.3x faster
(106.7V/s vs. 11.0V/s, 79.7V/s), while 6.9% and 7.1% higher top-

1 accuracy. Compared to TSM16F , our STM-508F gains 1.3%
higher accuracy with 1.7x faster speed and half FLOPs. As for
TEA8F [11], although the accuracy of our STM-508F is slightly
lower than it (48.5% vs. 48.9%), STM-508F runs 1.79x faster than
TEA (106.7V/s vs. 59.5V/s). Besides, our smaller variants also
have stunning performances with faster inference speed and fewer
parameters and FLOPs. STM-188F runs 161.6 videos a second,
which is 14.7x faster than I3D64F and 2.0x faster than ECO16F

while achieving comparable performance. Such smaller variants
will be more suitable for many practical platforms with faster
speed and fewer parameters than large models.

4.6 Online Recognition

We have implemented a plain online version of STM for the online
application and demonstrated its performance on Kinetics-400
and Something-Something V1. In detail, for an online video, we
keep a memory cache to store the historical seven frames. When
recognizing a specific frame, we combine it with the stored frames
to obtain its recognition result. We use the prediction averaged
from all the frames to compare with the offline models. All the
STM-online models are tested on a single Geforce RTX 3090
GPU and use 8 RGB frames as inputs.
As shown in Table 5, the STM-online could run in real time with
low latency and high accuracy, maintaining similar performance
as the offline model. It could be seen that for scene-related datasets
like Kinetics-400, the online model achieves comparable perfor-
mance (75.4% vs. 75.5%). While for temporal-related datasets like
Something-Something V1, online model performs slightly worse
than offline model (49.7% vs. 50.4%). This is intuitive because
temporal-related datasets require more temporal cues for better
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TABLE 3
Performance of the STM on UCF-101 and HMDB-51 compared with the state-of-the-art methods.

Method Backbone Flow Pre-training UCF-101 HMDB-51
3D

C
N

N
s C3D [1] 3D VGG-11 Sports-1M 82.3 51.6

STC [30] 3D ResNet101 Kinetics 93.7 66.8
ARTNet with TSN [59] 3D ResNet-18 Kinetics 94.3 70.9

ECO [34] BNInception+3D ResNet-18 Kinetics 94.8 72.4
I3D RGB [2] 3D Inception-v1 ImageNet+Kinetics 95.1 74.3

2D
C

N
N

s

TSN [14] ResNet-50 ImageNet 86.2 54.7
TSN RGB [14]

BNInception
ImageNet+Kinetics 91.1 -

TSN two-Stream [14] ✓ ImageNet+Kinetics 97.0 -
TSN two-Stream [12] ✓ ImageNet 94.9 71.0

Four-Stream+IDT [61] ResNeXt-50 ✓ ImageNet 95.4 74.2
ResNeXt-101 ✓ ImageNet 96.0 74.9

LTC [62] C3D - 82.4 -
LTC two-stream+IDT [62] ✓ 92.7 67.2

TSM [10] ResNet-50 ImageNet+Kinetics 95.9 73.5
StNet [60] ResNet50 ImageNet+Kinetics 93.5 -

Disentangling [45] BNInception ImageNet+Kinetics 95.9 -
TEA [11] ResNet-50 ImageNet+Kinetics 96.9 73.3
STFT [37] BN-Inception Kinetics 94.7 71.5

STM ResNet-50 ImageNet+Kinetics 97.1 75.2

TABLE 4
Accuracy and model complexity of STM and other state-of-the-art

methods on the Something-Something V1 dataset with a single crop.
Measured on a single Geforce RTX 3090 GPU.

Model Frame FLOPs Param Speed Acc.
I3D [2] 64 306G 28.0M 11.0 V/s 41.6

ECO [34] 16 64G 47.5M 79.7 V/s 41.4

TSM [10] 8 32.9G 24.3M 120.3 V/s 45.6
16 65.8G 63.5 V/s 47.2

TEA [11] 8 35G - 59.5 V/s 48.9
TSN [14] 8 32.9G 23.8M 121.2 V/s 19.7
STM-18 8 14.6G 11.0M 161.6 V/s 40.5
STM-34 8 29.4G 20.5M 155.3 V /s 43.8

STM-50 8 33.3G 24.0M 106.7 V/s 48.5
16 66.5G 52.5 V/s 51.6

TABLE 5
Online Performance on the Kinetics-400 and Something-Something V1

datasets.

Model Latency Kinetics Something
TSM-Online 4.8ms 74.3 46.3
STM-Offline - 75.5 50.4
STM-Online 5.4ms 75.4 49.7

recognition while the scene-related datasets are less dependent on
temporal information. Meanwhile, we compare the performance
of the STM-online with TSM-online [10]. Although our latency is
slightly larger than theirs (5.4ms% vs. 4.8ms) since TSM-online
directly saves historical features for their shifting operation while
we need to do the feature extraction process, the latency of our
STM-online and TSM-online are actually all beyond the real-time
requirement. Moreover, our STM-online surpasses TSM-online
with large gains of 1.1% on Kinetics-400 and 3.4% on Something-
Something V1.

