
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Adding Before Pruning: Sparse Filter Fusion for
Deep Convolutional Neural Networks

via Auxiliary Attention
Guanzhong Tian , Yiran Sun, Yuang Liu, Xianfang Zeng , Mengmeng Wang ,

Yong Liu , Jiangning Zhang, and Jun Chen

Abstract— Filter pruning is a significant feature selection
technique to shrink the existing feature fusion schemes (especially
on convolution calculation and model size), which helps to develop
more efficient feature fusion models while maintaining state-
of-the-art performance. In addition, it reduces the storage and
computation requirements of deep neural networks (DNNs) and
accelerates the inference process dramatically. Existing methods
mainly rely on manual constraints such as normalization to
select the filters. A typical pipeline comprises two stages: first
pruning the original neural network and then fine-tuning the
pruned model. However, choosing a manual criterion can be
somehow tricky and stochastic. Moreover, directly regularizing
and modifying filters in the pipeline suffer from being sensitive
to the choice of hyperparameters, thus making the pruning
procedure less robust. To address these challenges, we propose
to handle the filter pruning issue through one stage: using
an attention-based architecture that adaptively fuses the filter
selection with filter learning in a unified network. Specifically,
we present a pruning method named adding before pruning
(ABP) to make the model focus on the filters of higher signif-
icance by training instead of man-made criteria such as norm,
rank, etc. First, we add an auxiliary attention layer into the
original model and set the significance scores in this layer
to be binary. Furthermore, to propagate the gradients in the
auxiliary attention layer, we design a specific gradient estimator
and prove its effectiveness for convergence in the graph flow
through mathematical derivation. In the end, to relieve the
dependence on the complicated prior knowledge for designing
the thresholding criterion, we simultaneously prune and train
the filters to automatically eliminate network redundancy with
recoverability. Extensive experimental results on the two typical
image classification benchmarks, CIFAR-10 and ILSVRC-2012,
illustrate that the proposed approach performs favorably against
previous state-of-the-art filter pruning algorithms.

Index Terms— Deep neural networks (DNNs), effective feature
fusion, feature selection, filter pruning.

Manuscript received September 16, 2020; revised March 22, 2021 and
June 22, 2021; accepted August 11, 2021. This work was supported in
part by the National Key Research and Development Program of China
under Grant 2018AAA0101503 and in part by the Science and Technology
Project of State Grid Corporation of China (SGCC) (Fundamental theory of
human-in-the-loop hybrid-augmented intelligence for power grid dispatch and
control). (Guanzhong Tian and Yiran Sun contributed equally to this work.)
(Corresponding author: Yong Liu.)

Guanzhong Tian is with the Institute of Cyber-Systems and Control,
Zhejiang University, Hangzhou 310027, China, and also with Ningbo Research
Institute, Zhejiang University, Ningbo 315000, China.

Yiran Sun, Yuang Liu, Xianfang Zeng, Mengmeng Wang, Yong Liu,
Jiangning Zhang, and Jun Chen are with the Institute of Cyber-Systems
and Control, Zhejiang University, Hangzhou 310027, China (e-mail:
yongliu@iipc.zju.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3106917.

Digital Object Identifier 10.1109/TNNLS.2021.3106917

I. INTRODUCTION

THE significant success of deep neural networks (DNNs)
in diverse applications [21], [28], [31], [35] (image

classification, semantic segmentation, object detection, etc.)
is realized in part by advances of computing and storage
hardware. However, existing representative fusion schemes
including dense connection, residual learning, convolu-
tion operation tend to be memory-exhaustive and com-
putationally costly, which blocks practical deployments to
local devices: self-driving cars, smartphones, etc. Recent
efforts, including developing more effective and effi-
cient fusion schemes for DNNs, have attracted grow-
ing research attention [5], [11], [15], [17], [25], [33],
[34], [37], [42] to reduce these overheads. And most of
these pruning methods mainly focus on how to seek out
the redundant features or parameters from a pre-trained
model.

Existing methods for pruning fusion models mainly rely
on using prior knowledge to improve the performance and
reduce the inference time, in which different criteria or con-
straints demand delicately design for various architectures and
datasets. These criteria are basically based on weight magni-
tude or original performance (such as the accuracy) of the pri-
mary convolutional neural network (CNN) model. According
to the pruning criterion based on magnitude, weights below
a certain threshold are pruned. However, the deduction that
filters with smaller norms contribute less to performances
is still a prior knowledge and cannot be rigorously veri-
fied. Moreover, for the layer-wise pruning [19], [25], [27],
the pruned filters are unrecoverable once being pruned based
on most pruning criteria, which means that temporarily inac-
curate pruning results from non-optimal hyperparameters or
batch noises cannot be corrected. Besides, these methods are
of inferior generalization abilities due to the sensitivity to
hyperparameters.

