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Abstract—In robot programming by demonstration (PBD)
for assembly tasks, one of the important topics is to inference
the poses and spatial relations of parts during the demonstra-
tion. In this paper, we propose a world model called assembly
graph (AG) to achieve this task. The model is able to represent
the poses of all parts, the relations, observations provided by
vision techniques and prior knowledge in a unified probabilistic
graph. Then the problem is stated as likelihood maximization
estimation of pose parameters with the relations being the latent
variables. Classification expectation maximization algorithm
(CEM) is employed to solve the model. Besides, the contra-
diction between relations is incorporated as prior knowledge
to better shape the posterior, thus guiding the algorithm find
a more accurate solution. In experiments, both simulated and
real world datasets are applied to evaluate the performance of
our proposed method. The experimental results show that the
AG gives better accuracy than the relations as deterministic
variables (RDV) employed in some previous works due to
the robustness and global consistency. Finally, the solution is
implemented into a PBD system with ABB industrial robotic
arm simulator as the execution stage, succeeding in real world
captured assembly tasks.

I. INTRODUCTION
Robot programming by demonstration (PBD) enables the

robot to execute tasks demonstrated by the human users.
It gives a new way to transfer the commands from human
to robot rather than the traditionally machine programming,
thus making the robot accessible to the non-programmer
users. In the new generation of industry, the personalized
demands are emphasized, requiring the assembly solution
to be highly flexible and fast adaptive to various tasks.
Therefore, application in industrial assembly of robot PBD
system is directive and promising considering the significant
lower cost for programming. A key problem in PBD based
assembly is how to obtain the accurate poses of parts from
human demonstration. Conventional techniques estimate the
pose of each part independently from the image captured by
a camera. In this way, the estimated poses may be inaccurate
due to the image noises and occlusion, which might fail
the assembly task as the tolerance of error is very limited
in connection of two parts. For example in Fig. 1 left, the
tracking and segmentation based methods give a noisy result
with the axes of connections not aligned exactly, resulting in
failure of assembly during execution.
In this paper, we propose a spatial assembly relation

inference system to indirectly estimate the poses of all parts
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Fig. 1. The poses of parts using vision based techniques (left), RDV
(middle) and AG (right). The orange circles indicate the axes are not aligned
exactly.

Fig. 2. The framework of spatial inference system to extract the assembly
knowledge from the sequence of the images.

at the same time. The core idea is a probabilistic assembly
graph (AG) that can represent all parts and their spatial
assembly relations in an assembly task, but also the visual
observations and contradictions between relations in a unified
model. By inferring this model, the pose estimation can
be expected to satisfy the PBD requirement. An example
of result is shown in Fig. 1 right, in which the axes are
aligned exactly. The framework of the spatial inference
system is shown in Fig. 2. In our approach, the vision based
techniques recognize the parts and the initial poses. Then
these information are assigned to the observations of the
AG. An expectation maximization (EM) is derived from
AG to find the optimal configuration of relations. Finally
a refinement is implemented to polish the final poses. The
contributions of the paper are presented in four steps: 1) AG
is presented that can represent poses of all parts, assembly
relations, observations and prior knowledge, modeling all
uncertainty generated during the demonstration of assembly
task; 2) The contradiction between relations are modeled
in AG as prior knowledge to improve the modeling of
uncertainty; 3) An algorithm is proposed to simultaneously
recognize the relations and estimate the pose, avoiding the
divergence caused by the incorrect inference of relations;
4) The integration of model in the spatial inference system
pipeline is introduced with a final refinement of results.
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The remainder of the paper is organized as follows: In
Section II, the related works are reviewed. In Section III, we
introduce the statement of the problem as an AG inference
and the problem solution. In Section IV, the implementation
of spatial inference system is presented by integrating the
AG. The experiments on both simulation and real world
collected data are carried out to verify the correctness and
effectiveness of the AG in Section V. Finally, a conclusion
and future work is given in Section VI.