5 ABLATION STUDY

In this section, we comprehensively perform ablation studies to
analyze each component in our proposed STM on the Something-
Something v1 dataset. The proposed Twins Training framework is
added and validated in the last part. Unless specified, the ablation
experiments in this section use 8 RGB frames as inputs.

5.1 Impact of two modules

Our proposed two modules can be inserted into a standard ResNet
architecture independently. To validate the contributions of each
module in the STM (i.e., CSTM and CMM), we compare the
results of the individual module and the combination of both
modules in Table 6. We can summarize that each component
contributes to the proposed STM block. CSTM learns channel-
wise temporal fusion and brings about 28% top-1 accuracy im-
provement compared to the baseline method TSN while CMM
encodes the feature-level motion information and brings 24.4%
top-1 accuracy improvement. When combining CSTM and CMM
together, we can learn both spatiotemporal and motion features
and achieve the best top-1 accuracy, especially, the gain over the
baseline is 29.5%.

5.2 Fusion of two modules

There are two ways to combine CSTM and CMM: element-wise
summation and concatenation. The element-wise summation is
parameter-free and easy to implement. For concatenation fusion,
we first concatenate outputs of CSTM and CMM over the channel
dimension, and the dimension of concatenating features is 2C.
Then a 1x1 convolution is applied to reduce the channels to
C. We conduct experiments to study the two fusion ways as
shown in Table 7, though summation aggregation is simple, it still
outperforms concatenation by 7.4% at top-1 accuracy and 6.1% at
top-5 accuracy.

5.3 Frequency Degeneration

As illustrated in Section 3.3, the proposed CSTM and CMM
can degenerate into low-frequency and high-frequency represen-
tations, respectively. We implement a reduced version by setting
the kernels in Eq. (1) to [0,1,1] and fixing the center elements
of the weights of Eq. (2) to 1 while the others are zeroes.
The results are shown in Table. 8. Interestingly, the frequency
degeneration obtains a 25.5% top-1 accuracy improvement over
TSN. It means that even simply representing high-frequency F̂t[1]
and low-frequency F̂t[0] components like Eq. (7) inside every
residual block could contribute a lot to the performance. However,
when making the kernels in Eq. (1) and Eq. (2) learnable and
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Model Top-1 Top-5
TSN 19.7 46.6

CSTM 47.7 77.9
CMM 44.1 74.8
STM 49.2 79.3

TABLE 6
Impact of two modules:

Comparison between CSTM, CMM
and STM.

Aggregation Top-1 Top-5
TSN 19.7 46.6

Summation 49.2 79.3
Concatenation 41.8 73.2

TABLE 7
Fusion of two modules:

Summation fusion is better.

Type Top-1 Top-5
TSN 19.7 46.6

frequency 45.2 74.1degeneration
STM 49.2 79.3

TABLE 8
Frequency Degeneration:

Frequency Degeneration could
achieve a satisfactory performance,

but not as good as our STM.

Stage STM Blocks Top-1 Top-5
2 1 38.7 70.1
3 1 40.6 71.6
4 1 41.5 72.6
5 1 41.5 71.8

2-5 4 47.9 78.1
2-5 16 49.2 79.3

TABLE 9
Location and number of STM

block: Deeper location and more
blocks yeild better performance.

Fig. 6. Feature Visualization of the Frequency Degeneration and our
STM. The first column represents the original images of the two mo-
ments t=0 and t=1 of an action “holding something”. The second col-
umn shows the output features of Frequency Degeneration, i.e., fixed
CSTM and CMM blocks, which are the temporal low-frequency and
high-frequency components of the neighboring input features. The third
column presents the output features of our STM, i.e., the learnable CMM
and CSTM blocks. Brighter colors indicate larger values in the feature
maps.

TABLE 10
Type of convolution: For CSTM, channel-wise temporal convolution
yields better performance. For CMM, channel-wise spatial convolution

obtains better performance.

Type Top-1 Params FLOPs

CSTM
Channel-wise 1D Conv 47.7 23.88M 32.93G

Channel-wise 1D, 2D Conv 42.6 13.28M 24.05G
All Ordinary 46.9 27.64M 40.59G

CMM Channel-wise 44.1 23.95M 32.95G
Ordinary 43.5 24.25M 33.5G

trainable, i.e., using STM will surpass directly applying the raw
frequency representation with by 4% and 5.2% on top-1 and top-
5 accuracy, respectively. We visualize an example to compare
the frequency degeneration variant and our STM in Fig. 6. It
could be found that the learnable CSTM block can pay more
attention to the spatiotemporal characteristics of the action than
the fixed CSTM block. For example, it can clearly show the hand
holding the bottle while the fixed CSTM block focuses more on
the background behind the bottle. Compared with the fixed CMM
block, the learnable CMM block can pay more attention to the
motion edges of action subject and reduce the noise significantly.
For instance, the learnable CMM block can present the motion of
the fingers, while the fixed CMM block brings lots of noise on the
bottle.