Liu et al. [26] indicate that network pruning is very sim-
ilar to neural architecture search (NAS) in a way that they
both need to find an efficient network architecture. However,
we argue that NAS algorithms cannot replace pruning tasks
entirely. For instance, Liu et al. [26] adopt additional indica-
tors which are optimized by gradient descent to obtain a suit-
able network structure. Nevertheless, in the evaluation process,
discrepancy still exists between the discretized sub-graph
and the successive over-parameterized graph. In contrast,

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7292-4056
https://orcid.org/0000-0003-1251-2129
https://orcid.org/0000-0003-4035-0630
https://orcid.org/0000-0003-4822-8939
https://orcid.org/0000-0001-6568-8801

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Sketch of the pruning procedure for the criterion-based approach and our proposed approach. The black boxes indicate filters of the original model.
The green color is used to measure the importance score of the filters based on specific criterion. A darker color means a larger score. Based on the assumption
that filters with small score are less important, only the larger score filters will be retained. On the contrary, our ABP removes filters with corresponding “0”
values in the binary auxiliary attention layer.

to reduce this discrepancy, we propose an iterative recoverable
sub-graph.

To overcome the problems mentioned above, we intro-
duce our one-stage method: adding before pruning (ABP)
to adaptively fuse the filter selection with filter learning in
a unified network. Introducing an auxiliary attention layer
to filter pruning can be hyperparameter insensitive: We can
regularize auxiliary parameters instead of original weights
so that the gradient fluctuations (caused by dead neurons,
noises, etc.) can be aggregated in the auxiliary attention layer.
As such, temporarily inaccurate pruning results from non-
optimal hyperparameters or instability will be corrected.

As shown in Fig. 1, a dot-product operation is applied
between the standard convolutional filter and the attention
layer. After training the model with an auxiliary attention
layer, the original filters associated with 0-valued scalars
are directly abandoned, as well as the attention layer, for
obtaining a new compact network. One key problem for the
training of attention-based filters lies in that we cannot directly
adopt a gradient descent algorithm to train the attention layer
due to the discontinuity of binary weights. Binarized neural
networks (BNNs) [15] adopt straight-through-estimator (STE)
to train binary weights and step functions to generate binary
values. Inspired by their thought, we design another modified
indicator function for attention function ai

j parameterized
with mi

j . To testify our proposed algorithm, comprehensive
experiments on various structures and benchmarks are con-
ducted. Compared with the other studied pruning methods,
our ABP achieves state-of-the-art pruning performance in the
experiments. We make the following contributions in this
work.

1) We propose an attention-based one stage pruning method
that adaptively fuses the feature selection with original
parameter training in a unified network. To our knowl-
edge, we are the first to prune from scratch: combine
training with pruning and obtain the final pruned model
directly without fine-tuning.

2) We develop a novel gradient estimator for the update
of binary auxiliary parameters via separating the orig-
inal weights from the auxiliary parameters update
processes and prove its rationality through mathematical
derivation.

3) We demonstrate that, with the proposed model, our ABP
can achieve considerable performance improvements,
and it is robust under different initialization methods.

II. RELATED WORK

We can mainly divide pruning methods for DNNs into two
types: the structured pruning and the unstructured one. Both
pruning methods can reduce the storage space, while structured
pruning performs much better on computational cost reduction.

A. Unstructured Pruning

This is a weight-level pruning approach, which prunes
weights in all layers. Deep compression [5] propose to prune
weights with small values as well as non-significant con-
nections in pre-trained models. Guo et al. [4] develop an
interactive algorithm by introducing recoverability into the
global pruning. Zhang et al. [39] fuse cardinality constraints
with the weights and re-formulate the pruning problem into
a non-convex optimization issue. However, a non-negligible

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: ABP: SPARSE FILTER FUSION FOR DEEP CNNs VIA AUXILIARY ATTENTION 3

weakness of unstructured pruning methods is that these meth-
ods generate an out-of-order compressed model. Thus calcula-
tion cost and the storage usage of the pruned neural networks
will not shrink that much.

B. Structured Pruning

This is a filter-level pruning approach that is designed for
pruning channels. Compared to weight-level pruning schemes,
the structured pruning methods remove the filters and the
corresponding feature maps as well. It can favorably accelerate
the inference by decreasing the memory footprint consump-
tion as well as reducing parallel computing on hardware.
The most common route for filter pruning is to employ
a human-made evaluation criterion to calculate each filter’s
importance score and remove the filters with smaller scores.
Li et al. [19] perform the selection of redundant channels
using L1-norms of weights in each channel. He et al. [7]
propose to select filters with an L2-norm based criterion,
and those selected filters will be pruned in a recoverable
manner. Both methods are formulated on the assumption that
channels with smaller norms have fewer contributions to the
model. Similarly, Network trimming [12] takes advantage of
average zero output ratio to remove neurons, and NISP [38]
indicates that, by back-propagating importance scores from
the last layer, they can obtain other layers’ score. For further
increasing the compression rate, researchers usually adopt
regularization constraints to remove more filters. He et al. [9]
propose to select channels via a least-square reconstruction
algorithm, and they present a filter pruning strategy based on
LASSO. Liu et al. [25] introduce a penalty term into the loss
function: the L1 regularization for scaling factors from the
batch normalization (BN) layer, and channels with smaller
factors will be removed. However, for all these structured prun-
ing algorithms, a manually pre-designed selection criterion is
required to perform the pruning procedure, and the network is
pruned through the original weights.