II. RELATED WORKS

The pose estimation of parts were usually proposed in
PBD systems. In [1], [2], [3], a system simulating the cog-
nition, knowledge acquiring and transferring was proposed.
A world model called EgoSphere was used to maintain the
spatial information based on the tracking. This method was
feasible when the part was visible in most time. When the
occlusion occurred, the method would fail. In [4], [5], the
hand tracker was combined to better localize the parts. In
[6], supervoxel was used to track the trajectory of parts
and hands with the Kinect sensor using the supervoxel.
As these methods considered each part independently, the
error in the connections of parts may fail the execution of
the assembly task when the parts are relatively small and
the task is complex. In [7], the spatial assembly relations
were utilized to increase the localization of parts. In [8],
the face-to-face (co-planar) test was used to estimate the
pose of a new part. In [9], the co-planar was abstracted
to relations to inference the manipulation. These methods
utilized the relations between parts to improve the accuracy
in a local scale. However, at each step, the relations and
poses inferred before were regarded as determined variables.
In this way, the incorrect recognition of relations would never
be revised. In addition, the correctness of the recognition
sometimes is unknown when the subsequent parts are not
assembled. An illustrative experiment will be shown in
Section V. In [10], a graph model was proposed to encode
a human manipulation task. Then the semantics of object-
action relations were learned from the graph model. As
the target was not assembly, only simple relations were
supported and the accuracy of the object pose was also not
highlighted. The graph model was also applied in [11] as
a world model of the workspace for robot manipulation.
Their methods stated the problem as a sequential maximum-
a-posteriori (MAP) problem and regarded object temporally
add/remove as probabilistic dynamics. Therefore, the graph
model based method is shown to be a possible effective
representation for modeling PBD tasks.
Our prior work proposed in [12] applied a probabilistic

graph to link the all parts with all relations, thus developing a
global measure of the compatibility between relations. In this
paper, we furthermore model the relations with uncertainty,
so that the relations can be inferred from the graph model
with contradictions between relations being taken into the
consideration.

Fig. 3. A factor of AG graph model defined on two parts with 3 relations
as example. Each virtual observation, eijk , is determined by xi, xj and the
switch variable sijk . When sijk = 1, meaning that the relation exists, the
virtual observation is a gaussian centering on 0, indicating that the poses
of two parts satisfy the relation exactly. The visual observation zi and zj

are independent when the poses are known.

III. ASSEMBLY GRAPH REPRESENTATION, SOLUTION
AND REFINEMENT

The input of the AG is a series of parts {Pi} with each one
having two attributes: unique identity idi and the observation
of pose zi. Denote Z = {zi}, a set of all observations of
poses. Both attributes are acquired from the precedent vision
module. The output of the AG are S = {sij} and X = {xi}.
The relation between Pi and Pj is encoded by sij with each
element sijk as a binary variable indicating that whether
the kth relation exist between Pi and Pj . The pose of Pi

is xi. As the relation sijk between the two parts assigns
a constraint to the poses of two parts, we represent this
constraint as a function eijk = fk(xi, xj). If the constraint is
exactly satisfied, eijk is 0, which can be regarded as a virtual
observation. Furthermore, eij is a concatenation of eijk and
E = {eij}. The overall definition is represented in Fig. 3.

A. EM formulation
A world model for an assembled task with multiple parts

can be factorized into a product of such forms as only binary
relations is considered in the paper. With the definition of
graph, the likelihood of observations Z is defined as

p(Z|X) =
∏
i

p(zi|xi) (1)

where p(zi|xi) is in N(xi; zi, ξ). The likelihood of virtual
observations is

p(E|X,S) =
∏
i,j

p(eij |xi, xj , sij) =
∏
i,j

∏
k

p(eijk|xi, xj , sij)

(2)
where p(eijk|xi, xj , sijk) is defined as

p(eijk|xi, xj , sijk) =

{
N(fk(xi, xj); 0, σk) sijk = 1

θk sijk = 0
(3)

with θk being a penalty when sijk = 0.
Then the log-likelihood of all observations is derived as

log p(Z,E|X) = log p(Z|X) + log
∑
S

p(E, S|X) (4)
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where S are latent variables, and marginalized out to give
p(E|X). A possible way to find the solution that maximize
the log-likelihood is the to use expectation maximization
(EM) algorithm [13]. The algorithm is guaranteed to con-
verge to a local minimum in an iterative execution of
expectation step and maximization step. In expectation step,
the posterior over S is found by utilizing the current Xt. In
maximization step, the lower bound of the log-likelihood is
maximized given the posterior.