5.4 Location and number of STM block
ResNet-50 architecture can be divided into six stages. We refer
the conv2 x to conv5 x as stage 2 to stage 5. The first four rows
of Table 9 compare the performance of replacing only the first
residual block with STM block on different stages in ResNet-
50, from stage 2 to stage 5, respectively. We conclude from
the results that replacing only one residual block already yields
significant performance improvement compared to the baseline
TSN, which demonstrates the effectiveness of the proposed STM
block. In detail, we can find that replacing STM block at each stage
all promotes the performance, which validates that the proposed
temporal modeling strategy could benefit both low-level and high-
level temporal features learning. We then replace one block for
each stage (i.e., replacing four blocks in all) and obtain better
results. Our model achieves the best performance when replacing
all original residual blocks with STM blocks (i.e., 16 blocks in
all).

5.5 Type of convolution
We choose channel-wise temporal convolution in CSTM to learn
temporal combination individually for each channel and channel-
wise spatial convolution in CMM to encode motion weights
separately for each channel. We make comparisons with ordinary
convolution in two modules and the results are shown in Table
10. With channel-wise convolutions, we can achieve better per-
formance with few parameters and FLOPs in both two modules,
which confirms that channel-wise convolutions for temporal com-
bination and motion modeling are both sufficient and efficient.
Moreover, we experiment with channel-wise spatial convolutions
in CSTM module as shown in Table 10. The performance drops
a lot (5.3%) on top-1 accuracy, indicating that it needs more
parameters to learn the semantic spatial features. Thus we adopt
ordinary convolution for spatial feature encoding in our CSTM
module.

5.6 Impact of Twins Training framework
We demonstrate the validness of the proposed Twins Training
framework on our STM and other two representative methods,
TSN and TSM (only 8 RGB frames as inputs). Besides, we
also conduct experiments on a larger scene-related benchmark
Kinetics-400 to show the generalization ability of Twins Training.
As shown in Table. 11, when equipping with Twins Training
framework, all the three methods perform superior against original
training manner on both two datasets. As visualized in Fig. 7, by
projecting the features of the last classification layer into a low
2-dimension space, it is obvious that (1) without Twins Training,
our STM learns semantically more separable features than TSN
[14] and TSM [10]. Since our STM integrates spatiotemporal and
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Fig. 7. Feature visualization with t-SNE [63] on Kinetics-400. Each video is visualized as a point. Videos belonging to the same action category
have the same color. Without Twins Training (first row), our STM learns semantically more separable features than TSN [14] and TSM [10]. When
equipping with the Twins Training framework (second row), all the three methods’ inter-class and intra-class distances are dramatically optimized.

TABLE 11
Impact of Twins Training framework: All the methods improve their
performance in both Kinetics-400 and Something-Something v1 with

the help of the Twins Training framework.

Model Twin Training Kinetics-400@Top-1 Something v1@Top-1

TSN 70.6 19.7
✓ 72.5 20.9

TSM 74.1 47.3
✓ 75.2 48.2

STM 73.7 49.2
✓ 75.5 50.4

motion features together, while TSN only encodes spatial features
and TSM only represents spatiotemporal features; (2) the inter-
class distances of all three methods are enlarged and all the intra-
class distances are shrunk by employing Twins Training. This
success comes from the correlation loss, which could reinforce
the correlation inside the same classes and reduce the redundancy
between different classes.

6 CONCLUSIONS

This paper presents a simple yet effective network for action
recognition by encoding spatiotemporal and motion features to-
gether in a unified 2D CNN network. We replace the original resid-
ual blocks with STM blocks in ResNet architecture to build the
STM network. An STM block contains a channel-wise spatiotem-
poral module to model the spatiotemporal features and a channel-
wise motion module to learn motion representations. Moreover,
we provide an in-depth illustration of these two modules from the
frequency domain and find they could be interpreted as advanced

and learnable versions of frequency components. Furthermore, a
novel Twins Training framework is proposed to fully exploit the
training data and enhance our model by decoupling the inter-class
correlation and reinforcing the intra-class correlation. Without any
3D convolution or pre-calculation optical flows, our STM receives
state-of-the-art or comparable results on both temporal-related
datasets and scene-related datasets. We believe the architectures
and ideas discussed in this paper are successful in spatiotemporal
and motion features modeling. It could be extended for other video
tasks such as video detection and segmentation. We leave this as
our future work.
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