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Abstract—Recent methods for action recognition always apply 3D Convolutional Neural Networks (CNNs) to extract spatiotemporal

features and introduce optical flows to present motion features. Although achieving state-of-the-art performance, they are expensive in

both time and space. In this paper, we propose to represent both two kinds of features in a unified 2D CNN without any 3D convolution

or optical flows calculation. In particular, we first design a channel-wise spatiotemporal module to present the spatiotemporal features

and a channel-wise motion module to encode feature-level motion features efficiently. Besides, we provide a distinctive illustration of

the two modules from the frequency domain by interpreting them as advanced and learnable versions of frequency components.

Second, we combine these two modules and an identity mapping path into one united block that can easily replace the original residual

block in the ResNet architecture, forming a simple yet effective network dubbed STM network by introducing very limited extra

computation cost and parameters. Third, we propose a novel Twins Training framework for action recognition by incorporating a

correlation loss to optimize the inter-class and intra-class correlation and a siamese structure to fully stretch the training data. We

extensively validate the proposed STM on both temporal-related datasets (i.e., Something-Something v1 & v2) and scene-related

datasets (i.e., Kinetics-400, UCF-101, and HMDB-51). It achieves favorable results against state-of-the-art methods in all the datasets.

Index Terms—Action recognition, frequency illustration, motion features, spatiotemporal features, twins training framework

Ç

1 INTRODUCTION

WITH the rapid development of the cloud and edge com-
puting, we are used to engaging in social platforms

and living under the cameras. A vast amount of videos are
recorded every day, attracting more and more researchers
to the video understanding field. One of the most essential
tasks in video understanding is human action recognition,
which aims to recognize the human actions in videos. The
most significant features for action recognition are two com-
plementary features, the spatiotemporal and motion features
where the former is responsible for temporal enhanced
appearance modeling and the latter captures motion infor-
mation of the action subject.

Spatiotemporal features are vital for action recognition
since they encode the relationship of spatial appearance fea-
tures from different timestamps. For example, for a “long
jump” action, the video may start with a running athlete,
and the sandpit always shows in the end. It will be easily
mistaken as “running” if the features of the sandpit are not
felicitously integrated into the former frames’ appearance

features. Existing approaches usually model the spatiotem-
poral features through 3D CNNs [1], [2], [3], [4], [5], [6] or (2
+1)D frameworks [7], [8], [9]. 3D CNNs extend ordinary 2D
convolution with an extra temporal dimension so that 3D
convolution is able to represent spatiotemporal features
intuitively. Nevertheless, expanding the convolution kernel
from 2D to 3D will inevitably increase the computational
cost by an order of magnitude, and the support of 3D convo-
lutions in different platforms is not good as conventional 2D
convolutions, limiting its real applications. The (2+1)D
architectures like S3D [8], P3D [9] and R(2+1)D [7] are pro-
posed to extract spatiotemporal features by factorizing a 3D
convolution into a 1D temporal convolution and a 2D spa-
tial convolution. They can decompose the 3D CNNs back to
2D CNNs. Lin et al. propose TSM [10] to further improve
the computational efficiency by shifting part of the channels
along the temporal dimension and facilitating information
exchange among neighboring frames. Though these meth-
ods successfully balance the heavy computation of 3D
CNNs, their performance remains unsatisfactory if the
motion features are not utilized.

Motion features present motion characteristics between
neighboring frames, which are important for recognizing
temporal-related actions. For instance, when given a frame
like the first image in Fig. 1a, it is hard to tell that the action
is “pulling a plug” or “inserting a plug” without the motion
information. The main difference between the spatiotempo-
ral features and the motion features is that the former
focuses on the temporal aggregation of neighboring appear-
ance features, while the latter pays more attention to the
motion edges of adjacent features and suppresses their
same static appearance features. As demonstrated in many
works [2], [5], [11], these two kinds of features are comple-
mentary to each other. It is a typical way to represent
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motion features by absorbing optical flows within two-
stream neural networks [12], [13], [14], [15], [16]. Optical
flow is an effective motion representation to describe
object/scene movement. To be precise, it is the pattern of
apparent motion in a visual scene caused by the relative
motion between an observer and a scene. A classic two-
stream network [12], [13] consists of a spatial stream with
RGB frames as input and a flow stream with optical flows
as input. The spatial stream models the appearance features
(not spatiotemporal features) without considering the tem-
poral information. The flow stream is designed to model the
motion cues with almost the same network structure as the
spatial stream. Since the input optical flows are extracted
between the original neighboring video frames, it lacks the
ability to capture the long-term motion relationship. To con-
quer this problem, the two-stream networks [13], [14] sim-
ply pool the features or average the predicted results of all
the input optical flows. However, the extraction of optical
flow is expensive in both time and space, and the temporal
stream brings extra parameters, limiting vast industrial
applications in the real world. In order to avoid the calcula-
tion of optical flows, Optical Flow guided Feature
(OFF) [17] contains a set of operators including Sobel and
element-wise subtraction for OFF generation. MFNet [18]
adopts five fixed motion filters as a motion block to find fea-
ture-level motion features between two adjacent time steps.
However, the performance of these methods is limited since
they lack spatiotemporal representations, which benefit a
lot to appearance modeling.

Our key insight is that both spatiotemporal features and
motion features are indispensable and could be integrated
into a unified 2D network so that we do not need any 3D
convolution or optical flow calculation. Specifically, we pro-
pose a Channel-wise Spatiotemporal Module (CSTM) to
present the spatiotemporal features and a Channel-wise
Motion Module (CMM) to learn the motion representations.
We visualize several examples of these two features in
Fig. 1. Compared to the original input features (b) and (c),
the CSTM (g) has learned the spatiotemporal representa-
tions, which extract appearance features strengthened by
multiple timestamps rather than a single frame. As for the
CMM (h), it captures the feature-level motion representa-
tions of the action subject similar to optical flows (e). We
have theoretically explored the relationship between com-
puting optical flows and our motion features and found
that the learnable channel-wise kernels in our CMM could
learn more task-relevant motion representations. Then, we
combine CSTM and CMM as well as an identity mapping
path together to form a united block and insert it into the
ordinary 2D ResNet by replacing the original residual block
with negligible extra parameters (0.8%). It comes out the
expected form of our method, a simple yet effective 2D net-
work for video action recognition, termed as STM network,
which is short for SpatioTemporal and Motion features
integrated network.

Besides, we find CSTM and CMM could be illustrated
from the temporal frequency domain. As shown in Fig. 1,
the features encoded by CSTM have a similar denominator

Fig. 1 Representations of STM. (a) is the first frame of all inputs (8 frames). (b) and (c) are the input features maps Ft and Ftþ1 (here we show exam-
ples of t=0) from Conv_1 block, which is just before the first STM block. (d) and (e) are the temporal low-frequency and high-frequency components
of adjacent input features maps Ft and Ftþ1 (please refer to Sec. 3.3 for details), which show the appearance information and the motion edges,
respectively. (f) represents the optical flows extracted by TV-L1. (g) and (h) are the output spatiotemporal feature maps of CSTM and the output
motion feature maps of CMM, extracted from the first CSTM and CMM block. It could be found that the CSTM features share some common charac-
teristics with the temporal low-frequency components (d), i.e., the spatiotemporal features learned by CSTM could capture the significant spatial fea-
tures enhanced by multiple temporal inputs. Moreover, the CMM features could present the motion features of the action subject, similar to the
optical flows (f) and the high-frequency components (e).
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with the low-frequency components (d), which present the
scene information of a video. Moreover, CMM learns simi-
lar information to the high-frequency representations (e),
which depicts the motion edges. Interestingly, we find
CSTM and CMM could be interpreted as advanced and
learnable versions of low-frequency and high-frequency
components, respectively. We demonstrate that simply
degenerating CSTM and CMM into frequency components
could also achieve a satisfactory performance but not as
good as our method.

