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Abstract— In this paper, we present an online learning frame-
work for traversable region detection fusing both appearance and
geometry information. Our framework proposes an appearance
classifier supervised by the sparse geometric clues to capture
the variation in online data, yielding dense detection result
in real time. It provides superior detection performance using
appearance information with weak geometric prior and can be
further improved with more geometry from external sensors. The
learning process is divided into three steps: First, we construct
features from the super-pixel level, which reduces the computa-
tional cost compared with the pixel level processing. Then we
classify the multi-scale super-pixels to vote the label of each
pixel. Second, we use weighted extreme learning machine as
our classifier to deal with the imbalanced data distribution since
the weak geometric prior only initializes the labels in a small
region. Finally, we employ the online learning process so that our
framework can be adaptive to the changing scenes. Experimental
results on three different styles of image sequences, i.e., shadow
road, rain sequence, and variational sequence, demonstrate
the adaptability, stability, and parameter insensitivity of our
weak geometry motivated method. We further demonstrate the
performance of learning framework on additional five challenging
data sets captured by Kinect V2 and stereo camera, validating
the method’s effectiveness and efficiency.

Index Terms— Traversable region detection, fundamental
mask, multi-scale classification, online learning, dynamic dataset.

I. INTRODUCTION

THE traversable region detection is one of the most
fundamental problems in autonomous navigation systems

and driver assistance systems. Vision-based traversable region
detection has especially gained much attentions in the com-
munity of robotics and computer vision. Although a number
of approaches have been proposed to solve the traversable
region detection,1 there is still a huge gap between laboratory
experiments and real applications due to the large diversity of
scenes, the dramatic variation of illuminations and the lack of
geometrical constraints.
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1In this paper, traversable region is not limited to the highway with parallel

edges and other structural geometrical characteristics.

There are two major limitations of the traditional approaches
on traversable region detection, the weak robustness of para-
meters and the poor universality of models. These problems
are revealed in two popular kinds of approaches respec-
tively, i.e. the appearance-oriented approach and the geometry-
oriented approach. More specifically, appearance-oriented
methods usually build a classifier to identify traversable
regions taking the knowledge of appearance characteristics
such as textures and colors, which meant to be applied to
various scenes without considering the geometrical constraints.
However, with the large variation of textures and dramatic
changes of illuminations on scene images, the insensitiveness
of parameters is relatively weak and the parameters should
be carefully selected to satisfy the varied conditions. For
geometry-oriented methods, the common ways are to estimate
the vanishing points and parallel edges from images, or esti-
mate the plane from depth data to extract traversable region.
Although it is a non-parametric method with no need of
training classifies, their performances highly rely on the geo-
metrical conditions of the environment and the quality of the
available geometric data.

To address the two limitations of traditional approaches,
this paper explores a unified detection model taking advantage
of both appearance and geometry information, which aims
for robustly detecting traversable regions with insensitive
parameters against varied conditions. To loosen the strict
constraints required by geometry-oriented methods, the basic
framework of our method is to learn a predictive model
guided by the target derived from the geometry using the
appearance-oriented features, and this framework can also be
extended to fusion with richer geometrical information for
further promotion.

To enhance the adaptiveness of the model and promote the
parameters insensitiveness of our approach, we construct an
online learning framework to update the training dataset after
receiving each incoming frame, the corresponding classifier is
then updated as well. Instead of training with prior labeled
instances or co-training with partially labeled instances [1],
our model does not require manually labeled images for
training as we assume that the front area of the robot
can be safely passable. Integrating the previous windowed
information, the assumption [2] is self-validated and can be
further refined with more geometrical information from the
common sensors equipped on the mobile platforms like depth
sensor or stereo camera. With the initialized label information
based on the geometric assumption, the weighted Extreme
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Learning Machine (ELM) [3], which can be trained in closed-
form solution and thus avoids the time-consuming iterative
optimization, is used as our classifier. By the weighted ELM,
our classifier not only supports the imbalanced class distrib-
ution, but also allows reducing the effects of those historical
training samples.

The contributions of our approach can be concluded as
follows:

• We construct an online learning framework that achieves
effective ensembles of both the appearance information
and the geometrical information.

• Our approach implements an empirical geometry moti-
vated assumption which can be satisfied in most cases,
thus our approach can also avoid the requirement of
pre-labeled training images by that weak assumption,
which is also able to be conveniently refined with richer
geometrical information.

• Our traversable region detection framework is trained in
online process. The training samples and classifier will
be updated after each new coming frame, so our method
can be insensitive to the initial parameters. The method
can also be adapted (or robust) to the new emerging
scenes under varied changes efficiently, without manually
resetting of the parameters.

• Taking the weight ELM as the classifier, our model can
sustain varied initializations with the imbalance distribu-
tions on classes, and is also easy to support the weighting
of historical samples in real-time.

II. RELATED WORKS AND BASIC IDEA

A. Related Works

Generally speaking, the detection of traversable region is
based on two kinds of information, i.e. appearance information
and geometrical information. A number of traversable region
detection methods have been proposed based on these two
kinds of information, which are named as appearance-oriented
method and geometry-oriented method in this paper.

In geometry-oriented methods [4]–[7], a common way is
detecting the vanishing point as well as estimating the road
edges. To obtain more stable detection results, extending
methods [8]–[10] are proposed to incorporate more complex
geometry models, e.g. passable region’s geometrical model.
However, the performances of these methods will degenerate
severely once these geometric constraints, such as vanishing
points, side edges etc., are not satisfied in the image. Aside
from detecting points and lines from monocular images, stereo
vision is also considered in the traversable detection prob-
lem for estimation of ground plane using the homography
matrix [11], [12]. Kinect v2 is also verified to be effective
in outdoor environment [13], [14] and could be employed for
plane estimation. As the estimation of ground plane assumes
that the traversable region is flat, the accuracy of these methods
will decreases when the environment changing from urban area
to rural space.