B. Modeling of contradiction
The task of expectation step is to find the posterior over

S as
p(S|E,X) =

p(E|X,S)p(S)∑
S p(E|X,S)p(S)

(5)

The only undefined term is p(sij). Its simplest definition
is that each sijk is independent to others, i.e. p(sij) =∏

k p(sijk), leading to a factorization as

p(sijk|eijk, xi, xj) =
p(eijk|xi, xj , sijk)p(sijk)∑
sijk

p(eijk|xi, xj , sijk)p(sijk)
(6)

This prior model means no contradiction exists between these
relations, which however, is very rare in practice. In most
situations, several possible relations between parts can not
exist at the same time. The result caused by ignoring the
contradiction is equivalent to modeling an impossible thing
as possible.
To model the contradiction, sij should be modeled in

multivariate joint distribution. To balance the complexity
and accuracy, contradictions between two parts are modeled.
Given two parts, all possible relations in sij are tested: For a
pair of relations sijm and sijn, a compatibility hypothesis is
generated and verified, which is to tell whether p(sijm =
1, sijn = 1) > 0. All contradicted pairs of relations
(p(sijm = 1, sijn = 1) > 0) are encoded in an undirected
relation graph (RG). In RG, each node denotes a relation
sijk and each edge between two nodes means this pair of
relations HAS contradiction (p(sijm = 1, sijn = 1) = 0).
With RG integrated into the graph, the new graph model

is shown in Fig. 4, we have

p(gijc|eij , xi, xj) =

∏
sijk∈gijc

p(eijk|xi, xj , sijk)p(gijc)∑
gijc

∏
sijk∈gijc

p(eijk|xi, xj , sijk)p(gijc)
(7)

where gijc is a clique in RG, containing sijk belonging to it.
Controlled by the prior p(gijc), the corresponding posterior
is non-zero only when zero or one relation in the subset
exists.

C. Maximization step
We select classification EM (CEM), a variant of the orig-

inal version to optimize the likelihood, since it is has lower
complexity of computation [14]. Before the maximization
step, a classification step is conducted in CEM, which is to
find

ĝijc = argmax p(gijc|eij , xi, xj) (8)

Fig. 4. The improved AG graph model definition on two parts by
considering the contradiction. Now sijk are no longer independent but
partitioned by RG. The undirected edge, connecting sij1 and sij2, means
that only one of them can exist at most because they are contradicted. sij3
is still independent to relations in gij1, so gij2 is defined on sij3 solely.

As only one relation can exist at most in gijc, the complexity
of this step is a linear with respect to the dimension of gijc.
Denoting ŝij � {ĝijc} then Ŝ = {ŝij}, we in maximization
step optimize

X̂ = argmax log p(Z|X) + log p(E, S = Ŝ|X) (9)

where L̃(Z,E|X) is called classification likelihood. The best
X can be found by using gradient ascent algorithm easily.

D. Final refinement
At this step, the core AG model can be integrated into our

spatial assembly relations inference system. The output of
AG is the estimated poses of the parts (X̂) as well as the
recognized relations among them (Ŝ). But the poses here may
not satisfy all existed relations {ŝijk = 1|ŝijk ∈ Ŝ} exactly
(fk(xi, xj) �= 0) due to p(Z|X) included in the likelihood.
So in the completed system, a refinement step is conducted
on the obtained relations to polish the poses of parts. The aim
of the refinement is to find a solution maximizing p(Z|X)
among the set of X exactly satisfying the constraints of all
relations, which is formally stated as

X̂ = argmax p(Z|X), s.t. F (X,S = Ŝ) = 0 (10)

where F (·, ·) is a concatenation of all relations fk(xi, xj)
among all possible pair i and j whose ŝijk = 1. The AG
result of pose estimation X̂ can be employed as initial value.
It means that the refined poses must satisfy the constraints
of all relations. For those degrees of freedom unconstrained,
the best solution we can achieve is the precedent visual
observations, i.e. maximizing p(Z|X). After this step, the
final pose estimation of assembly tasks are finished.