Furthermore, we explore the training process of STM and
propose a novel Twins Training framework, which aims to
fully exploit the training data and strengthen our model.
We believe that both the architecture and the training
framework are significant for the video action recognition
task. Nevertheless, most of the previous works in the video
action recognition field focus on the architecture design but
neglect the importance of the training pipeline. Multi-
grid [19] has also noticed this problem and proposed a train-
ing strategy mainly to speed up the training process while
keeping the performance. Differently, our Twins Training
framework purses to improve the performance further. Spe-
cifically, we introduce a siamese architecture and a correla-
tion loss into the regular training process. When inputting a
group of sampled frames, we first generate two groups of
distortions with two groups of different augmentations.
Then the two distortions will go through a shared siamese
network to obtain their representations and the two outputs
are used to calculate the normal classification loss and also
normalized to compute a correlation loss. The siamese
structure could excavate the input training data by applying
two groups of different distortions rather than only one time
in the regular training process. The correlation loss could
help to enlarge the inter-class distance and shrink the intra-
class distance. As a result, the performance will be further
improved. Note that the framework is only used in training
to strengthen the network and will not influence the normal
inference process. We experiment with the proposed Twins
Training on not just our STM but also representative
TSN [12] and TSM [10] to demonstrate its validity. It is
proved to be effective on all these methods.

The main contributions of our work can be summarized
as follows:

� We propose a simple and effective network named
STM for video action recognition, integrating spatio-
temporal features and motion features together in a
unified 2D CNN.

� We design a channel-wise spatiotemporal module
and a channel-wise motion module to encode com-
plementary spatiotemporal and motion representa-
tions. Moreover, a distinctive illustration of the two
modules is provided from the frequency domain.

� We propose a novel Twins Training framework,
which not only makes the utmost of the training data
but also decouples the inter-class correlation and
reinforces the intra-class correlation, therefore fur-
ther strengthening our model.

� Extensive experiments demonstrate that our method
consistently outperforms or obtains a comparable
performance with the state-of-the-art methods on

several public benchmark datasets, including Some-
thing-Something [20], Kinetics [2], UCF101 [21] and
HMDB-51 [22].

This paper builds upon our conference paper [23] and
significantly extends it in several aspects. First, we propose
a novel training framework that enlarges the inter-class cor-
relation and decreases the intra-class distance, therefore fur-
ther improving our model. Second, we verify the
generalization ability of the proposed framework on not
only our STM but also other two representative methods,
TSN [14] and TSM [10]. Third, we investigate the relation-
ship of our CMM and optical flow theoretically to illustrate
the insight of CMM. Fourth, an in-depth analysis of the pro-
posed method from a different perspective, frequency
domain. Fifth, we re-elaborate the essentiality and impor-
tance of our insight and provide a more extensive literature
survey in deep video action recognition. Last but not least,
we enrich the experiments by (1) adding more state-of-the-
art approaches for comparison, (2) implementing variants
of our preliminary version, and (3) conducting more exten-
sive ablation studies.

2 RELATED WORKS

With the great success of deep convolution networks in the
computer vision area, a large number of CNN-based meth-
ods have been proposed for action recognition and have
gradually surpassed the performance of traditional meth-
ods [24], [25]. We mainly introduce the CNN-based
approaches and classify them into three categories as fol-
lows. Besides, we discuss the spatiotemporal modeling of
some related tasks beyond our target supervised short-
range video action recognition task.

2.1 Two-Stream Networks

A sequence of advances adopt 2D CNNs as the backbone
and classify a video by simply aggregating frame-wise pre-
diction [26]. However, these methods only model the
appearance feature of each frame independently while
ignoring the dynamics between frames, which results in
inferior performance when recognizing temporal-related
videos.

To handle the mentioned drawback, two-stream-based
methods [4], [13], [14], [15], [16] are introduced by modeling
appearance and dynamics separately with two networks and
fusing two streams through the middle or at last. Among
these methods, Simonyan et al. [27] first proposed the two-
stream ConvNet architecture with both spatial and temporal
networks. Temporal Segment Networks (TSN) [12], [14] pro-
posed a sparse temporal sampling strategy for the two-stream
structure and fused the two streams by a weighted average at
the end. Feichtenhofer et al. [16], [28] studied the fusion strate-
gies in the middle of the two streams in order to obtain the
spatiotemporal features. However, these types of methods
mainly suffer from two limitations. First, these methods need
pre-compute optical flow, which is expensive in both time
and space. TakingKinetics-400 dataset as an illustrative exam-
ple, storing all the optical flow images requires 4.5 TB disk
space [29]. Such a massive amount of data would lead to a
waste of GPU resources and longer experiment cycles. In
addition, pre-computing optical flow is not cheap, which
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means all the two-stream methods are not real-time. Second,
the learned feature and final prediction from multiple seg-
ments are fused simply using weighted or average sum,mak-
ing it inferior to temporal-relationshipmodeling.

2.2 3D CNN-Based Networks

It is intuitive to learn spatiotemporal features from RGB
frames directly with 3D CNNs [1], [2], [3], [5], [30], [31]
which extend the common 2D CNNs with an extra temporal
dimension. [32] was a pioneer work to use 3D CNNs for
action recognition, but the network was not deep enough to
show its potential. C3D [1] extended [32] to a deeper 3D net-
work, VGG16. However, with tremendous parameters to be
optimized and a lack of high-quality, large-scale datasets,
the performance of C3D remains unsatisfactory. I3D [2]
inflated the ImageNet pre-trained 2D kernel into 3D to cap-
ture spatiotemporal features and modeled motion features
with another flow stream. I3D achieved very competitive
performance in benchmark datasets with the help of the
large-scale Kinetics dataset and the two-stream setting.
Since 3D CNNs try to learn local correlation along the input
channels, STCNet [30] inserted its STC block into 3D ResNet
to capture both spatial-channel and temporal-channel corre-
lation information throughout network layers. Slowfast [5]
involved a slow path to capture spatial semantics and a fast
path to capture motion at fine temporal resolution. D3D [3]
introduced knowledge distillation to tune the spatial stream
to mimic the temporal stream, effectively combining both
models into a single stream. More recently, Feichtenhofer
proposed X3D [6] to progressively expand a tiny base 2D
image architecture into a spatiotemporal one by expanding
along multiple possible axes. Although 3D CNN-based
methods have achieved state-of-the-art performance, they
are still hard to train and challenging to deploy. For train-
ing, it requires lots of GPUs and the experiment cycle is
very long. For instance, a standard SlowFast network
trained on Kinetics400 dataset using a high-end 8-GPU
machine takes 10 days [29], or a 64-GPU machine takes 54.3
hours [33] to complete. For deployment, 3D convolution is
not as well supported as 2D convolution for different
platforms.

2.3 Compute-Efficient Models

To reduce the high computation cost of 3D CNNs, several
methods are proposed to find the trade-off between precision
and speed [7], [8], [9], [11], [34], [35], [36], [37], [38], [39]. Tran
et al. [7] andXie et al. [8] discussed several forms of spatiotem-
poral convolutions, including employing 3D convolution in
early layers and 2D convolution in deeper layers (bottom-
heavy) or reversed the combinations (top-heavy). P3D [9],
S3D [8] and R(2+1)D [7] tried to reduce the cost of 3D convo-
lution by decomposing it into 2D spatial convolution and 1D
temporal convolution. TSM [10] further introduced the tem-
poral convolution by shifting part of the channels along the
temporal dimension. Our proposed CSTM module is similar
to these methods in learning spatiotemporal features, while
we employ channel-wise 1D convolution to capture different
temporal relationships for different channels.

Though the above methods are successful in balancing the
heavy computation of 3D CNNs, they inevitably need the

help of two-stream networks with a flow stream to incorpo-
rate the motion features to obtain their best performance [10].
Motion information is the key difference between video-
based recognition and image-based recognition task. How-
ever, calculating optical flow [40] is expensive in both time
and space. Recently many approaches have been proposed
to estimate optical flow with CNN [41], [42], [43], [44] or
explored alternatives of optical flow [14], [17], [18], [45]. TSN
frameworks [14] involved RGB difference between two
frames to represent motion in videos. Zhao et al. [45] used
cost volume processing to model apparent motion. Optical
Flow guided Feature (OFF) [17] contained a set of operators
including Sobel and element-wise subtraction for OFF gener-
ation. MFNet [18] adopted five fixed motion filters as a
motion block to find feature-level temporal features between
two adjacent time steps. CorrNet [18] proposed a learnable
correlation operator for motion modeling. Our proposed
CMM module is also designed for finding better yet light-
weight alternative motion representation in the feature level
to avoid the calculation of optical flows. Our motion filters
are all learnable and we learn different motion features for
different channels between every two adjacent input frames.