The appearance-oriented methods have also been inten-
sively explored to address the traversable region detec-
tion [2], [15]–[19]. Some early works detected the traversable

region directly by training a classifier based on color fea-
tures [15] or the combination of color and texture features [16].
Rather than classification with only color and texture infor-
mation, the appearance feature based probabilistic models,
e.g. the road density probability model in pixel space [17]
and super-pixel based Gaussian model [2] etc., are also used
to represent the region’s traversable possibility, these models
are employed as the initializations of the further classifica-
tion. However, the parameters of probabilistic models are
sensitive to changeable environments, which might limit their
adaptiveness.

In recent years, combining of the appearance information
and the geometrical information has attracted much attention.
A typical work presented by Dahlkamp et al. [20] obtained
the nearby passable region with a hybrid of the laser and
RGB feature modeling with a mixture of Gaussians, the far
region can be predicted by this model and the model will be
updated once the environment changes. A recent work [21],
which built a classifier based on monocular image using the
appearance information, it then estimated the ground plan
from the consecutive frames as the initialization of the model.
Combining the appearance information and the geometrical
information to detect the traversable region is also close to the
cognition processing of human beings, as we human beings
detect the traversable region according to both appearance and
disparity. More generally, Lee et al. [22] used both geomet-
ric and appearance information to segment planar building
facades (PBF) and uses geometric constraints to refine the
3D PBF mapping. Inspired by this issue, we improve our
previous appearance-oriented approach [19] to an appearance-
oriented and geometry-aided (or geometric constrained) tra-
versable region detection framework, which can provide stable
performances with only appearance and also can be conve-
niently extended with additional geometry information.

To enhance the model robustness to the illumination vari-
ance, some approaches [23]–[25] have be proposed to imple-
ment illumination-invariant feature transforming and then
obtain the traversable region in that transformed feature
space. However, this approach may be sensitive to the over-
exposed or under-exposed [24] in the single RGB channel.
We demonstrate that our online learning approach is able to
fast adapt to the illumination changes without transform of
input space.

B. Fundamental Assumption in Our Approach

As shown in figure 1(a), in our method, we adopt a weak
geometric assumption that regards the small area in front
of the robot as passable and two small areas on the top of
the image as impassable. At the perspective of a temporal
window, the passable areas in the historical images have been
actually traversed through by the robot at the current instant,
therefore this assumption is self-validated with probably very
limited mistakes. To model the assumption, a Fundamental
Mask (FM) is proposed, shown in figure 1(b).

We then formally define the traversable region detection as a
binary classification problem, where each pixel is represented
as passable or impassable . Considering the local consistency
of the labels, we segment the image into multiple sub-regions
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Fig. 1. A sample of our weak assumption. (a) the bottom middle green
region is assumed traversable, the up left and right red regions are assumed
impassable. (b) Fundamental mask generated from the weak assumption,
the traversable, impassable and unknown regions are denoted as white, gray
and black respectively.

with the super-pixel segmentation, and then each image can
be represented as the following set:

{( f1, L1), ( f2, L2), · · · , ( fi , Li ), · · · , ( fn, Ln)}
where n is the number of the super-pixels, i = 1 · · · n,
fi = [ fi1, fi2, · · · , fi D ] is the i th sub-region’s feature
vector with D dimensions, and Li ∈ {−1,+1}, which
labels fi , +1 for traversable region, −1 for impassable region.
With the Fundamental mask, the traversable region detection
task can be formulated as to train a separation boundary
which can correctly label the unknown sub-regions based
on those traversable and impassable regions. Those unknown
sub-regions are all denoted as impassable for the safety
consideration in the initialization. As a result, the training
set contains much more negative samples than the positive
samples at the beginning. So we introduce imbalanced ELM
method [3], [26], [27], which uses varied costs for different
categories. The adaptive online training model is also imple-
mented in our approach. In each frame, we will update the
training dataset and retrain the classifier based on the classi-
fication results of previous frame. With the imbalanced ELM
method and the adaptive online training model, the classifier
can achieve a dynamic balance. For the condition that there
are much more negative instances, we will set a larger mis-
classification cost for positive instances. Then the separation
boundary will be pushed toward the negative instances in the
online training process until achieving a balance, of which the
process is shown in figure 2.

III. FUNDAMENTAL LEARNING FRAMEWORK FOR

TRAVERSABLE REGION DETECTION WITH

APPEARANCE INFORMATION

There are three main steps in our traversable region detec-
tion approach, shown in figure 3, i.e. feature construction,
classification in multi-scale and online training with dynamic
dataset, in addition with a configurable initializer for sub-
regions’ labels. The feature space is constructed on the
appearance clues including texture and color, which are also
employed in previous works [28], [29], formulating the input
space of the subsequent modules. While the labels’ initial-
ization module, which formulates the label space of the

Fig. 2. A sample online training processing on the sequenced images.
sub-figure (a)-(d) show classification boundaries and labels for each instance
corresponding to real image sequence (e)-(h). With the varied misclassification
cost functions, the boundary will be pushed toward the lower risk negative
region during the iterative training.

Fig. 3. The framework of our traversable region detection approach.

classifier, is investigated using the partial/sparse geometric
clues, introduced by fundamental mask (FM), stereo vision and
RGBD sensors which is Kinect V2 in this paper. Therefore the
core idea of the fusion in the proposed framework is to develop
an appearance classifier to follow the geometric indications,
but capture more intrinsic variance with dense data and yield
dense detection result, through the online learning.

A. Discriminative Feature Construction

Compared with pixel based feature extraction, features con-
structed from super-pixel are based on the statistical informa-
tion from a couple of closed pixels and thus more stable. It also
reduces the computation complexity due to the much less
amount of samples, and may achieve real-time performance.