C. Attention

Motivated by how a human focus on the keywords in
context or various regions of a photo, numerous methods
have been developed [13], [32] to improve the performance of
DNNs by incorporating attention mechanism. Wang et al. [32]
introduces an attention module based on an encoder decoder.
They use the module to formulate the Residual Attention
Network. Hu et al. [13] propose to compute channel-wise
attention through global average-pooled features. They exploit
the inter-channel relationship by a compact module called the
Squeeze-and-Excitation module. Yamamoto and Maeno [36]
propose to evaluate the importance of filters through attention
statistics, and they develop a filter selection algorithm based
on it. Inspired by their channel-wise attention mechanism,
we develop our auxiliary attention layer, which indicates which
filter is more important and should be retained.

III. APPROACH

A. Problem Formulation

Given training dataset consists of N samples {xi, yi }N
i=1,

where xi � Rm×n denotes input features and yi � Rd

is ground-truth labels of xi . Suppose fw:Rm×n � Rd is
a differentiable and continuous neural network model with
parameters W , which maps input xi to target yi . We can
formulate the channel selection problem as

arg min
w

1

N

�
N�

i=1

L(f (xi , W), yi)

�

+ �O(W) (1)

where O(W) represents the number of filters that contain
non-zero weights and � is used to balance the two parts
in the optimization function. The object lies in seeking a
minimum subset W � � W and formulates a sparse model
without reducing the accuracy of the original model. Here are
two challenges: The problem cannot be solved by gradient
descent since the last term is non-differentiable. In addition,
hyperparameter can be more sensitive and batch training can
be more unstable due to the direct regularization on W �.

We relax these challenges by bringing in the auxiliary
attention layer as an indicator of whether corresponding filters
deserve more attention or not. Further, in order to prune filters
that deserve low attention, we propose to constrain weights
in the auxiliary attention layer to “0” and “1” through the
indicator function, which can be defined as

ai
j =

�
1, if corresponding filter F i

j needs attention

0, otherwise.
(2)

These two values are very advantageous for indicating
whether the corresponding filter should be paid more attention
to. That is to say, “0” indicates that the corresponding filter
will be pruned while “1” indicates that it will be preserved.
We seek to parameterize a universal indicator function by
introducing auxiliary attention layer with parameters M rather
than deploying indicator functions for each F . Then we
can re-formulate the network filter selection problem as an
optimization problem

arg min
w,m

1

N

�
N�

i=1

L(f (xi , W � M), yi)

�

(3)

where Ŵ = W � M is the element-wise product, which
represents the pruned weight matrix. The channel pruning
process will be less sensitive by regularizing on auxiliary
attention layers rather than targeting filters. That is because
the gradient update of wi

j will not be influenced directly by
the change of mi

j .

B. Gradient Estimator Design

As described above, the weights in the auxiliary attention
layer are assigned to quantized values and the indicator func-
tion is a piecewise constant function. At this point, training
activation binary layers tend to be unreachable for the standard
chain rule or back-propagation. That is because the gradients
of piecewise constant functions vanish all the time. To address
this issue, some researchers choose to employ straight-through
estimator (STE) [10] to estimate the vanished gradients. Orig-
inal STE simply adopts the sign function (�1 when the input
is negative, 1 otherwise) as an indicator function and identity
function to back-propagate in the backward pass. In this way,

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the “gradient” through the changed chain rule tends to be
non-trivial. Although this method can handle functions with
differentials full of zero, the weakness is that it can only deal
with one binary decision.

In our case, the stochastic binary neurons in the auxiliary
attention layers are designed to face more than one binary
decision, and we attempt to fuse the pruning thresholding
parameter t into the indicator function. Therefore, we no
longer use the sign function in the forward pass of our models.
Also, we should assume that another function related with t
rather than the original identity function is adopted to back-
propagate the gradients in the backward pass.

To address our problem without lossing generality,
we emphasize channels by weights in the auxiliary attention
layer. Therefore, instead of sign function, we propose our
indicator function in auxiliary attention layer

ai
j = �

�
mi

j

�
=

�
0, if

��mi
j

�� � t

1, if
��mi

j

�� > t
(4)

where t > 0 is the threshold factor as well as a hyperpa-
rameter used to judge whether we keep the corresponding
filters. Hyperparameter t can be different across different
convolutional layers. Clearly, the value of t will affect the
pruning rate of each convolutional layer. In fact, we adopt t
to replace the conventional “pruning rate” used in other works.
Considering the output of the indicator function is ai

j and
ga = (�l/�ai

j) can be acquired by back-propagation algorithm,
we propose our gradient estimator

gm = ga1|m|�t (5)

where gm is the “gradient” of loss w.r.t. the variables in
auxiliary attention layer (i.e., mi

j) through our modified chain
rule, which is referred to as estimated gradient in this article.