A recent work TEA [11] is the most similar work to our
method. It uses motion features to recalibrate the spatiotem-
poral features and enhance the motion pattern. While our
STM simply and directly adds the spatiotemporal features
and motion encoding together by treating the two kinds of
features as independent and complementary representations.

2.4 Temporal Modeling in Related Tasks

Spatiotemporal modeling is hot in several video under-
standing tasks like complex action recognition and self-
supervised action recognition. A comprehensive review of
these tasks is beyond the scope of this paper and we only
briefly introduce them here. Complex action recognition
contains a set of one-actions with a weak temporal pattern
that serves a specific purpose. Since complex actions always
take much longer to unfold, temporal modeling is key to
avoid missing crucial parts. A representative method in this
task is Timeception [46], which also introduces channel-
wise temporal convolution for temporal modeling. Our
CSTM could be interpreted as a special Timeception layer
when fixing the temporal convolution kernel size to 3. How-
ever, significant motion features are not mentioned in Time-
ception since they focus on the long, complex actions. Self-
supervised action recognition seeks to learn spatiotemporal
features from unlabeled videos. Without precise annota-
tions, the methods in this task focus on designing proxy
tasks like temporal order verification [47], motion/appear-
ance prediction statistics [48], and relative speed percep-
tion [49]. Since they are all designed for unsupervised
instance discrimination tasks, they mainly focus on the loss
and label design with existing backbones like ResNet [50]
and C3D [1] but neglect the architecture improvement,
which is our core insight.

3 METHOD

In this section, we elaborate the technical details of our
approach. First, we describe the proposed CSTM and CMM
to show how to perform the channel-wise spatiotemporal
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fusion and extract the feature-level motion information,
respectively. Then, we give an in-depth illustration of the
two modules from the frequency domain. Next, we present
how to combine these two modules and how to form our
STM network. Afterward, we will introduce the proposed
Twins Training framework in detail.

3.1 Channel-Wise SpatioTemporal Module

To represent the spatiotemporal features, previous methods
intuitively utilize 3D CNNs [1], [2], [3], [5], [30] or leverage
(2+1)D structures [7], [8], [9]. According to the above analy-
ses, the tremendous parameters of 3D CNNs make it hard
to train and deploy. Therefore, we choose the (2+1)D struc-
ture to formulate our Channel-wise SpatioTemporal Mod-
ule (CSTM).

CSTM is designed for efficient spatial and temporal
modeling. It could extract rich spatiotemporal features,
which can significantly boost action recognition perfor-
mance. As illustrated in Fig. 2a, a 1D channel-wise temporal
convolution and a 2D spatial convolution operation are
applied sequentially inside CSTM. Specifically, given an
input feature map F 2 RN�T�C�H�W , where N; T;C;H;W
are the batch size, time, spatial height and width, respec-
tively, we first reshape F as: F ! F� 2 RNHW�C�T and then
apply a channel-wise 1D convolution on the T dimension to
model the temporal relationship. There are mainly two
advantages to adopting the channel-wise convolution rather
than the ordinary convolution for temporal modeling. First,
compared to the ordinary convolution, the computation
cost can be reduced by a factor of G, where G is the number
of groups. In our settings, G equals the number of input
channels. Second, for the feature map F�, the semantic infor-
mation of different channels is typically different [51]. We

believe that the combination of temporal information for
different channels should be independent, which is also val-
idated in the experiments. Thus the channel-wise convolu-
tion is adopted to learn independent kernels for each
channel. Formally, the channel-wise temporal fusion opera-
tion can be formulated as

Gc;t ¼
X
i

Kc;iF
�
c;tþi; (1)

where t; c denote temporal, channel dimensions of the fea-
ture map respectively. Kc;i are temporal combination kernel
weights of cth channel, i is the index of temporal kernel,
F�c;tþi is the input cth channel features and Gc;t is the output
channel-wise temporal fusion features. Here the temporal
kernel size of Kc;i is set to 3 thus i 2 ½�1; 1�. Next, G will be
reshaped to the original input shape (i.e., ½N; T;C;H;W �)
and model spatial information via a 2D convolution whose
kernel size is 3x3.

We visualize the output feature maps of CSTM to help
understand this module in Fig. 1f. We can find that the
CSTM has learned the spatiotemporal features which
absorb important appearance information from different
timestamps.

3.2 Channel-Wise Motion Module

As discovered in [2], [52], the motion features are comple-
mentary to spatiotemporal features. Therefore, we propose
a lightweight Channel-wise Motion Module (CMM) to
extract feature-level motion patterns between adjacent input
frames. Note that our goal is to find the motion representa-
tion that can help to recognize actions in an efficient way
rather than accurate motion information (optical flow)
between two frames. Therefore, we will only use the RGB
frames and not involve any pre-computed optical flow.

Given the input feature maps F 2 RN�T�C�H�W , we will
first leverage a 1x1 convolution layer to reduce the channels
by a factor of r to ease the computing cost and we still use F
to present the features in the following for simplicity. Then
we generate feature-level motion information from every
two consecutive feature maps. The feature-level motion rep-
resentations at time step t could be approximately consid-
ered as the difference between the two adjacent features Ft
and Ftþ1. Instead of directly subtracting the original fea-
tures, we employ learnable channel-wise transformation on
Ftþ1 first and then perform the subtraction operation. Tak-
ing Ft and Ftþ1 for example, for every channel c, we first
apply a 2D channel-wise convolution on Ftþ1;c and then sub-
tracts it from Ft;c to obtain the motion representationHt;c

Ht;c ¼ Ft;c �
X
i;j

Kc;i;jFtþ1;c;hþi;wþj; (2)

where c; t; h; w denote channel, temporal and two spatial
dimensions of the feature map. Kc;i;j denotes the cth motion
filter with the subscripts i; j denote the spatial indices of the
kernel. Here Kc

i;j is shared among different timestamps and
its kernel size is set to 3� 3 thus i; j 2 f�1; 0; 1g. As shown
in Fig. 2b, we perform the proposed CMM to every two
adjacent feature maps over the temporal dimension, i.e., Ft
and Ftþ1, Ftþ1 and Ftþ2, etc. Therefore, the CMM will pro-
duce T � 1 motion representations. To keep the temporal

Fig. 2. The architecture of the Channel-wise SpatioTemporal Module and
Channel-wise Motion Module. The feature maps are shown as the shape
of their tensors. ”�” denotes element-wise subtraction.

WANG ETAL.: LEARNING SPATIOTEMPORAL AND MOTION FEATURES IN A UNIFIED 2D NETWORK FOR ACTION RECOGNITION 3351

Authorized licensed use limited to: Zhejiang University. Downloaded on April 19,2023 at 08:42:21 UTC from IEEE Xplore.  Restrictions apply. 



size compatible with the input feature maps, we simply use
zero to represent the motion information of the last time
step and then concatenate them together over the temporal
dimension. In the end, another 1x1 2D convolution layer is
applied to restore the number of channels to C.

We find that the proposed CMM can boost the perfor-
mance of the whole model even though the design is quite
simple, which proves that the motion features obtained
with CMM are complementary to the spatiotemporal fea-
tures from CSTM. We visualize the motion features learned
by CMM in Fig. 1g. From which we can see that compared
to the output of CSTM, CMM is able to capture the motion
features of the action subjects between neighboring frames.