To achieve real-time detection, the image is segmented with
SLIC [30]. And each super-pixel is corresponding to a feature
vector constructing by its color and texture distribution. The
color based sub-vectors come from the HSV histogram and
the texture based sub-vectors come from the uniform LBP [31]
descriptor. The sub-vectors from both the color channels and
the LBP descriptor are then concatenated and normalized
as the feature vector for each super-pixel. More specifically,
the color spaces of H channel and S channel are divided into
18 intervals, and the V channel is divided into 9 intervals,
thus the dimension of the HSV’s feature vector is 45. The
uniform LBP [31] feature vector is encoded, with 8 pixel
neighborhoods on a circle of radius of 1, which means the
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Fig. 4. Two sample images and their labeling results under three different
segmentation scales. The passable regions are denoted with green color.

dimension of the LBP feature vector is 10. Then the total
dimension of the super-pixel’s feature vector is 55.

B. Multi-Scale Super-Pixels Based Classification

As shown in figure 4, the super-pixel with smaller size
contains more detailed information but are more sensitive to
noises, while the super-pixel with large size can be robust to
noises but lacks of details. Then an ensemble of multiple-scale
super-pixels based classification is desired.

Specifically, we segment the image into θ (θ is an odd
number) scales, where there are Mi super-pixels in the
i th scale, for each scale

Mi+1 < Mi <, · · · ,< M1

Then we define K as the amount ratio between two adjacent
scales.

K = Mi

Mi+1

K can be regarded as the size gap between two adjacent
scales and is used to control the sample size of the super-
pixels in each scale. By setting an appropriate K , the super-
pixel in multiple-scales can be robust to the noises as well as
preserving the details.

Lets denote the feature vector of the mth super-pixel in
i th layer (scale) as f m

i . We train a classifier at each layer to
get f m

i ’s label Lm
i . Once the mth super-pixel in i th level is

labelled as Lm
i , all the pixels in that super-pixel will be given

the same labels Lm
i . Based on the labeled results of all the

layers’ super-pixels, we can get θ binary labeled maps of the
image in pixel level.

The results of θ layers can be denoted as R =
[r1, r2, r3, · · · , rθ ], where ri (h × w) is the i th labeled map
of the image contains only +1 and −1. Then the fused results
can be obtained by merging all the levels as follow:

Rsum = sign(

θ∑

i=1

ri )

Rsum is the results fusing with all the levels’ labels in the
same pixel. As the result of Rsum is fused from the decisions
in multiple scales, it can provide accurate edges and details

via those small scale super-pixels while improve the robust
capability against the noises via the large scale super-pixels.

The labeled results after fusing with all layers may still
contain some noises or mislabeled patches due to the similarity
of the colors and textures in the complex environment, we then
use a post-filter processing to delete those isolated incorrect
small patches. The online training will employ the detection
results after post-filtering, thus the training data will contain
less mislabeled samples and can converge faster.

C. Online Training Model

As the scenes change continuously during the robot navi-
gation, we design an online training model, which is trained
with the classification results of those recent previous image
sequences, to overcome the problem of scenes changing.
As the data in the training model are updated online, we call
the training dataset as dynamic training database (DTD) [17],
and the classifier will be retrained once the DTD is updated.

To obtain the real-time performance in our online training
model, the weighted ELM (extreme learning machine) [3]
is used as our classifier since the weighted ELM can be
trained efficiently with its closed-form solution. Furthermore,
the weighted ELM can also be helpful to handle the imbal-
anced instances in our problem as it minimizes the weighted
cost function for different classes and maximize the margin
for the boundary. For the feature fi , i = 1, · · · , N and its
label Li , we use diagonal matrix W (W ∈ N × N) to represent
the weight, then fi ’ weight is wii . Then we can minimize the
following cost function:

LW E L M = 1

2
‖β‖2 + C

1

2

N∑

i=1

wii ‖ξi‖2

Subject to:

h( fi )β = Li − ξi , i = 1, · · · , N

Here h( fi ) is the nonlinear representation of the original
feature which can be randomly generated, and β is the output
parameter of the classifier, ξi is fi ’s misclassification cost.
Then the β can be quickly calculated by thoore-Penrose
“generalized” inverse. And C is a constant to adjust the weight
between the margin maximization and cost function (training
errors).

In the weighted ELM, we set a large weight for the feature
vector of the minority class. Assuming there are n pos passable
regions and nneg impassable regions, we then calculate the
weights as follow.

Cd = (n pos − nneg)

N
∈ (−1,+1)

Cb = λsign(Cd )|Cd |σ
wii = w0 − sign(Li )(Cb − φ)

Here Cd denotes the different ratio between two categories,
λ and σ are two constant parameters. If σ > 1, wii changes
slightly when the numbers of two classes are closed. We use
φ as the threshold to prioritize the passable region, so the
classifier will tend to label a region as passable when it closes
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to the separation boundary. w0 is the initial weight and can be
set to a constant. Besides, the wii is always set as non-negative
with appropriate λ and φ.

In our online learning model, the classification is executed
in each image, then we evaluate the new labeled data and use
them to update the DTD. Similar to [17], the item si in DTD
is consisted with three elements that are feature vector, label
and weight, and can be denoted as:

si = [ fi , Li , wii ]
Before we can add the classification results into the DTD,

a confidence evaluation should be carried out based on the
weak assumption. Specifically, we measure the accuracy ratio
for the super-pixels lying in the F M as:

Acc = NW T P + NG F N

NF M

where NF M is the number of super-pixels lying in the F M
on all the layers, NW T P is the number of true positive super-
pixels contained in the bottom middle region (passable region
in F M), and NG F N is the number of true negative super-pixels
contained in the up left and right regions (impassable region
in F M).

In our approach, the DTD of current image can be added to
our training set only when Acc > 0.9, otherwise, the previous
classifier is regarded out of date due to the scene changing,
and all the items in the current training set will be discarded,
a new classifier will be retrained based on the F M .

When adding to the DTD, the new samples’ weight W is
also computed based on their distribution on two classes. And
we also decrease the pre-existing samples’ weight as follow.