IV. IMPLEMENTATION
In the experiments, the pose xi of a part includes the

3D translation ti and orientation Ri. Each part has its own
coordinates defined by the user. In this local coordinates, the
kth axis {aoik} or the kth plane {loik} of this part are defined.
With rigid geometry, the pose of axes and planes of this part
can be computed in the world coordinates as {aik} and {lik}.
Each axis is defined by a point v and a direction u, then each
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Fig. 5. The model of the parts employed in the experiment with their IDs
of axis and plane.

sample as on the axis is defined as as = v+λu where λ is
a real number. Each plane is defined by a normal vector n
and a perpendicular distance d, then each sample ls on the
plane is defined as nT ls+ d = 0. The parts employed in the
experiments follow the definition shown in Fig. 5.
Based on the definition of planes and axes in the parts, we

define two kinds of relations in the implemented system: the
co-planar relation and the co-linear relation. In the co-planar
relation, given two planes, say l11 and l21, which are the the
1th plane of the 1th part and the 1th plane of the 2nd part in
the world coordinates, we have each sample in l21 satisfies

f1(x1, x2) = nT
21
(R21ls11k + t21) + d21 = 0 (11)

where R21 and t21 are the relative pose of plane l11 in coor-
dinates of part P2 computed using x1 and x2. This equation
means that if these two planes are co-planar, samples on l11
can also be the samples in l21. The samples are selected off-
line by the user and fixed, at least three samples are required
for a plane. In the co-linear relation, given two axes, say a11
and a21, we have each sample satisfying

f2(x1, x2) =v21 + uT
21
(R21as11k + t21

− v21)u21 − (R21as11k + t21) = 0
(12)

which indicates that samples on a11 can be the samples on
a21 too. In the maximization step, these functions f(·, ·)
form an objective function to be minimized (maximize the
probability) while in the refinement, these functions act as
equality constraints f(·, ·) = 0 in (10).
The vision technique employed in the spatial inference

system is off-the-shelf change detection method, which is
also used in other PBD spatial inference systems. The
area of change (AOC) is segmented by differentiating the
image before and after a new part is assembled. The part
is recognized by training a softmax classifier on the color
histogram. Through investigating the overlap between AOC
of the new part and the previous parts, the height of the top
surface is inferred through accumulate the height of part.
Finally we assign the initial pose of the new part with the
pose of the minimum bounding box of the reconstructed
surface.

V. EXPERIMENTS
In experiments, two methods are included: The AG, which

considers the relations as random variable; and the model

considers the relations as deterministic variables, called RDV,
meaning the relations are inferred from the result of vision
algorithms and will not change anymore [9], [7], [15],
[12]. We first compare AG and RDV on the simulated
datasets, so that the performance of the world model can be
evaluated independently without coupling the performance
of prior modules, we can also add different levels of noise
to test the performance thoroughly. The relation recognition
is evaluated by F-measure, which is a balanced measure of
precision and recall. After that the spatial assembly inference
system is employed on the real world datasets for qualitative
comparison. Then the system is implemented with an ABB
industrial robotic arm simulator to execute demonstrated
PBD tasks. The parts we used are modeled in the Section
IV.

A. Simulated data
The performances of relation recognition using AG and

RDV are compared using the F-measure as the evaluation
metric, which is derived from precision and recall and
defined as,

P =
TP

TP + FP
, R =

TP

TP + FN
(13)

where TP ,FP and FN are true positives, false positives
and false negatives respectively. Since high precision can be
achieved by ignoring most relations while high recall can be
achieved by keeping most relations exist, using either of the
measure solely is unable to evaluate the performance. So the
F-score is employed, which is computed as

F =
2PR

P +R
(14)