Relationship With Optical Flow. Comparing (g) and (f) of
Fig. 1, we could find that the motion features learned by
CMM look similar to the optical flows. This phenomenon
makes us think more deeply about the relationship between
our motion features and optical flows. Typically, the bright-
ness consistency constraint of optical flow is defined as fol-
lows:

Iðx; y; tÞ ¼ I xþ i; yþ j; tþ kð Þ; (3)

where Iðx; y; tÞ denotes the pixel at the location ðx; yÞ of a
frame at time t. For frames t and ðtþ kÞ, i and j are the spa-
tial pixel displacement in horizontal and vertical axes
respectively. It assumes that for any point that moves from
ðx; yÞ at frame t to ðxþ i; yþ jÞ at frame tþ k, its brightness
keeps unchanged over time. Then, the optical flow ði; jÞ that
meets Eq. (3) is calculated between two image frames at
time t and tþ k at every location of an image, finding the
optimal solution ði�; j�Þ through an optimization technique.
When we extend Eq. (3) to the feature space by replacing an
image Iðx; y; tÞ with the corresponding feature maps
Fcðx; y; tÞ (cth channel) and define a residual features
Ropðx; y; tþ kÞ as follows:

Rop x; y; tþ kð Þ ¼ Fcðx; y; tÞ � Fc xþ i; yþ j; tþ kð Þ: (4)

We use Rop to abbreviate Ropðx; y; tþ kÞ in the following.
Considering that one pixel in the feature space at a higher
hierarchy of a CNN can capture larger movement than the
images as it looks at a larger receptive field, we restrict the
searching space in a 3�3 local window P ¼ f�1; 0; 1g. After
that, solving an optical flow problem is to find the optimal
solution to minimize the residual Rop

Rop ¼ Fcðx; y; tÞ �
X
i;j2P

Oc;i;jFc xþ i; yþ j; tþ kð Þ;

s:t:Oc;i;j 2 0; 1f g;
X
i;j

Oc;i;j ¼ 1; (5)

where Oc;i;j indicates the corresponding weight inside P for
channel c and it becomes 1 when ði; jÞ is the most matched
displacement otherwise 0. Our motion representation Ht;c

in Eq. (2) could be interpreted as the residual features simi-
lar to Rop. The difference is that the kernels Kc;i;j of CMM is
learnable and supervised by the action classification loss,
while the Oc;i;j of optical flow is fixed once Eq. (5) is solved
by some optimization techniques. That is to say, our CMM
could learn more task-relevant motion features than optical
flows since the optimization target of our CMM is exactly

the final classification task, while the Eq. (5) is to find the
most matched displacement and this may not match the
final target of the video action recognition task.

3.3 Illustration From Frequency Domain

From the visualization in Fig. 1, we find that the features
from CSTM and CMM present similarities with the low-fre-
quency and high-frequency components of the adjacent
inputs, respectively. Therefore, we show an in-depth analy-
sis of the proposed method from a different perspective, fre-
quency domain. Mathematically, we derive the frequency
spectrum based on the neighboring video features to
explain these two modules explicitly. We apply the Discrete
Fourier Transform (DFT) to transfer the extracted features
from the temporal domain to the frequency domain. For a
video feature F, the expansion of DFT function is written as

F̂½n� ¼
XK�1

k¼0

F½k�e�j2pKnk; n ¼ 0; 1; 2; . . .; K � 1; (6)

where F̂ denotes the DFT of F. When considering two adja-
cent input features F=fFt; Ftþ1g, we have K=2. Then n ¼ 0
presents the low frequency and n ¼ 1 shows the high fre-
quency. Formally

F̂½0� ¼ Ft þ Ftþ1

F̂½1� ¼ Ft � Ftþ1: (7)

It shows that the sum of neighboring features Ft and Ftþ1

could represent the low-frequency information, while the
difference of them reveals the high-frequency representa-
tion. As shown in Fig. 1, the low-frequency representation
retains most scene information, while the high-frequency
one presents the distinct motion edges. Interestingly, from
the visualization, we find the features from our CSTM share
common characters with the low-frequency temporal com-
ponent, and the CMM shows the motion features like the
high-frequency temporal component. In fact, our CSTM and
CMM could be interpreted as advanced and learnable ver-
sion of F̂½0� and F̂½1�, respectively. More specifically, when
we set the kernels of Eq. (1) to [0,1,1], CSTM degenerates
into F̂½0�. Moreover, CMM becomes F̂½1� if only the center
elements of the weights of Eq. (2) are set to 1 while the
others are zeroes. With learnable weights, the proposed
CSTM and CMM could continuously learn to obtain better
representations rather than directly apply Eq. (7), which is
the raw information of different frequency bands. When the
kernels are learnable parameters, the weights of CSTM and
CMM are supervised and guided by the action classification
loss, i.e., our target task, to achieve optimal performance. In
contrast, the low-frequency and high-frequency compo-
nents are special cases of fixed weights and are not adjusted
by the target training loss. Therefore, our CSTM and CMM
could perform better than the degenerated version. We also
demonstrate this in our experiments (Section 5.3). Besides,
as the features of CSTM and CMM correspond to low-fre-
quency and high-frequency signals, respectively, it further
proves why the two complement each other.

3352 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 3, MARCH 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on April 19,2023 at 08:42:21 UTC from IEEE Xplore.  Restrictions apply. 



3.4 STM Network

In order to keep the framework effective yet lightweight, we
combine the proposed CSTM and CMM together to build a
united block named STM block that can encode spatiotem-
poral and motion features together. It can be easily inserted
into the existing ResNet architectures. The overall design of
the STM block is illustrated in the bottom half of Fig. 3. In
this STM block, a 1x1 2D convolution layer is responsible
for reducing the channel dimensions first. The compressed
feature maps are then passed through the CSTM and CMM
to extract spatiotemporal and motion features, respectively.
Typically, there are two ways to fuse different types of
information: summation and concatenation. We experimen-
tally found that summation works better than concatenation
to fuse these two modules. Therefore, an element-wise sum
operation is applied after the CSTM and CMM to aggregate
the information. Then another 1x1 2D convolution layer is
used to restore the channel dimensions. Similar to the ordi-
nary residual block, we also add a parameter-free identity
shortcut from the input to the output.

Since the proposed STM block is compatible with the
ordinary residual block, we can simply insert it into any
existing ResNet architectures to form our STM network.
Compared to original ResNet (we consider the 50-layer
ResNet-50 here), it brings very limited extra computation
cost (1.2%, 32.9 G FLOPs versus 33.3 G FLOPs) and parame-
ters (0.8%, 23.8 M versus 24 M). We illustrate the overall
architecture of the STM network in the top half of Fig. 3.
The STM network is a 2D convolutional network that enco-
des both spatiotemporal features and motion features
together without any 3D convolution or pre-computing
optical flow. Unless specified, we choose the 2D ResNet-
50 [50] as our backbone for its trade-off between accuracy
and speed. We replace all residual blocks with the proposed
STM blocks. A temporal average pooling operation is
applied in the last score fusion stage to reduce the temporal
dimension.

3.5 Twins Training

Based on the proposed STM network, we further explore
the training framework and propose a novel training frame-
work aiming at further improving the performance, named
Twins Training. It fully stretches the training samples and
exploits the abundant power of the proposed STM. As
shown in Fig. 4, Twins Training employs a siamese network
to make the utmost of the training data by jointly encoding
two distorted versions XA and XB of all video frames X ,
which are sampled from a batch randomly selected videos
V. The distortions are generated from a distribution of
group data augmentations A. Next, the two batches of XA

and XB are fed into the siamese network, which consists of
two weights-shared (Twins) STM fu, conducting two
batches of classification representations YA and YB, where
each feature dimension corresponds to one specific
category.