Ŵ = W − �W

where W is the weight matrix before updating and Ŵ is the
updated weight matrix, �W denotes a constant decrement
matrix. With the frame increasing, the previous samples’
weights on training errors will be also decreased. This is
reasonable as the newest samples will be more valuable to
the next classification comparing with the pre-existing samples
when the scene is changing. Once the weights of the samples
reach zero or less than zero, they will be removed from
the DTD. Then the DTD can be maintained to a limited
scale, which allows real-time calculation and also keeps the
reasonable generalization capability.

IV. FUSION WITH INFORMATION FROM

MULTIPLE SENSORS

Although the assumption of FM can handle most of the
conditions in traversable region detection only with the appear-
ance information from the monocular vision and an empirical
geometric prior, it may suffer from the inconsistent color
and texture features distributed in varied sub-regions of the
traversable region. These inconsistent distributions will lead
to insufficient sampling in the previous learning framework,
when initializing the sub-regions’ labels with the FM. Thus
some traversable sub-regions, which are not correctly sampled
in the FM, may be classified incorrectly.

Fortunately, our framework intrinsically supports the inte-
gration of the external geometrical information, which can

introduce additional discriminative information to solve the
problem of inconsistent distribution in color and texture fea-
tures. The external geometrical information can be easily
obtained from multiple sensors such as stereo vision and depth
sensors, where these sensors are common configurations on
todays mobile platform. By utilizing these multiple sensors
to obtain additional geometrical information, we can fuse the
3D information to initialize the labels of the sub-regions,
which is able to refine the FM used in the monocular vision
system. With those enhanced labeled samples fusing from mul-
tiple sensors, our learning framework can overcome the prob-
lem of inconsistent distribution in color and texture features.
The following section will present two approaches fusing with
stereo vision system and Kinect V2 system respectively.

A. Fusion With Stereo Vision

The stereo camera is a common sensor amounted on
the mobile robots, it can obtain the disparity map from the
two views with stereo matching algorithms [32], then the
corresponding dense depth information can be constructed.
Although the nearby depth information obtained by the stereo
vision system can be quite accurate, the accuracy for far
depth information is quite unstable and there are also many
unmatched regions which are represented as black holes in the
disparity map. An intuitive approach to detect the traversable
region with the depth information is to extract the largest
plane from the current view by RANSAC algorithm [33].
However, the results show that the stereo vision system does
fail to recognize the traversable region in the far area due to
the inaccurate or missing depth information in the far area.
Therefore, the available partial depth information is utilized
to initialize the labels.

We present a stereo vision based mask generation algorithm
as follows:

Algorithm 1 Stereo Vision Based Mask Generation
Algorithm

Input: Image IL , IR , distance threshold d̃
Output: Traversable 3D point set M and impassable

3D point set M̄

1 Applying dense stereo matching for left image IL and
right image IR ;

2 Calculate the 3D coordinate p(x, y, z) for each matched
pairs (points) in the disparity map ID ;

3 Extract the maximal plane Ax + By + Cz + D = 0 from
all the 3D points with RANSAC;

4 for each pi (xi , yi , zi ) ∈ ID do
5 if |Axi + Byi + Czi + D| < d̃ then
6 M = M ∪ {pi };
7 end
8 else
9 M̄ = M̄ ∪ {pi };

10 end
11 end

The algorithm 1 classifies the 3D points in the disparity map
ID into two categories, i.e. traversable point set M (green
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Fig. 5. The traversable region obtained by stereo vision system (left) and
its corresponding mask (right).

points in figures) and impassable point set M̄ (red points
in figures). And if the distance from 3D point pi to the
extract plane is less than the distance threshold d̃, then pi

is categorized to M , otherwise pi is categorized to M̄ .
After obtaining the M and M̄ , we re-project all the

3D points into the 2D images and construct an image only
consisting of three kinds of points, i.e. traversable region
points, impassable region points and unknown region points.
We then implement an image expansion operation in the
constructed image to connect those isolated points into regions,
following by an image corrosion operation to obtain the mask.
The final mask is then obtained by overlapping both the
fundamental mask and the mask generated by the stereo vision
system, the example is shown in figure 5.

B. Fusion With Kinect-2

The Kinect-2 depth sensor is based on the time-of-flight
measurement principle. A strobed infrared light illuminates
the scene, the light is reflected by obstacles, and the time
of flight for each pixel is registered by the infrared camera.
Internally, wave modulation and phase detection is used to
estimate the distance to obstacles [34].

The Kinect-2 provides a big improvement over the original
Kinect for ourdoor/sunlight situations. Whereas the original
version is not suited to outdoor usage, the Kinect-2 can
measure depth at ranges below 2m [13]. In [14], it has also
been shown that the Kinect v2 is able to capture data for
shadow and direct sunlight situations.

The Kinect-2 features a higher resolution of 512 ×
424 pixels. In our practical outdoor experiments, we found
that ranges between 1.0 to 2.8m and the pixels (u, v), u ∈
[100, 412], v ∈ [270, 424], could reliably be measured,
whereas measurements outside this range were considered as
unreliable and therefore omitted from the traversable region
mask model fitting. We denote the 3D point set corresponding
to the valid depth pixels as S, and then the Kinect-2 mask
generation algorithm can be constructed similar to the stereo
vision system as follows.