The F-score ranges from 0 to 1 (the higher the better). As
the accurate poses are known, the ground truth of this classi-
fication problem is that a relation exists if its corresponding
f(xi, xj) = 0. There are 8 assembly tasks in our simulated
datasets as shown in Fig. 6. The number of parts used in
these datasets is from 2 to 9. We add 4 levels of noise to
the real value as the observations. For each group (a noise
level and a model), the test is conducted five times, of which
the mean value is computed as the final result. These results
are shown in Tab. I. The F-measure of both RDV and AG
decreases with respect to the noise level. Besides, the AG
gives better results in all noise levels.
Turn to the comparison of pose estimation, the error is

evaluated by the translational error and rotational error [16]
as follows.

errtrans =
1

N

∑
i

‖Tg,i − Ti‖
2 (15)

errrot =
1

N

∑
i

‖RT
i Rg,i − I‖F (16)

where T and R are translation vector and rotation matrix
derived from the pose x and g, N is the number of blocks in
this case. The unit of translational error is millimeter (mm).
The results are still the mean of five-time experiments. To
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Fig. 6. The assembly charts of the 8 simulated datasets. The poses of parts
are all ground truth.

TABLE I
THE COMPARISON BETWEEN RDV AND AG ON THE F-MEASURE OF THE

RELATIONS RECOGNITION USING THE SIMULATED DATA. N1-N4
INDICATE INCREASING NOISE LEVELS.

Noise N1 N2 N3 N4
Method RDV AG RDV AG RDV AG RDV AG
2 blks 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 blks 0.97 0.99 0.98 0.97 0.97 0.97 0.98 0.97
4 blks 0.69 0.99 0.71 0.97 0.72 0.95 0.71 0.93
5 blks 0.83 0.97 0.85 0.94 0.82 0.93 0.80 0.86
6 blks 0.99 1.00 0.99 0.99 0.95 0.95 0.94 0.93
7 blks 0.53 0.95 0.55 0.91 0.53 0.91 0.54 0.88
8 blks 0.97 1.00 0.97 1.00 0.94 0.97 0.93 0.96
9 blks 0.75 0.99 0.67 0.98 0.67 0.94 0.65 0.90
Mean 0.84 0.98 0.84 0.97 0.82 0.95 0.82 0.93

reduce the influence of diverged cases, we use the median
to evaluate the overall performance. The results are shown
in Tab. II and Tab. III. We have three observations:

• In both Tab. II and Tab. III, AG achieves better perfor-
mance than RDV. This is because the relations are rec-
ognized better when AG is employed (higher F-score).
With correct relations, the error in those constrained
degrees of freedom is exactly zero, leading to the better
pose estimation naturally. In scenario 2 and 8, both AG
and RDV give high accuracy, because both of them
achieve high F-scores.

• Compared to the monotonically increasing trend of error
with respect to the noise level in AG, RDV is more
unstable due to the lack of mechanism to remove the
incorrect recognized relation. When the contradiction
exist between the recognized relations (incorrect), the
algorithm will diverge, leading to the unstable error.
When the noise increases, the incorrect recognition may
be rejected in AG, thus leading to occasionally better
results.

• The error is not directly correlated to the number of
parts in the assembly task. Note the task of 8 blocks,
the mean error is zero even in N4 level when AG is
employed since the relations constrain all the degrees
of freedom in the pose. For 7 blocks, RDV gives large
error due to the low F-score in the Tab. I.

In summary, both AG and RDV demonstrate that the uti-
lization of relations is able to improve the pose estimation
if the recognition is right since high F-score leads to low

TABLE II
THE COMPARISON BETWEEN RDV AND AG ON TRANSLATIONAL

ERROR.

Noise N1 N2 N3 N4
Method RDV AG RDV AG RDV AG RDV AG
2 blks 0.00 0.00 0.17 0.00 0.46 0.00 0.48 0.00
3 blks 0.00 0.00 0.26 0.00 0.54 0.25 1.28 0.41
4 blks 0.35 0.00 0.64 0.00 1.32 0.00 1.69 1.23
5 blks 4.45 0.33 2.05 0.50 1.65 0.84 1.81 1.43
6 blks 0.01 0.01 0.22 0.01 0.92 0.33 2.01 0.56
7 blks 1.01 0.00 9.12 0.67 16.1 0.74 2.03 1.30
8 blks 0.00 0.00 0.00 0.00 0.12 0.00 0.44 0.00
9 blks 0.82 0.00 5.83 0.00 21.2 0.10 1.90 0.07
Mean 0.83 0.04 2.29 0.15 5.29 0.28 1.45 0.62

TABLE III
THE COMPARISON BETWEEN RDV AND AG ON ROTATIONAL ERROR.