Although promising results in various tasks have proved
the effectiveness of BNNs [15], the rationality for STE is still
controversial. That is because the backward and forward passes
do not match, and the estimated gradients are definitely not
the gradients from the loss function. Therefore, the following
questions come up: Since the selection of an estimated gradient
is non-unique, how can we say that ours is good? And
why does it work even when the estimated gradient uses a
“faked” gradient? In the following subsection, we try to take
a step forward, attempting to solve these questions from the
optimization perspective.

C. Rationality of Our Gradient Estimator

In this subsection, we prove that the estimated partial
gradient using our method and the population loss’s true partial
gradient generally has a positive correlation. This means that
the gradient descent generated by our estimator can behave
such as the real descent on loss function and yield good
convergence.

We consider a simplified neural network case similar to [2]
that outputs the prediction

f (Z, p, q) =
m�

i=1

pi�
�
ZT

i q
�

= pT�(Zq). (6)

The first layer in the case is a convolutional layer with
trainable weights q � Rn , followed by a fully connected layer
with trainable weights p � Rm as the classifier. Z � Rm�n

is the input, and � is the activation function. f �(Z, p, q) =
(p�)T�(Zq�) is used to generate the label and L2 loss is
adopted as the loss function

l(Z, p, q) =
1

2

�
f (Z, p, q) � f �(Z, p, q)

�2

=
1

2

	
pT�(Zq) �

�
p��T�

�
Zq��

2
. (7)

Then we can obtain the partial gradient of L2 loss

�l

�q
= ZT�� �(Zq) � p

�	
pT�(Zq) �

�
p��T�

�
Zq��

(8)

�l

� p
= �(Zq)

	
pT�(Zq) �

�
p��T�

�
Zq��

. (9)

According to (4), � � is zero almost everywhere. In order to
pass the gradient, we employ a related non-trivial function µ�

to replace these zero gradients, which is the estimator of the
gradient. Using µ� to replace � �, we can get

�l

�q
= ZT�µ�(Zq) � p

�	
pT�(Zq) �

�
p��T�

�
Zq��

. (10)

Assume Z is sampled from a Gaussian distribution. Fol-
lowing [1], [41], we can cast the L2 loss as the following
population loss:

L Z (p, q) = EZ[l(Z, p, q)]. (11)

Since gradients of the object loss function is
unavailable, we can access the expected sample gradient:
EZ[(�/� p)l(Z, p, q)] and EZ[(�/�q)l(Z, p, q)]. We will
calculate the population loss and the expected sample gradients
in the following part. The calculation process basically uses
rotational invariant property and polar decomposition of
Gaussian random variables. Besides, it needs to utilize some
auxiliary lemmas. See section Appendix for details.

First, We need to obtain the expression of the population
loss L Z (p, q). From (9), it is easy to get that

L Z (p, q)

= EZ[l(Z, p, q)] = EZ

�
1

2

	
pT�(Zq) �

�
p��T�

�
Zq��

2
�

=
1

2

	
pTEZ[�(Zq)� (Zq)T] p � 2 pT EZ[�(Zq)�

�
Zq��T] p�

+
�
p��T

EZ[�
�
Zq���

�
Zq��T] p�

.

Assume that the i th row of Z is ZT
i , we can have the

following equations using Lemma 1:

EZ

�(Zq)� (Zq)T�

i j
= EZ

�
�
ZT

i q
�
�
�
ZT

j q
��

= EZ

1{ZT

i q>0}
�
EZ

1{ZT

j q>0}
�

=
1

4
(i �= j)

EZ[�(Zq)� (Zq)T]ii = EZ

�
�
ZT

i q
�
�
�
ZT

i q
��

= EZ

1{ZT

i q>0}
�

=
1

2
.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: ABP: SPARSE FILTER FUSION FOR DEEP CNNs VIA AUXILIARY ATTENTION 5

Therefore, we can conclude the above two equations into

EZ[�(Zq)� (Zq)T] =
1

4
(I + 11T).

Similarly, we can check that

EZ[�(Zq�)� (Zq�)T] =
1

4
(I + 11T).

Moreover, invoking Lemma 1

EZ[�(Zq)� (Zq�)T]i j = EZ[1{ZT
i q>0}]EZ[1{ZT

j q�>0}]

=
1

4
EZ[�(Zq)� (Zq�)T]ii = EZ[1{ZT

i q>0}]EZ[1{ZT
i q�>0}]

=
� � �(q, q�)

2�
.

Therefore

EZ[�(Zq)�
�
Zq��T] =

1

4

��
1 �

2

�
�
�
q, q��

�
I + 11T

�
.

Combine the above-mentioned result we can obtain the final
claim

L Z (p, q)

=
1

8
pT�I + 11T� p +

1

8

�
p��T�

I + 11T� p�

�
1

4
pT

��
1 �

2

�
�
�
q, q��

�
I + 11T

�
p� (12)

where � is the angel between vector q and vector q�,
I and 11T represents identity matrix and square matrix with
all 1 element, respectively.