We employ two losses in Twins Training to supervise the
whole learning process. The first one is the common cross-
entropy loss Lcls aiming at classification. Lcls is applied on
both YA and YB and calculated with the target classification
label T . The second one is a label-free correlation loss Lcor

inspired by [53] to decouple the inter-class correlation and
reinforce the intra-class correlation. Unlike [53], we add the
correlation loss as an auxiliary loss function into the super-
vised video representation learning framework under a
supervised video classification setting and constraine it
with the normal cross-entropy loss in the meantime.
While [53] applies the correlation loss as the only loss func-
tion to the field of instance-aware self-supervised image
representation learning for avoiding the collapse of trivial
constant representations. Since the correlation loss is only
used as an auxiliary function in our Twins Training frame-
work, the feature dimension does not need to be set to a par-
ticularly large dimension like 8 k or 16 k in [53], such as
Something-Something V1 has only 174 categories and Kine-
ctis-400 has only 400 categories. However, the correlation

Fig. 3. The overall architecture of the STM network. The input video is first split into N segments equally and then one frame from each segment is
sampled. We adopt 2D ResNet-50 as the backbone and replace all residual blocks with STM blocks. The last score fusion stage applies a temporal
average pooling operation to reduce the temporal dimension.
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loss can still effectively improve our accuracy. We first nor-
malize YA and YB along the batch dimension with L2 nor-
malization, producing ZA and ZB. Next, the cross-
correlation matrix can be calculated between ZA and ZB

along the batch dimension. Formally

Cij ¼
P

n z
A
n;iz

B
n;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n zAn;i

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n zBn;j

� �2
r ;

(8)

where n indexes batch dimension, i; j are the class index. C
is a square matrix with the dimensionality of the network’s
output (categories), and with values comprised between -1
(i.e., perfect anti-correlation) and 1 (i.e., perfect correlation).
Then, Lcor can be formulated as

Lcor ¼
X
i

1� Ciið Þ2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
intra�class term

þb
X
i

X
j6¼i

C2ij
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

inter�class term

;
(9)

Cii actually shows the intra-class feature correlation inside
ith class and Cij presents the inter-class feature correlation
between ith and jth classes. The first term of Lcor tries to
make the diagonal elements of C to be 1, pulling features
from the same category towards or even equal to each other.
Thus it could shrink the intra-class distance and reinforce
the correlation inside a class. The second term of Lcor tries
to equate the off-diagonal elements of C to 0, pushing fea-
tures of different categories further away and making them
independent to each other, so it could reduce the inter-class
redundancy and decouple the correlation among different
categories. This is quite different to the similar works of the
correlation loss applications like [53], which applies the cor-
relation loss function to an extra three-layer MLP Predictor
and uses only the backbone before the Predictor as feature
encoding network, i.e., the correlation loss function does
not directly affect their final used features. In the Twins
Training framework of our STM, the correlation loss func-
tion is directly applied to the final classification features, so
that it could achieve our goal of reducing the correlation of
different categories and aggregating the correlation of the
same classes.

The final objective of Twins Training is

L ¼ 1

2
LA
cls þLB

cls

� �
þ �Lcor; (10)

where the parameter � is used to balance the two kind of
losses. LA

cls and LB
cls are the cross entropy losses of the two

distorted batches.
Besides, it is worth to notice that Twins Training is a

training framework used in the training phase and it will
bring no changes like extra parameters or computational
burdens in the inference process.

4 EXPERIMENTS

In this section, we first introduce the datasets and the imple-
mentation details of our approach. Then we perform exten-
sive experiments to demonstrate that the proposed STM
consistently outperforms or obtains a comparable perfor-
mance with the state-of-the-art methods on both temporal-
related datasets (i.e., Something-Something v1 & v2) and
scene-related datasets (i.e., Kinetics-400, UCF-101, and
HMDB-51). The baseline method in our experiments is Tem-
poral Segment Networks (TSN) [14] where we re-implement
it by replacing its backbone to ResNet-50 for fair compari-
sons. Finally, we give runtime analyses to show the effi-
ciency of STM.

4.1 Datasets

We evaluate the performance of the proposed STM on sev-
eral public action recognition datasets. We classify these
datasets into two categories: (1) temporal-related datasets,
including Something-Something v1 & v2 [20]. For these
datasets, temporal motion interaction of objects is the key to
action understanding. Most of the actions cannot be recog-
nized without considering the temporal relationship; (2)
scene-related datasets, including Kinetics-400 [2], UCF-
101 [21] and HMDB-51 [22] where the background informa-
tion contributes a lot for determining the action label in
most of the videos. Temporal cues in scene-related datasets
are not as important as temporal-related datasets. We give
examples in Fig. 5 to show the difference between them.
Since our method is designed for effective spatiotemporal

Fig. 4. Twins Training Framework. The input frames are first augmented into two distortions and then go through a shared siamese network to obtain
their representations. Next, the two outputs are used to calculate the normal classification loss and also normalized to compute a correlation loss.
The framework is only used in training to strengthen the network and will not influence the normal inference process.
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fusion and motion information extraction, we obtain a large
margin performance gain than our baseline TSN in the tem-
poral-related datasets. Nevertheless, for those scene-related
datasets, our method also achieves competitive results.

4.2 Implementation Details

Network Details. Given an input video, we first divide it into
T segments of equal durations to conduct long-range tem-
poral structure modeling. Then, we randomly sample one
frame from each segment to construct the input sequence
with T frames. In our experiments, T is set to 8 or 16. r in
CMM is set to 16.

Training Details. We train our model with 8 Geforce RTX
3090 GPUs and each GPU processes a mini-batch of 8 video
clips (when T ¼ 8) or 4 video clips (when T ¼ 16). For Kinet-
ics, Something-Something v1 & v2, we start with a learning
rate of 0.01 and reduce it by a factor of 10 at 30,40,60 epochs
and stop at 70 epochs. For these large-scale datasets, we only
use the ImageNet pre-trainedmodel as initialization. For UCF-
101 and HMDB-51, we use Kinetics pre-trained model as ini-
tialization and start training with a learning rate of 0.001 for 50
epochs. The learning rate is decayed by a factor of 10 every 15
epochs. We use mini-batch SGD as the optimizer with a
momentum of 0.9 and a weight decay of 5e-4. The size of the
short side of input frames is fixed to 256. Then, we apply aug-
mentation on them and resize the cropped regions to 224�224
for network training. Therefore, the input size of the network
is N � T � 3� 224� 224, where N is the batch size and T is
the number of the sampled frames per video. For the Twins
Training framework, b is set to 0.0039 as [53] and � is set to
0.01. The data argumentation A consists of corner cropping,
scale-jittering, horizontal flipping, color jittering and grayscale.

Inference Details. Following [5], [57], we first scale the
shorter spatial side to 256 pixels and take three crops of
256� 256 to cover the spatial dimensions and then resize
them to 224� 224. We randomly sample 10 times from the
full-length video for the temporal domain and compute the
softmax scores individually. The final prediction is the aver-
aged softmax scores of all clips.

4.3 Results on Temporal-Related Datasets

This section compares our approach with state-of-the-art
methods on temporal-related datasets including Some-
thing-Something v1 & v2. Something-Something v1 is a
large collection of densely labeled video clips that show fun-
damental human interactions with daily objects. This

dataset contains 174 classes with 108,499 videos. Some-
thing-Something v2 is an updated version of v1 with more
videos (220,847 in total) and greatly reduced label noise.

Table 1 lists the results of our method compared with the
state-of-the-art on Something-Something v1 and v2. The
results of the baseline method TSN are relatively low com-
pared with other methods, which demonstrates the impor-
tance of temporal modeling for these temporal-related
datasets. Compared with TSN, our STM network gains
30.7% and 33.4% top-1 accuracy improvement with 8 and 16
frames inputs respectively on Something-Something v1. On
Something-Something v2, 8-frame and 16-frame STM also
gain 35% and 34.9% improvement compared to TSN,
respectively. The methods can be classified into two types
as shown in the two parts of Table 1. The upper part
presents the 3D CNN-based methods, including S3D-G [8],
ECO [34], I3D models [58] 3D ShuffleNet and 3D Mobile-
Net [54]. The lower part is 2D CNN-based methods, includ-
ing TSN, TRN [55], MFNet [18] TSM [10], TEA [11],
STFT [37] and TPN [56]. Even our STM with 8 RGB frames
as input surpasses all the 3D CNN-based methods in the
upper part, which usually take more frames or optical flow
as input. With 16 frames as input, STM achieves the best
performance in Something-Something v1. In the Something-
Something v2, our results are just slightly lower than the
TSM two-stream with a 1.1% top-1 accuracy gap and the
STFT with a 0.1% top-5 accuracy gap. However, TSM two-
stream relies on optical flow to their best results and its 16
RGB frames version performs worse than our 16-frame
STM. STFT gains the best top-5 accuracy with much more
frames (64 frames) than ours (16 frames), while our STM
surpasses STFT in the top-1 accuracy (64.9% versus 64.7%).