Different with the mask generation algorithm 1, the algo-
rithm 2 used for Kinect-2 does not fit only one plane as
the Kinect-2 cannot provide consistent depth data in outdoor
environments. We try to fit k planes for the valid depth data
patch in algorithm 2 in step 2-4, and regard the maximal
plane in S1, which is the bottom of the valid patch, as the
traversable region. If the adjacent planes have an angle less

the threshold θ̃ (step 6), the algorithm 2 will use its own

Algorithm 2 Kinect-2 Based Mask Generation Algorithm

Input: Valid depth point patch S, k, angle threshold θ̃ ,
distance threshold d̃

Output: Traversable 3D point set M and impassable 3D
point set M̄

1 Divide S into k adjacent sub-regions, S1, S2, ..., Sk , along
the horizontal coordinate of the depth image from bottom
to top of S, the bottom is S1 and the top is Sk ;

2 for each Si do
3 Fitting a maximal plane, Ai x + Bi y + Ci z + D = 0,

and its corresponding normal vector �ni with
RANSAC;

4 end
5 for i=1 to k do
6 if i==1 or θ( �ni , �ni−1) < θ̃ then
7 for each point p j (x j , y j , z j ) ∈ Si do
8 if |Ai x j + Bi y j + Ci z j + Di | < d̃ then
9 M = M ∪ {pi };

10 end
11 else
12 M̄ = M̄ ∪ {pi };
13 end
14 end
15 end
16 else
17 for each point p j (x j , y j , z j ) ∈ Si do
18 if |A1x j + B1y j + C1z j + D1| < d̃ then
19 M = M ∪ {pi };
20 end
21 else
22 M̄ = M̄ ∪ {pi };
23 end
24 end
25 end
26 end

plane formula to label the points (step 7-12), otherwise the
algorithm 2 will use the S1’s plane formula to label the points
(step 17-23). The examples of the algorithm 2’s results are
shown in figure 6.

After obtaining the M and M̄ , we also need to re-project
all the 3D points into the 2D images2 and construct an image
only consisting of three kinds of points, i.e. traversable region
points, impassable region points and unknown region points.
Following the same post-process methods as we use with
the stereo vision, image expansion and image corrosion are
applied to refine the mask. The final mask is also the overlap
of both the fundamental mask and the mask generated by the
Kinect-2 system.

V. EXPERIMENTS

In this section, we carry out several experiments to evaluate
our proposed approaches. To evaluate the effectiveness of

2The 2D image captured by Kinect-2 will be down-sampling to the
resolution of the depth image.
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Fig. 6. The sample of the output results of algorithm 2, left sides are the
color images and the right sides are the corresponding mask generated by
algorithm 2, the white areas are the traversable regions, the grey areas are
impassable regions, and the black areas are unknown regions.

the proposed framework, we make comparisons with three
state-of-arts methods as follows:

A. Growcut

The first method is proposed by Lu et al. [2]. This algorithm
assumes an elliptic area in front of the robot is traversable
and uses GMM to model this region and a super-pixel level
probability density map is built based on this model. Then the
super-pixel level is used to select seeds of grow-cut, which
is then used to label the image. However, this method may
be sensitive to scene variation, and parameters need to be
tuned when the scene changes. In our experiment, the optimal
parameters for each dataset are obtained by an exhaustive
search in the Growcut method.

B. VP

The second method is proposed by Kong et al. [4]. This
method uses a voting strategy to select the vanishing point
which is regarded as a strong cue to detect the edges of road.
These edges are then used to update prior vanishing point.
This method can work well on scenes have obvious vanishing
point and the straight road edges. However, crossed and curved
roads will affect the performance significantly. The code used
in our experiment is downloaded from Kong’s website.3

C. Gaussian

The third method is proposed by Dahlkamp et al. [20].
In this method, laser is used to detect nearby traversable region
and a set of Gaussians are used to model the region in RGB
color space. In the labeling process, the nearest Mahalanobis
distance between Gaussians and sample pixel is set to decide
whether the sample belongs to traversable regions or not.
As the three datasets used in our experiments have no laser
data, we use the assumption that the front of the robot is
traversable to extract the information from those assumed
traversable regions.

In the following experiments, all our approaches use the
same parameters setting in all the datasets. We set the total
amount of layer θ = 3 and the amount ratio K = 5. The
parameters in the ELM are assigned with C = 1, w0 = 1,
λ = 0.8, σ = 3 and φ = 0.05.

Three pixel-wise quantitative metrics [35], [36], i.e. FPR
(false positive rate), FNR (false negative rate) and ErrorRate,

3http://web.mit.edu/huikong/www/index.htm

Fig. 7. Shadow road dataset containing shadows in the traversable regions.
This dataset is a sequence containing 135 image frames, where all frames are
labeled manually. It is captured by a monocular GoPro camera mounted on
the robot with a frame rate of 5HZ. And the scene is a road lined with trees
in our campus. There are many shadows of trees in sunny days.

Fig. 8. Variational road dataset containing obviously texture and color
changes during the sequent image frames. This dataset contains a sequence
of 253 images, where 125 frames are labeled. It is captured by a Bumblebee
stereo camera mounted on a four wheeled robot. In our experiments, we only
use the image sequences from right camera. The scene is also a road in our
campus which contains many challenges such as varied significant texture
and color changes during the image sequence, image blur, barriers caused by
moving pedestrians or vehicles, and varied illumination etc.

are implemented to evaluate the accuracy of the detection:

F P R = NF P

NP
× 100% F N R = NF N

NN
× 100%

Error Rate = NF P + NF N

NP + NN
× 100%

Here NF P and NF N are the pixels being wrongly classified
as passable or impassable regions respectively; NP and NN

are the ground-truth pixels of passible and impassable regions
respectively. We then can evaluate the performance with the
average metrics on all the frame sequences of each dataset.
Besides, the computational speed is also compared to evaluate
the possibility of real-time applications.

1) Experiments on Monocular Camera: We employ three
challenging datasets, rain sequence dataset,4 shadow road and
variational road, to evaluate our proposed basic monocular
method (abbreviated as LFTD in the following experiments),
shadow road and variational road shown in figure 7 and
figure 8, are captured by our own vision system.5

These datasets cover typical daily life scenes. The rain
sequence dataset consists of consistent appearances on the
scenes, there are vanishing point and edges in almost

4https://rsu.forge.nicta.com.au/people/jalvarez/research_bbdd.php.
5Data available at http://www.csc.zju.edu.cn/yliu/index.html
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TABLE I

QUANTITATIVE PERFORMANCE METRICS OF FOUR METHODS
IN THREE VARIED DATASETS

every frames. The shadow road dataset has some shadows
caused by the trees, then the shadows may lead to confusions
during the edge detection or model based road representation.
Variational road is a challenging dataset containing image
blur, barriers, varied illumination and significant texture-color
changes on road surfaces. In our experiments, we choose those
three datasets with varied styles to evaluate the robustness and
adaption our method, as our method uses the same parameters
on all those three varied datasets.