Second, we try to calculate the gradients of population loss
w.r.t. p and q . First

�L Z

� p
=

� 1
8 pT

�
I + 11T

�
p

� p
+

� 1
8 (p�)T�I + 11T

�
p�

� p

�
� 1

4 pT
��

1 � 2
� �(q, q�)

�
I + 11T

�
p�

� p

=
1

8

��
I + 11T

�
+
�
I + 11T

�T
�

p

�
1

4

��
1 �

2

�
�
�
q, q��

�
I + 11T

�
p�

=
1

4

�
I + 11T� p �

1

4

��
1 �

2

�
�
�
q, q��

�
I + 11T

�
p�.

(13)

Then, since the gradients of population loss w.r.t. q is only
related with �(q, q�), and we can easily obtain the differential
of �(q, q�) = arccos(qTq�/||q||) w.r.t. q at �(q, q�) � (0, �).
As a result

�L Z

�q
=

pT p�

2�

�
qTq��q � ||q||2q�

||q||3
�

1 � (qTq�)2

||q||2

. (14)

Third, we calculate the expected partial gradient of l w.r.t.
p and q

EZ

�
�l

� p

�
=

�l

� p
. (15)

Based on (13), (�L Z/� p) is linear. Then we can get

EZ

�
�l

� p

�
=
�
� EZ[l]

� p

�
=

�l

� p
.

By (10), Let µ(m) = min{max{x,�t}, t}(t > 0),
µ� = 1{�t<x<t} , we have

EZ

�
�l

�q

�

= EZ

��
m�

i=1

piµ
��ZT

i q
�
�

m�

i=1

p�
i µ

��ZT
i q��

�

×

�
m�

i=1

Zi pi�
�
ZT

i q
�
��

= EZ

��
m�

i=1

pi 1{|ZT
i q|<t} �

m�

i=1

p�
i 1{|ZT

i q�|<t}

�

×

�
m�

i=1

1{ZT
i q>0} pi Zi

��

=
m�

i=1

p2
i E

�
Zi1{|ZT

i q|<t,ZT
i q>0}

�

+
m�

i=1

m�

i=1
j �=i

pi p j E
�
Zi1{|ZT

i q|<t,ZT
j q>0}

�

�
m�

i=1

pi p�
i E

�
Zi 1{|ZT

i q�|<t,ZT
i q>0}

�

�
m�

i=1

m�

i=1
j �=i

pi p�
j E
�
Zi1{|ZT

i q�|<t,ZT
j q>0}

�
.

Using Lemma 1 and 2, we have

E
�
Zi1{�t<ZT

i q<t,ZT
j q>0}

�
=

�
��

��

v(0, q)
q

||q||
, i = j

v(0, q)
q

2||q||
, i �= j

E
�
Zi1{�t<ZT

i q<t,ZT
j q�>0}

�
=

�
�

�

v(�, q),w(�, q), 0T�, i = j

v(0, q)
q

2||q||
, i �= j.

Therefore

EZ

�
�L Z

�q

�

=
1

2
v(0, q)

	
|| p||2 +

�
1T p

�2

 q
||q||

�
�

pT p��

×

�

(v(�, q) � cot(�/2)w(�, q))
q

||q||

+ csc(�/2)w(�, q)
q

||q|| + q�

��� q
||q|| + q�

���

�

�

�
1

2
v(0, q)

��
1T p

��
1T p�� � pT p�� q

||q||

=
1

2
v(0, q)

	
|| p||2 +

�
1T p

�2 �
�
1T p

��
1T p�� + pT p�

 q
||q||

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

�
�
pT p��

�

(v(�, q) � cot(�/2)w(�, q))
q

||q||

+ csc(�/2)w(�, q)
q

||q|| + q�

��� q
||q|| + q�

���

�

�

where cot, sec and csc are cosine, tangent and cotangent
trigonometric function, respectively.

v(�, q) =
1

2�

� �
2 +�

� �
2

cos(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd�

w(�, q) =
1

2�

� �
2 +�

� �
2

sin(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd�.

According to (14), we have

�L Z

�q
=

pT p�

2�

�
qTq��q � ||q||2q�

||q||3
�

1 � (qTq�)2

||q||2

= �
pT p�

2� ||q||

	
I � qqT

||q||2

q�

���
	

I � qqT

||q||2

q�
���
.

In the end, we calculate the inner product of our esti-
mated gradient and the real one w.r.t. q: Notice that
(I � (qqT/||q||2)q = 0, then
�
EZ

�
�l

�q

�
,
�L Z

�q

�
= csc(�/2)

w(�, q)
2�

�
pT p��2

×

1

||q||

		
I � qqT

||q||2

q�

���
		

I � qqT

||q||2

q�

���

,
q�

q
||q|| + q�

!

.

Among the above equation

1

||q||

	
I � qqT

||q||2

q�)

���
	

I � qqT

||q||2

q�)

���
,

q�

q
||q|| + q�

!

=
||q||2 � (qTq�)2

|| ||q||2q� � q(qTq�)|| ||q + ||q||q�||

=
||q||2 � (qTq�)2

"
||q||4q� � ||q||2(qTq�)2

"
2(||q||2 + ||q||(qTq�))

=
||q||2 � (qTq�)2

"
2||q||3

"
||q||2 � (qTq�)2

"
||q|| + (qTq�)

=
1

	
2||q||

#

1 �
qTq�

||q||

=
1

	
2||q||

"
1 � cos(�).