4.4 Results on Scene-Related Datasets

We evaluate our STM on three scene-related datasets: Kinet-
ics-400, UCF-101, and HMDB-51. Kinetics-400 is a large-
scale human action video dataset with 400 classes. It con-
tains 236,763 clips for training and 19,095 clips for valida-
tion. UCF-101 is a relatively small dataset that contains 101
categories and 13,320 clips in total. HMDB-51 is also a small
video dataset with 51 classes and 6766 labeled video clips.
For UCF-101 and HMDB-51, we followed [14] to adopt the
three training/testing splits for evaluation.

Table 2 summarizes the results of STM and other com-
peting methods on the Kinetics-400 dataset. From the evalu-
ation, we can draw the following conclusions: (1) Different
from the previous temporal-related datasets, most actions
of Kinetics can be recognized by scenes and objects even
with one still frame of videos. Therefore the baseline
method without any temporal modeling can achieve accept-
able accuracy; (2) Though our method mainly focuses on
temporal-related actions recognition, STM still achieves
very competitive results compared with the state-of-the-art
methods. STM outperforms all the 2D CNNs-based meth-
ods in the lower part of Table 2, including the most similar
work TEA [11] (76.9% versus 76.1%). STM even exceeds sev-
eral 3D CNN-based methods (the upper part of the Table 2)
like STC, ARTNet, S3D and ECO. Top-1 accuracy of our 16-
frame STM is 0.4% higher than the 32-frame NL (Non-
local [57]) I3D, which uses 3D ResNet-50 as the backbone.

Fig. 5. Examples of temporal-related datasets and scene-related data-
sets. Top: action for which temporal feature matters. Reversing the order
of frames gives the opposite label (opening something versus closing
something). Bottom: action for which scene feature matters. Even with
only one frame, we can easily predict its label (horse riding).
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NL SlowFast [5] yields the state-of-the-art accuracy of 79.8%
on this dataset. However, they have a much higher compu-
tational cost than STM (234 G�30 versus 66.5 G�30).
Besides, our 16-frame STM achieves comparable top-1 accu-
racy against SlowFast with 3D ResNet-50 as backbone and
no non-local operation (76.9% versus 77.0%). One may notice
that X3D [6] achieves a slightly better results than our STM
(77.5% versus 75.5%) with a bit lower inference cost than
ours. However, the training process of X3D is resource-con-
suming which needs 128 GPUs and trains with 256 epochs.
Although its inference cost is slightly lower than ours, the
training cost is much more than ours.

We also conduct experiments on the UCF-101 and
HMDB-51 to study the generalization ability of our STM.
We evaluate our method over three splits and report the
averaged results in Table 3. First, compared with the Image-
Net pre-trained model, Kinetics pre-train can significantly
improve the performance on small datasets. Then, com-
pared with the state-of-the-art methods, STM with 16
frames as inputs outperforms all the methods, including the
3D CNN-based and 2D CNN-based approaches in Table 3.
It demonstrates that our STM achieves superior generaliza-
tion ability on small datasets.

4.5 Runtime Analysis

Our STM achieves the new state-of-the-art or comparable
results on several benchmark datasets compared with other

methods. More importantly, it is a unified 2D CNN frame-
work without any time-consuming 3D convolution and
optical flow calculations. Table 4 shows the accuracy and
model complexity of STM and several state-of-the-art meth-
ods on the Something-Something v1 dataset. All these tests
are conducted on a single Geforce RTX 3090 GPU. For a fair
comparison, we evaluate our method by evenly sampling 8
or 16 frames from a video and then applying the center
crop. STM-18, STM-34, STM-50 indicate 18-layers, 34-layers
and 50-layers versions of STM, which are similar to ResNet-
18, ResNet-34 and ResNet-50. TSN8F uses the ordinary
ResNet-50 as the backbone, thus it could be regarded as our
baseline method. Our STM-508F brings very limited extra
computation cost (1.2%, 32.9 G FLOPs versus 33.3 G FLOPs)
and parameters (0.8%, 24 M versus 23.8 M) against TSN8F ,
while the performance is improved with a large margin
(48.5% versus 19.7%). Compared to I3D64F and ECO16F , our
STM-508F achieves 9.2x and 1.9x fewer FLOPs (33.3 G versus
306 G, 64 G), 9.7x and 1.3x faster (106.7 V/s versus 11.0 V/s,
79.7 V/s), while 6.9% and 7.1% higher top-1 accuracy. Com-
pared to TSM16F , our STM-508F gains 1.3% higher accuracy
with 1.7x faster speed and half FLOPs. As for TEA8F [11],
although the accuracy of our STM-508F is slightly lower
than it (48.5% versus 48.9%), STM-508F runs 1.79x faster
than TEA (106.7 V/s versus 59.5 V/s). Besides, our smaller
variants also have stunning performances with faster infer-
ence speed and fewer parameters and FLOPs. STM-188F
runs 161.6 videos a second, which is 14.7x faster than I3D64F

TABLE 1
Performance of the STM on the Something-Something v1 and v2 Datasets Compared With the State-of-The-Art Methods. We

Report the Inference Cost with a Single “View” (a Temporal Clip with a Spatial Crop) � the Number of Such Views Used (FLOPs �
Views). ‘-’ Indicates That the Values are not Available to us.

Method Backbone Flow Pre-training Frames FLOPs� views Something-
Something v1

Something-
Something v2

Top-1 Top-5 Top-1 Top-5

3D CNNs

S3D-G [8] Inception ImageNet 64 71.38 G�1 48.2 78.7 - -
ECO [34] Kinetics 8 32 G�1 39.6 - - -
ECO [34] BNInception+ 16 64 G�1 41.4 - - -

ECOENLite [34] 3D ResNet-18 92 267 G�1 46.4 - - -
ECOENLite Two-Stream [34] ✓ 92+92 - 49.5 - - -

ShuffleNetV1 2x [54] 3D ShuffleNetV1 Scratch 32 0.78 G�1 33.9 62.5 - -
ShuffleNetV2 2x [54] 3D ShuffleNetV2 32 0.72 G�1 31.9 61.0 - -
MobileNetV1 2x [54] 3D MobileNetV1 32 0.92 G�1 29.8 56.9 - -
MobileNetV2 1x [54] 3D MobileNetV2 32 0.91 G�1 30.8 59.8 - -

I3D [2] 3D ResNet-50 ImageNet 32 153 G�6 41.6 72.2 - -
I3D+GCN [2] +Kinetics 32 303 G�6 43.4 75.1 - -

2D CNNs

TSN [14] ResNet-50 Kinetics 8 16 G�1 19.7 46.6 27.8 57.6
16 33 G�1 19.9 47.3 30.0 60.5

TRNMultiscale [55] BNInception ImageNet 8 16.37 G�1 34.4 - 48.8 77.6
TRN Two-Stream [55] ✓ 8+8 - 42.0 - 55.5 83.1

MFNet-C101 [18] ResNet-101 Scratch 10 - 43.9 73.1 - -
TSM [10] ResNet-50 ImageNet 8 32.9 G�1 45.6 74.2 59.1 85.6
TSM [10] + 16 65.8 G�1 47.2 77.1 63.4 88.5

TSM Two-Stream [10] ✓ Kinetics 16+16 - 52.6 81.9 66.0 90.5
TEA [11] ResNet-50 ImageNet 8 35 G�30 51.7 80.5 - -

16 70 G�30 52.3 81.9 - -
STFT [37] BN-Inception Kinetics 64 41.21 G�1 52.4 81.8 64.7 90.8

TPN [56]+TSN ResNet-50 ImageNet 8 - 40.6 - 55.2 -
TPN [56]+TSM 8 - 49.0 - 62.0 -

STM ResNet-50 ImageNet 8 33.3 G�30 50.4 80.6 62.8 89.1
16 66.5 G�30 53.3 81.9 64.9 90.7
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and 2.0x faster than ECO16F while achieving comparable
performance. Such smaller variants will be more suitable
for many practical platforms with faster speed and fewer
parameters than large models.

4.6 Online Recognition

We have implemented a plain online version of STM for the
online application and demonstrated its performance onKinet-
ics-400 and Something-Something V1. In detail, for an online
video, we keep a memory cache to store the historical seven
frames. When recognizing a specific frame, we combine it with
the stored frames to obtain its recognition result. We use the
prediction averaged from all the frames to compare with the
offlinemodels.All the STM-onlinemodels are tested on a single
Geforce RTX 3090GPUand use 8 RGB frames as inputs.