There are three state-of-the art approaches, i.e. VP,
Gaussian, and Growcut, comparing with our LFTD in the
experiments.

Table I gives the four methods’ experimental results on three
varied datasets. The overall performance is calculated as the
weighted average on three datasets based on the number of
frame in each dataset.

The experimental results in Table I show that LFTD can
achieve better performances on all the datasets comparing with
other algorithms. As our LFTD employs the same parameters
in all the three datasets, which also indicates the adaptability
and robustness of our LFTD.

In Table I, our LFTD outperforms the other three state-
of-the-art methods on the dataset of shadow road, which
validates that our LFTD can be adaptive on the conditions
with complex illumination and shadow. The results in Table I
indicate that VP can achieve best performance in the dataset
of rain sequence, as there are stable geometrical features, e.g.
vanish points and edges, in that dataset. However, VP performs
much worse in the other datasets due to its strong dependency
on scenes’ geometrical constrains, thus its overall performance
is also relatively poor. In dataset rain sequence, our LFTD
has slightly larger FPR than the Gaussian, as the Gaussian
method may tend to overoptimize the FPR and then achieve
worst FNR in all the methods, thus the Gaussian’s ErrorRate
is also worst in the dataset of rain sequence. The variational
road dataset contains frequently changed scenes, when the
scenes changing, our LFTD will empty the DTD in previous
and retrain the classifier from the FM. In the retraining frame,
many passable regions are still regarded as impassable, which
will produce a very high FNR and increase the average
FNR of our method. That’s why our LFTD outputs a slight
higher FNR compared to the best method in variational road
dataset.

We then present the ErrorRate of each continuous frame on
all datasets in figure 9. The results show that the ErrorRate

Fig. 9. The ErrorRate on the datasets of shadow road, rain sequence and
variation road. The horizontal axis and vertical axis are the frame number
and the average ErrorRate respectively. (a) Shadow road. (b) Rain sequence.
(c) Variational road.

of our LFTD may be slightly high at the beginning, as only
few regions are correct labeled based on the FM. However,
the LFTD’s error rate will quickly decrease to the lowest one
comparing to other methods with the frame adding. As shown
in figure 9(c), there is also a high error rate in the middle of
the LFTD’s curve, which is caused by the significant changing
on the scene, and our LFTD can also quickly decrease to the
lowest one with the frame adding. Thus our method can be
insensitive and adaptive to the significant changing of scenes.

Figure 10 gives the detection results of each method in
three datasets, the results are plotted with different colors in
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Fig. 10. Detection results in consecutive frames. The row denoted as original present the original images, the other rows present the corresponding results
on the four methods. The passable areas in second row are represented with red color following the setting of Kong’s code, the passable areas in other rows
are represented with green color. (a) Shadow road. (b) Rain sequence. (c) Variational road.

the sequenced frames. From figure 10(a), we can find the
performance of LFTD will quickly increase to best with the
frame increasing. While VP is always misled by the straight
shadow projected by the tree trunk, and regards them as the
edges of road, thus achieves quite low performance. In the

sixth frame of figure 10(c), there is a pedestrian and only
LFTD can detect the passable region correctly. The results also
indicate LFTD can deal with the condition with moving objects
by the online training model. The above experiments prove that
our LFTD is able to process varied complex conditions, such
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Fig. 11. Three Kinect-2 datasets used in our comparable experiments, the first and third rows are the original images and the second and the fourth rows are
the labeled results with our KLFTD method, the results show that our KLFTD can label those complex scenes in these three datasets. (a) Kinect Dataset1.
(b) Kinect Dataset2. (c) Kinect Dataset3.

as changed illumination, dynamic objects, shadows etc., and
achieve well performance with only one set of parameters.

2) Experiments on Kinect-2: As there are no benchmark
datasets for Kinect-2 system, we captured three datasets with
the Kinect-2 to evaluate the performance of our Kinect-2
based learning framework for traversable region detection
method (KLFTD).

The first dataset, shown in figure 11(a) and denoted as
Kinect dataset1, includes 313 depth-2D image pairs, and
there are many pedestrians and vehicles in this dataset, and
the pedestrians and vehicles may burst in the views of the
Kinect-2. There are also speed bumps in the dataset.

The second dataset, shown in figure 11(b) and denoted as
Kinect dataset2, include 73 depth-2D image pairs, and there
are various textures for the traversable regions, rough road
surfaces, and barriers similar to the road surfaces in both colors
and textures.

The third dataset, shown in figure 11(c) and denoted as
Kinect dataset3, include 137 depth-2D image pairs, which
contain both complex variational textures in the surfaces and
walking pedestrians, vehicles in the image views. There are
various conditions in that dataset, such as manhole covers,
abrupt slops, steps and walls that are highly similar to the
road surfaces in both colors and textures, cross roads and open
areas etc.

The traversable regions in all these three datasets are
manually labeled as the ground truths,6 we also compare our
KLFTD with three state-of-art methods introduced in previous
as well as the standard monocular LFTD method in the
evaluation experiments for Kinect-2 based traversable region
detection. As the Kinect-2 sensor does not support stereo
vision, the performance of the stereo vision based approach is
not evaluated in the experiments of this subsection.