Therefore, the inner product between EZ[(�l/�q)] and
(�L Z/�q) is given by�

EZ

�
�l

�q

�
,
�L Z

�q

�

= csc(�/2)
w(�, q)

2�
�
pT p��2 1

	
2||q||

"
1 � cos(�)

=
w(�, q)
2� ||q||

�
pT p��2
 0.

�

Clearly, when �EZ[(�l/�q)], (�L Z/�q)� > 0, EZ[(�l/�q)]
is roughly in the same direction as (�L Z/�q). Based on
Theorem 3, �EZ[(�l/�q)], (�L Z/�q)�
 0 always establishes.
Moreover, EZ[(�l/� p)] = (�L Z/� p) by Theorem 3. There-
fore, our estimated gradient decent on L Z (p, q) is able to
behave such as the real one directly on loss function, which
means that our estimated gradient is reasonable.

D. Propagation and Updates

In this section, we consider the different steps of forward
and backward passes with SGD updates and whether to
discretize the weights in auxiliary attention layer at each of
these steps. The entire training algorithm for our method is
presented in Algorithm 1.

Algorithm 1 Training Algorithm With Auxiliary Attention
Layer and BN. N Represents the Number of Layers and
the Activation Function is � . Binarize() Specifies Change
the Input Tensors Into Binary Ones. Weights in Auxiliary
Attention Layer are Binarized Based on (4). Update() Specifies
Use Gradient Descent Algorithms (SGD, ADAM Etc.) to
Update the Parameters Based on Former Values and the
Corresponding Gradients. 	1 and 	2 are the Learning Rate
of the Original Model and the Auxiliary Attention Layer,
Respectively. BatchNorm() Means Batch-Normalize the Inputs
While BackBatchNorm() Means Backpropagate by the BN.
Require: A mini batch of outputs and targets(an, y), previ-

ous Weights Wl and Ml , previous BN parameters (
l, �l),
learning rate 	1 for W and learning rate 	2 for M .

Ensure: Updated Weight Matrix W t+1 and Auxiliary Atten-
tion Layer Weight Matrix Mt+1

1. Gradient Calculation:
1.1 Forward Propagation:
for l = 1 to n do

M̂l Binari ze(Ml)
Ŵl = Wl � M̂l

zl al�1Ŵl

z̃ BatchNorm(zl,
l, �l)
al �(z̃)

end for
1.2 Back Propagation:
Computing gan = �L

�an
based on an and y

for l = n to 1 do
(g
l , g�l) BackBatchNorm(gal, zl ,
l, �l)
gM

al�1
 gal M̂l

gMl (gW
al

)T al�1

gW
al�1

 gal Wl

gWl (gW
al

)T al�1

end for
2. Parameter Update:
for l = 1 to n do

(
 t+1
l , � t+1

l) U pdate(
 t
l , �

t
l , 	1, g
l , g�l)

Mt+1
l U pdate(Mt , gMl , 	2)

W t+1
l U pdate(Wt, gWl , 	1)

end for

We first calculate each layer’s activations layer by layer in
the forward pass after feeding the input. Meantime we can

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: ABP: SPARSE FILTER FUSION FOR DEEP CNNs VIA AUXILIARY ATTENTION 7

Fig. 2. Visualization of filter numbers for different pruned neural architectures. We use CIFAR-10 to train VGG16, while ResNet18 and ResNet34 are trained
on ImageNet. For each model, we initialize the model with five different random seeds and then prune the original network using our ABP method.

TABLE I

EXPERIMENTAL RESULTS OF VGG-16 ON CIFAR-10

obtain the output of the model, which is also the activation of
the last layer. We refer to this step as forward propagation.
Next, we use each layer’s activations to calculate the training
objective gradient based on the given label and each layer’s
parameters. Going down layer by layer, this step is conducted

from the last layer until the first one. We refer to this step as
backpropagation. Third, we employ the computed gradients
and the previous weight values to update the parameters.
We refer to this step as parameter update. BN [16] tend to be
conducive for accelerating the overall training process as well

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

as reducing the impact of the weight perturbation. Therefore,
we add it in to our actual training algorithm. As presented
in Algorithm 1, one key point to be mentioned for the
training procedures in our algorithm is that we only binarize
the weights in the auxiliary attention layer and only during
step 1 (Gradient Calculate). In step 2 (Parameter Update),
the parameters in the auxiliary attention layer will not be
binarized.

E. Hyperparameter Sensitivity Analysis

By designing an indicator function and inserting an auxiliary
attention layer, we bring in two brand-new hyperparameters
into the original neural network: the threshold parameter t
the learning rate 	2 for the auxiliary attention layer. The
regularization hyperparameter t is used to adjust the pruning
ratio. Practically, compared to the learning rate for original
weights, the learning rate 	2 of auxiliary attention layers is
scheduled to be smaller than that of the original model (1)
to avoid fluctuations of accuracy in practice.