As shown in Table 5, the STM-online could run in real time
with low latency and high accuracy, maintaining similar per-
formance as the offline model. It could be seen that for scene-
related datasets like Kinetics-400, the online model achieves
comparable performance (75.4% versus 75.5%).While for tem-
poral-related datasets like Something-Something V1, online
model performs slightly worse than offline model (49.7% ver-
sus 50.4%). This is intuitive because temporal-related datasets
require more temporal cues for better recognition while the
scene-related datasets are less dependent on temporal

information. Meanwhile, we compare the performance of the
STM-online with TSM-online [10]. Although our latency is
slightly larger than theirs (5.4ms% versus 4.8 ms) since TSM-
online directly saves historical features for their shifting oper-
ation while we need to do the feature extraction process, the
latency of our STM-online and TSM-online are actually all
beyond the real-time requirement. Moreover, our STM-online
surpasses TSM-online with large gains of 1.1% on Kinetics-
400 and 3.4% on Something-SomethingV1.

5 ABLATION STUDY

In this section, we comprehensively perform ablation stud-
ies to analyze each component in our proposed STM on the
Something-Something v1 dataset. The proposed Twins
Training framework is added and validated in the last part.
Unless specified, the ablation experiments in this section
use 8 RGB frames as inputs.

5.1 Impact of Two Modules

Our proposed two modules can be inserted into a standard
ResNet architecture independently. To validate the contri-
butions of each module in the STM (i.e., CSTM and CMM),
we compare the results of the individual module and the
combination of both modules in Table 6. We can summarize
that each component contributes to the proposed STM

TABLE 2
Performance of the STM on the Kinetics-400 Dataset Compared With the State-of-The-Art Methods. We Report the Inference Cost
with a Single “View” (a Temporal Clip with a Spatial Crop) � the Number of Such Views Used (FLOPs � Views). ‘-’ Indicates that the

Values are not Available to us.

Method Backbone Flow Frames FLOPs � views Top-1 Top-5

3D CNNs

ECO-RGBen [34] BNInception 92 267 G�1 70.0 -
+3D ResNet-18

I3D RGB [2] 3D BN-Inception 64 107.89 G�- 72.1 90.3
I3D Two-Stream [2] ✓ 64+64 216 G�- 75.7 92.0

NL I3D [57] 3D ResNet-50 32 282 G�30 76.5 92.6
NL I3D [57] 3D ResNet-101 32 359 G�30 77.7 93.3
STC [30] 3D ResNext101 32 - 68.7 88.5

ARTNet [59] 3D ResNet-18 32 23.7 G�250 69.2 88.3
S3D [8] BN-Inception 64 66.38 G�- 72.2 90.6

S3D-G [8] 64 71.38 G�- 74.7 93.4
SlowFast 8x8 [5] 3D ResNet-50 8+8 65.7 G�30 77.0 92.6

NL SlowFast 8x8 [5] 3D ResNet-101 8+8 116 G�30 78.7 93.5
NL SlowFast 16x8 [5] 16+8 234 G�30 79.8 93.9

X3D-L [6] 3D ResNet-based 16 24.8 G�30 77.5 92.9
X3D-XL [6] 16 48.4 G�30 79.1 93.9
TPN [56] 3D ResNet-101 64 - 78.9 93.9

2D CNNs

StNet [60] ResNet-101 25 310.5 G�- 71.4 -
Disentangling [45] BNInception - - 71.5 89.9
R(2+1)D RGB [7] ResNet-34 32 152 G�115 72.0 90.0

R(2+1)D Two-Stream [7] ✓ 32+32 304 G�115 73.9 90.9
TSM [10] ResNet-50 8 65.8 G�10 74.1 91.2

ResNet-50 16 65.8 G�10 74.7 -
TSN RGB [14] BNInception 25 53 G�10 69.1 88.7

TSN Two-Stream [14] ✓ - 80 G�10 73.9 91.1
TEA [11] ResNet-50 8 35 G�30 75.0 91.8

16 70 G�30 76.1 92.5
STFT [37] BN-Inception 64 41.21 G�30 75.0 91.1

TPN [56]+TSN ResNet-50 8 - 73.5 -
STM ResNet-50 8 33.3 G�30 75.5 92.0

16 66.5 G�30 76.9 92.7
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block. CSTM learns channel-wise temporal fusion and
brings about 28% top-1 accuracy improvement compared to
the baseline method TSN while CMM encodes the feature-
level motion information and brings 24.4% top-1 accuracy
improvement. When combining CSTM and CMM together,
we can learn both spatiotemporal and motion features and
achieve the best top-1 accuracy, especially, the gain over the
baseline is 29.5%.

5.2 Fusion of Two Modules

There are two ways to combine CSTM and CMM: element-
wise summation and concatenation. The element-wise sum-
mation is parameter-free and easy to implement. For concat-
enation fusion, we first concatenate outputs of CSTM and
CMM over the channel dimension, and the dimension of
concatenating features is 2 C. Then a 1x1 convolution is
applied to reduce the channels to C. We conduct experi-
ments to study the two fusion ways as shown in Table 7,
though summation aggregation is simple, it still outper-
forms concatenation by 7.4% at top-1 accuracy and 6.1% at
top-5 accuracy.

5.3 Frequency Degeneration

As illustrated in Section 3.3, the proposed CSTM and CMM
can degenerate into low-frequency and high-frequency rep-
resentations, respectively. We implement a reduced version
by setting the kernels in Eq. (1) to [0,1,1] and fixing the cen-
ter elements of the weights of Eq. (2) to 1 while the others
are zeroes. The results are shown in Table 8. Interestingly,
the frequency degeneration obtains a 25.5% top-1 accuracy
improvement over TSN. It means that even simply repre-
senting high-frequency F̂t½1� and low-frequency F̂t½0� com-
ponents like Eq. (7) inside every residual block could
contribute a lot to the performance. However, when making
the kernels in Eq. (1) and Eq. (2) learnable and trainable, i.e.,
using STM will surpass directly applying the raw frequency
representation with by 4% and 5.2% on top-1 and top-5
accuracy, respectively. We visualize an example to compare
the frequency degeneration variant and our STM in Fig. 6. It
could be found that the learnable CSTM block can pay more
attention to the spatiotemporal characteristics of the action
than the fixed CSTM block. For example, it can clearly show
the hand holding the bottle while the fixed CSTM block
focuses more on the background behind the bottle. Com-
pared with the fixed CMM block, the learnable CMM block
can pay more attention to the motion edges of action subject
and reduce the noise significantly. For instance, the learn-
able CMM block can present the motion of the fingers, while
the fixed CMM block brings lots of noise on the bottle.

TABLE 3
Performance of the STM on UCF-101 and HMDB-51 Compared With the State-of-The-Art Methods

Method Backbone Flow Pre-training UCF-101 HMDB-51

3D CNNs

C3D [1] 3D VGG-11 Sports-1 M 82.3 51.6
STC [30] 3D ResNet101 Kinetics 93.7 66.8

ARTNet with TSN [59] 3D ResNet-18 Kinetics 94.3 70.9
ECO [34] BNInception+3D ResNet-18 Kinetics 94.8 72.4

I3D RGB [2] 3D Inception-v1 ImageNet+Kinetics 95.1 74.3

2D CNNs

TSN [14] ResNet-50 ImageNet 86.2 54.7
TSN RGB [14] BNInception ImageNet+Kinetics 91.1 -

TSN two-Stream [14] ✓ ImageNet+Kinetics 97.0 -
TSN two-Stream [12] ✓ ImageNet 94.9 71.0
Four-Stream+IDT [61] ResNeXt-50 ✓ ImageNet 95.4 74.2

ResNeXt-101 ✓ ImageNet 96.0 74.9
LTC [62] C3D - 82.4 -

LTC two-stream+IDT [62] ✓ 92.7 67.2
TSM [10] ResNet-50 ImageNet+Kinetics 95.9 73.5
StNet [60] ResNet50 ImageNet+Kinetics 93.5 -

Disentangling [45] BNInception ImageNet+Kinetics 95.9 -
TEA [11] ResNet-50 ImageNet+Kinetics 96.9 73.3
STFT [37] BN-Inception Kinetics 94.7 71.5
STM ResNet-50 ImageNet+Kinetics 97.1 75.2

TABLE 5
Online Performance on the Kinetics-400 and Something-Some-

thing V1 Datasets

Model Latency Kinetics Something

TSM-Online 4.8 ms 74.3 46.3
STM-Offline - 75.5 50.4
STM-Online 5.4 ms 75.4 49.7

TABLE 4
Accuracy and Model Complexity of STM and Other State-of-

The-Art Methods on the Something-Something V1 Dataset With
a Single Crop. Measured on a Single Geforce RTX 3090 GPU.