Several comparison labeling results of those five methods
in typical scenes are given in figure 12. The results in this fig-
ure suggest that KLFTD can achieve much better performance
than the other four methods, especially in the third and forth
columns. The scene in the third column contains a cross road
which consists of two significant varied road surfaces in both
colors and textures, only the KLFTD can correctly recognize

6The datasets can be download at, http://www.csc.zju.edu.cn/yliu/TVR/
traverable_region.htm

Fig. 12. Comparison results of VP, Growcut, Gaussian, LFTD and KLFTD in
some challenging scenes extracted from the three benchmark Kinect datasets.

both two road surfaces in that scene. As there are only few
correct samples for both road surfaces in that cross road scene
based on the FM, the performance of the LFTD is relatively
lower than the KLFTD. It also indicates that increasing the
number of the correct samples can improve the performance
of our learning framework significantly. The scene in the
forth column contains some walls and windows whose colors
and textures are highly similar to the road surfaces. In this
condition, our KLFTD and LFTD can achieve much better
performances than the Gaussian and Growcut methods, and
the KLFTD can almost correctly recognize all the traversable
regions in that scene.

As these three Kinect-2 datasets are manually labeled,
we can also use the metrics of FPR, FNR and ErrorRate to
evaluate these five methods in all the three datasets quanti-
tatively, the results are given in table II. The results show
that our KLFTD can achieve the smallest ErrorRate in all
the three datasets and the FPR and FNR of KLFTD are also
controlled to relatively small among all the five methods.
And our LTFD can also achieve more robust performances
on ErrorRate (except KLFTD) and the FPR comparing with
other state-of-art methods. It is also indicate that the method
of Growcut may tend to over-optimize the FNR while the
performances on FPR are not perfect in various datasets.
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TABLE II

QUANTITATIVE PERFORMANCE METRICS OF FIVE METHODS
IN THREE KINECT DATASETS

In figure 13, we also present the ErrorRate curves of
consecutive frames in all datasets. It also shows that both the
KLFTD and LFTD may output higher error rates in the initial
frames and then will quickly converge. The results in figure 13
also show that the KLFTD will converge faster than the LFTD,
as the KLFTD can obtain more correct training samples in the
initialization stage.

To further analyze the error rate curves, we will focus on
several points in the error rate curves as shown in figure 13
and extract the labeled scenes output by different methods in
those focus points.

The extracted scenes in Kinect dataset1 are shown
in figure 14, which shows the focus points from A to F. From
frame A and B, we can find that none of the methods can
correctly label the sidewalk in both scenes except our KLFTD,
as our KLFTD can fuse the depth information from Kinect-2
and recognize the impassable sidewalk although its texture
and color are highly similar to the road surface. In frame
C and D, the narrow scenes are suddenly changed to open
areas, and the KLFTD can also achieve better performance
than the LFTD as the KLFTD has more samples during the
training process. In the complex scenes of frame E and F,
only our KLFTD and LFTD can successfully label most of
the traversable regions, the Growcut fails to label the trees
in frame E and F, the Gaussian fails to label the manhole
cover in frame F and the VP fails to find a wrong vanish
point in frame F, as there is a car in the front of the scene.
The results of frames A to F also indicate that the Gaussian
method can only detect few traversable regions, which leads
that the probability of labeling the impassable regions to
the traversable regions is significant decreased, thus its FNR
tends to quite low, however, its FPR will be excessive high.
This condition for the Gaussian method often occurs in the
following frames and the other two Kniect datasets, and it can
explain why the Gaussian method’s F N R in table II are all
smallest in all these three datasets.

The extracted scenes in Kinect dataset2 are shown
in figure 15, which shows the focus points from G to H. These
scenes are most consist of various barriers whose colors and
textures are highly similar to the road surface. In the beginning
frame G, the results of all the methods are still acceptable,
while the next frame H, the Gaussian and Growcut methods
almost totally fail to label the traversable regions. It can be
also found from figure 13(b), both the Gaussian and Growcut
methods appear severe bad error rates during the scenes close

Fig. 13. The ErrorRate on the datasets of Kinect Dataset1, Kinect
Dataset2 and Kinect Dataset3. The horizontal axis and vertical axis are the
frame number and the average ErrorRate respectively. (a) Kinect Dataset1.
(b) Kinect Dataset2. (c) Kinect Dataset3.

to frame H. While the VP also mislabels the window-wall in
frame G, and finds wrong vanish point in frame H.

The extracted scenes in Kinect dataset3 are shown
in figure 16, which shows the focus points from I to N. These
focus scenes are most consist of open areas and unparallel
roads. Thus the VP method will often fail to detect the vanish
point and lead to poor performance, such as frame K, L,
M, N. The Gaussian method still tends to label a shrinking
traversable region. Although the Growcut method can relative
better performance in most of the frames, it will fail to label
the green vegetation in frame L. And our KLFTD and LFTD
can achieve much better results in these focus scenes. As the
scenes from frame I to J are changing suddenly, the results of
LFTD are less complete due to its slower rate of convergence
for training.
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Fig. 14. Extracted scenes(frames) sampled from Kinect Dataset1, these
sampled frames are corresponding to the focus points A to F in figure 13(a).
The labeled results on these sampled frames output by the five methods are
also shown for further comparison.

Fig. 15. Extracted scenes(frames) sampled from Kinect Dataset2, these
sampled frames are corresponding to the focus points G to H in figure 13(b).
The labeled results on these sampled frames output by the five methods are
also shown for further comparison.

Fig. 16. Extracted scenes(frames) sampled from Kinect Dataset3, these
sampled frames are corresponding to the focus points I to N in figure 13(c).
The labeled results on these sampled frames output by the five methods are
also shown for further comparison.

3) Experiments on Stereo Camera: In the experiments,
a Bumblebee stereo is used to capture sequenced image-
pairs which are used to evaluate our stereo vision based
learning framework for traversable region detection (SLFTD).
We capture two challenging datasets. The first dataset includes
blurred images under various road surfaces, and the results are
given in figure 17, and the results show our SLFTD can be
robust against the blurring caused by the fast motion of the
camera, as our approach is based on the statistical features

Fig. 17. Experimental dataset1 and its corresponding labeled results in stereo
vision system. The first and third rows are the original images and the second
and fourth rows are the labeled results.