Noise N1 N2 N3 N4
Method RDV AG RDV AG RDV AG RDV AG
2 blks 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 blks 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03
4 blks 0.01 0.01 0.02 0.01 0.02 0.01 0.04 0.02
5 blks 0.15 0.02 0.09 0.02 0.04 0.03 0.05 0.03
6 blks 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04
7 blks 0.01 0.00 0.16 0.01 0.21 0.01 0.02 0.01
8 blks 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 blks 0.65 0.01 0.47 0.02 0.29 0.02 0.03 0.04
Mean 0.11 0.01 0.10 0.01 0.07 0.02 0.03 0.02

error in pose estimation. However, deterministic modeling
of relations in RDV sometimes make larger error because
the incorrect relations are never revised. The RDV fully
‘trusts’ the results from precedent modules, whose error
is actually uncontrolled. In AG, the probabilistic modeling
of relations enable the algorithm to ‘suspect’ the relations
during iterations, thus reflecting the significance of AG’s
modeling of all uncertainties. It should be emphasized that in
AG, (10) guarantees the error between recognized relations
are exactly 0. Therefore it is of great value to apply AG in
PBD.

B. Real world data

With the vision techniques mentioned in Section IV, the
experiment is conducted on the real world assembly task.
Furthermore, the spatial inference system is connected to
ABB industrial robotic arm simulator for physical simula-
tion of execution to realize the PBD. An assembly task is
shown in Fig. 7 with 7 blocks in total. The pose estimation
using vision technique solely, RDV and AG are shown in
Fig. 1. One can see that the pose estimation of each part
independently using vision based techniques is not accurate.
For example, in the result of vision technique, the screw on
the right is not aligned with the hole of the stick, which
will cause failure when the robot execute this task. By using
RDV, two misalignments (indicated by 2 orange circles on
the right) are fixed due to recognition of co-linear relations.
In the result of AG, the incorrect relations are revised during
iteration, making all 3 misalignments fixed. An explanation
is shown in Fig. 8 for the different configurations of relations
in the final models using RDV and AG. The IDs of the axes
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Fig. 7. The process of an wooden building blocks assembly.

Fig. 8. The assembled parts with labeled IDs (top left). The final AG
model (top right). If there is an edge, it means there is at least one relation
existing between the two parts. If there is no edge, no relation exists. CU,
ST, DI and SC are stand for cube, stick, disk and screw respectively. Each
table lists the relations with s = 1 between two parts (bottom). The first
column gives the types of relations. The second and third columns are IDs
for planes or axes in a part. The black rows are relations with s = 1 in
the final AG models using both RDV and AG. The gray rows are relations
with s = 1 in the model using RDV, but with s = 0 using AG.

and planes follows the definition in Fig. 5. RDV regards
some co-planar relations as existing (s = 1) but AG finally
find they should be with s = 0 during iterations, making the
difference in the final results.
To show the feasibility of the proposed model in a

completed PBD system, we connect the parser to the ABB
industrial robotic arm simulator to execute the assembly
task demonstrated by the human teacher. The simulator is
in commercial level, and many projects have verified its
effectiveness. So we think its result is reliable. It also avoids
producing grippers for various types of blocks. The video is
attached in the supplemental material. This experiment also
includes LEGO cubes to show the method works even when
the part is small, in which case the error in the result of
vision technique is unacceptable in the execution.

VI. CONCLUSION

In this paper, a probabilistic graph model, AG for assembly
task is proposed. The focus of the model is to probabilisti-
cally represent all information including unknown relations
between parts and poses of parts, the prior knowledge of
relational contradiction as well as the observations provided

by vision based techniques. Then the poses and relations
are estimated alternatively using CEM algorithm. With the
estimated relation, a refinement is conducted to derive the
final poses. This method, AG outperforms RDV due to its
global modeling of all uncertainties. Finally a whole process
of PBD is conducted based on our AG based spatial inference
system.
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