Based on the following reasons, we conjecture that the prun-
ing process will not be that sensitive to these hyperparameters.
First, the bias of hyperparameter and our gradient estimator
will not directly affect weights since we do not directly
regularize on W . Second, even if the auxiliary parameters
mi

j fluctuate, our piecewise indicator function is tolerant of
handling it. Third, the pruning filters are recoverable through
the auxiliary attention layer when optimization proceeds. The
robustness of our algorithm is presented in Fig. 2.

IV. EXPERIMENTS

In this section, we present our experimental settings and
evaluate the performances of our proposed method. The source
code and trained models will be made available to the public.

A. Experimental Settings

1) Baselines and Datasets: To testify the effectiveness of
our method, experiments on both large and small dataset,
i.e., ILSVRC-2012 [30] and CIFAR-10 [18] are conducted.
The ILSVRC-2012 dataset contains 1.28 million training
images and 50 K validation images of 1000 classes, which
is a large-scale dataset widely used in the classification
task. And CIFAR-10 dataset is a small-scale dataset contain-
ing 60000 32 × 32 color images of ten different classes,
in which 50000 training images and 10000 testing images
are included. We evaluate different state-of-the-art algorithms
on the most prevailing CNN models, including single-branch
network VGGNet [30] and the most prevailing multiple-branch
network: ResNet [6].

2) Evaluation Metrics: We use floating point opera-
tions (FLOPs) and the number of parameters to represent the
computational cost and model size of models, respectively,
which are widely used protocols. To facilitate comparisons
between different methods with different baseline accuracy,
we further employ three metrics to measure the effectiveness
in reducing complexity, including Params. �, FLOPs � and
Acc. �, which denotes the drop of parameters, computational

TABLE II

LAYER-WISE PRUNING RESULTS AND PRUNED MODELS (ABP-1, ABP-2,
AND ABP-3) STATISTICS FOR VGG-16 ON CIFAR-10

cost, and accuracy, separately. Obviously, a better compress-
ing performance corresponds to higher Params. �, FLOPs �,
and lower Acc. �.

3) Training Setting: We adopt the stochastic gradient
descent (SGD) algorithm as our optimizer to minimize the
loss. PyTorch [29] is used to implement our ABP. For fair
comparisons, we evaluate the FLOPs and parameter reductions
when the accuracy is fixed to be similar to baselines. Or in
another way, we evaluate the accuracy under similar reductions
of FLOPs or model sizes between algorithms. We use an
NVIDIA Tesla V100 GPU as our training hardware, and
the same experiments are conducted five times to get an
averaged result. In the channel selection process, we set 	2 =
	1 � 0.01. Hyperparameter t is used to control the pruning
rate of the filters, which is employed to balance between
accuracy and acceleration. And t is set to be the same for all
convolutional layers for simplicity. To compare more equally
we adjust the value of t to generate similar pruning ratios
over different architectures for comparison. It is worth noting
that the network does not need fine-tuning after pruning.
Instead, we simply remove the auxiliary attention layer and
the corresponding filters with low attention and then obtain
the compressed model.

B. CIFAR-10 Results

1) VGG: Table I presents the results with VGG-16. Several
state-of-the-art methods are compared, including several adap-
tive importance based methods: Zhao et al. [40], SSS [14] and
GAL [23], as well as Pruning [19], a method based on property
importance. Our ABP is testified with different settings of t
to obtain similar FLOPs or Parameters reduction with other
methods, denoted as ABP-1, ABP-2, and ABP-3.

Compared to Pruning [19] and SSS [14] and
Zhao et al. [40], our ABP achieves higher accuracy and
most reduction in both parameters and FLOPs. As is shown
in the table, ABP-1 achieves the highest accuracy (93.75%

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: ABP: SPARSE FILTER FUSION FOR DEEP CNNs VIA AUXILIARY ATTENTION 9

TABLE III

EXPERIMENTAL RESULTS OF RESNET ON CIFAR-10

versus 93.40% by Pruning, 93.02% by SSS, and 93.18%
by Zhao) with the highest FLOPs (53.5% versus 34.2% by
Pruning, 41.6% by SSS, and 39.1% by Zhao) and parameters
(64.0% versus 73.8% by Pruning, 82.9% by Zhao and 73.3%
by SSS). ABP is advantageous in every aspect compared with
GAL [23]: For GAL-0.5, 93.39% versus 92.03% in accuracy,
86.2% versus 77.6% in parameters drop, 66.2% versus 39.6%
in FLOPs drop.

Moreover, our pruned model could still give an excellent
performance under extreme conditions (about 90% of the
weights are removed): just 1.31% top-1 accuracy loss versus
2.73% by HRank, and 83.2% FLOPs reduction versus 76.5%
by HRank, which demonstrates the superiority of pruning by
training as a guiding thought for shrinking CNNs. The layer-
wise pruning statistics for our method is shown in Table II.
ABP-1, ABP-2, and ABP-3 denote pruned models with dif-
ferent sets of t .