Model Frame FLOPs Param Speed Acc.

I3D [2] 64 306 G 28.0 M 11.0 V/s 41.6
ECO [34] 16 64 G 47.5 M 79.7 V/s 41.4
TSM [10] 8 32.9 G 24.3 M 120.3 V/s 45.6

16 65.8 G 63.5 V/s 47.2
TEA [11] 8 35 G - 59.5 V/s 48.9
TSN [14] 8 32.9 G 23.8 M 121.2 V/s 19.7
STM-18 8 14.6 G 11.0 M 161.6 V/s 40.5
STM-34 8 29.4 G 20.5 M 155.3 V /s 43.8
STM-50 8 33.3 G 24.0 M 106.7 V/s 48.5

16 66.5 G 52.5 V/s 51.6
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5.4 Location and Number of STM Block

ResNet-50 architecture can be divided into six stages. We
refer the conv2_x to conv5_x as stage 2 to stage 5. The first
four rows of Table 9 compare the performance of replacing
only the first residual block with STM block on different
stages in ResNet-50, from stage 2 to stage 5, respectively.
We conclude from the results that replacing only one

residual block already yields significant performance
improvement compared to the baseline TSN, which demon-
strates the effectiveness of the proposed STM block. In
detail, we can find that replacing STM block at each stage
all promotes the performance, which validates that the pro-
posed temporal modeling strategy could benefit both low-
level and high-level temporal features learning. We then
replace one block for each stage (i.e., replacing four blocks
in all) and obtain better results. Our model achieves the best
performance when replacing all original residual blocks
with STM blocks (i.e., 16 blocks in all).

5.5 Type of Convolution

We choose channel-wise temporal convolution in CSTM to
learn temporal combination individually for each channel
and channel-wise spatial convolution in CMM to encode
motion weights separately for each channel. We make

TABLE 6
Impact of Two Modules: Comparison Between

CSTM, CMM and STM

Model Top-1 Top-5

TSN 19.7 46.6
CSTM 47.7 77.9
CMM 44.1 74.8
STM 49.2 79.3

TABLE 7
Fusion of Two Modules: Summation Fusion is Better

Aggregation Top-1 Top-5

TSN 19.7 46.6
Summation 49.2 79.3
Concatenation 41.8 73.2

TABLE 8
Frequency Degeneration: Frequency Degeneration
Could Achieve a Satisfactory Performance, but Not

as Good as Our STM

Type Top-1 Top-5

TSN 19.7 46.6

frequency 45.2 74.1
degeneration
STM 49.2 79.3

Fig. 6 Feature Visualization of the Frequency Degeneration and our STM.
The first column represents the original images of the two moments t=0
and t=1 of an action “holding something”. The second column shows the
output features of Frequency Degeneration, i.e., fixed CSTM and CMM
blocks, which are the temporal low-frequency and high-frequency compo-
nents of the neighboring input features. The third column presents the
output features of our STM, i.e., the learnable CMM and CSTM blocks.
Brighter colors indicate larger values in the featuremaps.

TABLE 9
Location and Number of STM Block: Deeper Loca-
tion and More Blocks Yeild Better Performance

Stage STM Blocks Top-1 Top-5

2 1 38.7 70.1
3 1 40.6 71.6
4 1 41.5 72.6
5 1 41.5 71.8
2-5 4 47.9 78.1
2-5 16 49.2 79.3

TABLE 10
Type of Convolution: For CSTM, Channel-Wise Temporal

Convolution Yields Better Performance. For CMM, Channel-
Wise Spatial Convolution Obtains Better Performance.

Type Top-1 Params FLOPs

CSTM Channel-wise 1D Conv 47.7 23.88 M 32.93 G
Channel-wise 1D, 2D Conv 42.6 13.28 M 24.05 G
All Ordinary 46.9 27.64 M 40.59 G

CMM Channel-wise 44.1 23.95 M 32.95 G
Ordinary 43.5 24.25 M 33.5 G

TABLE 11
Impact of Twins Training Framework: All the Meth-
ods Improve Their Performance in Both Kinetics-400
and Something-Something v1 With the Help of the

Twins Training Framework

Model Twin
Training

Kinetics-
400@Top-1

Something
v1@Top-1

TSN 70.6 19.7
✓ 72.5 20.9

TSM 74.1 47.3
✓ 75.2 48.2

STM 73.7 49.2
✓ 75.5 50.4
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comparisons with ordinary convolution in two modules
and the results are shown in Table 10. With channel-wise
convolutions, we can achieve better performance with few
parameters and FLOPs in both two modules, which con-
firms that channel-wise convolutions for temporal combina-
tion and motion modeling are both sufficient and efficient.
Moreover, we experiment with channel-wise spatial convo-
lutions in CSTM module as shown in Table 10. The perfor-
mance drops a lot (5.3%) on top-1 accuracy, indicating that
it needs more parameters to learn the semantic spatial fea-
tures. Thus we adopt ordinary convolution for spatial fea-
ture encoding in our CSTMmodule.

5.6 Impact of Twins Training Framework

We demonstrate the validness of the proposed Twins Train-
ing framework on our STM and other two representative
methods, TSN and TSM (only 8 RGB frames as inputs).
Besides, we also conduct experiments on a larger scene-
related benchmark Kinetics-400 to show the generalization
ability of Twins Training. As shown in Table. 11, when
equipping with Twins Training framework, all the three
methods perform superior against original training manner
on both two datasets. As visualized in Fig. 7, by projecting
the features of the last classification layer into a low 2-
dimension space, it is obvious that (1) without Twins Train-
ing, our STM learns semantically more separable features
than TSN [14] and TSM [10]. Since our STM integrates spa-
tiotemporal and motion features together, while TSN only
encodes spatial features and TSM only represents spatio-
temporal features; (2) the inter-class distances of all three

methods are enlarged and all the intra-class distances are
shrunk by employing Twins Training. This success comes
from the correlation loss, which could reinforce the correla-
tion inside the same classes and reduce the redundancy
between different classes.

6 CONCLUSION

This paper presents a simple yet effective network for action
recognition by encoding spatiotemporal and motion fea-
tures together in a unified 2D CNN network. We replace the
original residual blocks with STM blocks in ResNet architec-
ture to build the STM network. An STM block contains a
channel-wise spatiotemporal module to model the spatio-
temporal features and a channel-wise motion module to
learn motion representations. Moreover, we provide an in-
depth illustration of these two modules from the frequency
domain and find they could be interpreted as advanced and
learnable versions of frequency components. Furthermore,
a novel Twins Training framework is proposed to fully
exploit the training data and enhance our model by decou-
pling the inter-class correlation and reinforcing the intra-
class correlation. Without any 3D convolution or pre-calcu-
lation optical flows, our STM receives state-of-the-art or
comparable results on both temporal-related datasets and
scene-related datasets. We believe the architectures and
ideas discussed in this paper are successful in spatiotempo-
ral and motion features modeling. It could be extended for
other video tasks such as video detection and segmentation.
We leave this as our future work.

Fig. 7. Feature visualization with t-SNE [63] on Kinetics-400. Each video is visualized as a point. Videos belonging to the same action category have
the same color. Without Twins Training (first row), our STM learns semantically more separable features than TSN [14] and TSM [10]. When equip-
ping with the Twins Training framework (second row), all the three methods’ inter-class and intra-class distances are dramatically optimized.
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