Fig. 18. Experimental dataset2 and its corresponding labeled results in stereo
vision system. The first and third rows are the original images and the second
and fourth rows are the labeled results.

on super-pixels. The second dataset includes varied and fast
lighting changes, the lighting varies from overexposure to
underexposure frequently when the robot goes through the
forest road. And the results are given in figure 18, which
shows the SLFTD can successfully handle that challengeing
condition with frequent lighting changes. For more results with
our SLFTD please refer to our attached demonstration video.

We also compare our SLFTD with the LFTD on the manu-
ally labeled variational road dataset. The error curves of these
two methods are shown in figure 19, and we can find that
SLFTD performances much better than the LFTD on almost
all the dataset. We will further focus on two points of the
curves, one point is the 10th frame, where the performance of
our SLFTD is worse than the LFTD, the detailed results on the
10th frame are shown in figure 20. The 10th frame contains a
low separation between the grass and the road, and the SLFTD
will tend to recognize both the grass and the road as one big
plane based on the stereo information as the separation is too
small to stride by robots, then SLFTD will labeled the grass
as traversable region based on its initial input mask. While
the LFTD only obtains few samples from the grass based on
the FM, thus it will only label the road and less grass. The
other focus point is the 40th frame, where our SLFTD is much
better than the LFTD, the detailed results on the 40th frame are
shown in figure 21. The 40th frame contains a cross road with
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Fig. 19. The ErrorRate curves on variational road dataset of SLFTD
and LFTD.

Fig. 20. (a) is the source image, (b) is the mask of SLFTD, (c) and (d) are
the results of the SLFTD and LFTD in the 10th frame of variational road
dataset.

Fig. 21. (a) is the source image, (b) is the mask of SLFTD, (c) and (d) are
the results of the SLFTD and LFTD in the 40th frame of variational road
dataset.

two different surfaces, obviously, our SLFTD can correctly
label both kinds of road surfaces as the mask provide enough
information, while the LFTD can only label one kind of road
surface. The error curves shown in figure 19 also indicate that
the SLFTD will converge to the optimal results much faster
than the LFTD.

4) Computational Time: In all experiments above, the input
image is first resized to 320 × 240 and then fed into the algo-
rithms respectively. The computational times for all algorithms
are recorded using this configuration. The results are shown
in table III. It can be found that the proposed framework is
faster than the other methods owing to the very efficient closed
form of ELM training. In real application, a relatively fast
outdoor robot with 30km per hour can pass 1.25m during the
computation of an image frame, which is generally guaran-
teed as the proposed framework yields a dense detection of
traversable region even on the long-range pixels in the image.

5) Discussion: In real application, F P R we think is the
most important indicator for traversable region detection, since
misclassifying the obstacle as the passable region is seriously
unacceptable due to the security. The learning framework
plugged with FM achieves the lowest F P R in most datasets,
followed by the Kinect2 initializer, and outperform than other
methods. While for the error rate, the Kinect2 initializer is
the best, followed by FM version. This fact demonstrates
that the more geometric information incorporated, the better
shaping of the online sample space, leading to a boosted
overall performance. However, due to the slightly non-planar
road and sensory noise, mislabeling can also be brought by
the geometric assumption, especially in distant parts, which is
also investigated in previous study [29]. When FM is applied,

TABLE III

THE COMPUTATIONAL TIME FOR SIX METHODS

TABLE IV

THE PERFORMANCE OF PURE FM INITIALIZER

Fig. 22. Evaluation of the feasibility in robot navigation application when
robot approaches an obstacle (top row), or moving obstacles approach the
robot (bottom row).

the assumption is self-validated, though introducing the other
online training data, the method is still conservative due to
the sample weighting, thus achieving a better F P R. From
this result, and also a previous study [28], we consider the
performance, when we only use the FM to collect the online
training data, can be even more conservative. However, the per-
formance on the Kinect Dataset3, shown in table IV, is with
worse performance than the proposed framework, which is
caused by the too sparse geometric initialization, insufficient
to capture the intrinsic variations of the data. Therefore, our
framework can be considered as a balance between the data
variations, assumption validity and label density.

To evaluate the feasibility of the FM in real robot navigation
task, we test a case study in which a robot is moving toward
an obstacle, i.e. a traffic cone, a pedestrian, and a cyclist. The
results are shown in figure 22. When the robot approaches the
cone, the cone is stably identified as an obstacle until 1.6m.
The pedestrian walking toward the robot, and the appearing
cyclist, are both detected too. These facts reflect that the robot
is able to avoid the obstacles only if the robot can plan a
correct path before the security range. This range can be set
as the minimum distance to obstacle in a robot navigation
planner. In general, a motion planner can always keep the
robot from the obstacles in a minimum distance. Therefore,
the framework is accepted when considering the navigation
and passable region detection in the loop, which is always the
case in mobile robots.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel and scalable travelable region
detection framework fusing with both appearance and geo-
metrical information, our approach can be insensitive to chal-
lenging environments with varied lightings, shadows, blurred
images and dynamic objects. We also carried out quantitative
experiments to evaluate our approach with state-of-the-art
methods and proved that our approach can achieve superior
performances on both adaptability and stableness in real
traversable region detection.
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As our approach only uses a weak assumed model of the
traversable and impassible regions, which can be satisfied in
most conditions, the model’s universality of our method can be
guaranteed. The found mask introduced in our approach can be
also reinforced by the geometrical information, which will fur-
ther improve the performance of our method. In additional,the
online learning framework in our approach can update the
internal parameters of our method and make the parameters
adaptive (or robust) to the changes of scenes or illuminations.

In the future, we plan to improve the computation com-
plexity of our approach with the GPU techniques, as most of
the computation costs spend on the segmentation of super-
pixels and its corresponding feature construction, which may
be easily parallelized to calculate.
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