2) ResNet20/32/56/110: We compare our ABP with dif-
ferent feature pruning approaches such as “filter pruning
via geometric median” (FPGM) [8], “soft filter pruning”
(SFP) [7], “compressing CNNs via factorized convolutional
filters” (CNN-FCFs) [20], “Toward optimal structured CNN
pruning via generative adversarial learning” (GAL) [23],
“pruning networks using neuron importance score propaga-
tion” (NISP) [38], and “Pruning Filters for Efficient Convnets”
(Pruning) [19].

We compress Residual Networks with multiple depths: 20,
32, 56, and 100, from shallow to deep. Results displayed
in Table III show that under similar FLOPs or parameter
reduction, our ABP could still achieve state-of-the-art per-
formance. For ResNet-20, we give a small accuracy loss
(1.12% Acc.�) when the parameter and FLOPs reductions are
much bigger (45.1% Params.� and 47.7% FLOPs�). Similarly,
on ResNet-32, our method achieves lower Acc.� (0.08%)

with higher Params.� (43.6%) and FLOPs� (46.3%). Besides,
we observe that our ABP achieves the biggest parameter
reduction under similar FLOPs reduction and pruned accuracy
compared with CNN-FCF on ResNet-56. Finally, in compar-
ison with other methods on ResNet 110, Our method greatly
reduces the model complexity (46.2% for FLOPs and 44.9%
for parameters) with the best pruned accuracy raise (0.32%).
The above results validate that our ABP is remarkably effective
in shrinking model size and computational cost for models
with residual blocks.

C. ILSVRC-2012 Results

ResNet18/34/50: We testify the performance of differ-
ent methods on the challenging ILSVRC-2012 dataset for
ResNet-18/34/50 as well. Table IV summarizes the overall
results. Same with the test on CIFAR10, we do not finetune
the compressed model after training.

ABP demonstrates its effectiveness again, not only on the
parameters and FLOPs drop but also top-1 and top-5 accuracy.
To be specific, our ABP could still yields 67.82% top-1
accuracy and 87.92% top5 accuracy on ResNet 18 while
1.86 × parameters (6.3 M versus 11.7 M) and 1.78 × FLOPs
(1.02B versus 1.82B) are pruned. On ResNet-34, we achieve
much higher Params.� (50.7%) and FLOPs� (47.2%) than
all the other methods while the accuracy drop is basically at
the same level. On ResNet-50, ABP can prune 49% of the
parameters with the lowest accuracy drop. This indicates that
training and selecting filters together is effective as well as
scalable.

D. Robustness Test

Fig. 2 visualizes the remained filter numbers for different
pruned neural architectures. For each model, we initialize the

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. (a) Accuracy differences of binary and ternary weight for ResNet-20, 32, 56, and 110 on CIFAR-10 regarding different t; and (b) ResNet-110
classification accuracy on CIFAR-10 dataset regarding varied Pruned FLOPs.

TABLE IV

EXPERIMENTAL RESULTS OF RESNET ON ILSVRC-2012

model with five different random seeds and then prune the
original network using our ABP method. For different seeds,
the performance of our pruned model remains stable and the
remained numbers of filters in the intermediate layers have few
fluctuations, which indicates the robustness of our algorithm
under different initialization circumstances.

E. Generalization Ability

We also conduct experiments on object detection bench-
mark Pascal VOC [3] dataset in order to further testify the
generalization ability of our approach. We select an popular
object detector: SSD [24]. For our experiments, we train the
SSD architecture with the VGG-16 (uncompressed) as the base
network.

Considering SSD extract intermediate feature maps for
regression, we adopt two strategies to prune the filters:
A. All the filters are pruned (denoted as ABP-a) B. Keep those
filters that its corresponding feature maps are extracted and
prune the others (denoted as ABP-b). The results are reported
in Table V, where ABP-a1 and ABP-a2 denote different
settings of t when using strategy A, and ABP-a2 and ABP-b
share the same set up of t . From Table V, with the pruned

architecture, we can achieve similar precision while reduc-
ing considerable parameters and computations. In addition,
we find that strategy A could achieve higher Average Precision
(75.7 versus 75.4) with more parameters reduction (57.7%
versus 50.5%) and FLOPs drop (56.2% versus 52.5%).

Based on the above results, we can conclude that our
method is good at shrinking feature fusion schemes while
preserving original accuracy, as well as generalizing to higher-
level computer vision tasks.

F. Ablation Study

1) Pruning With Ternary Weight: We analyze differences
in the auxiliary attention layer parameters. In contrast to
the proposed modules using binary weights (0, 1), we train
the appended auxiliary attention layer with ternary weights
(�1, 0, 1)

ai
j =

�
��

��

0, if
��mi

j

�� � t

1, if mi
j > t

�1, if mi
j < �t .

(16)

For the same set of t , the parameter and FLOPs reduction
with ternary weight is the same as that of binary weight.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: ABP: SPARSE FILTER FUSION FOR DEEP CNNs VIA AUXILIARY ATTENTION 11

Fig. 4. Performance of ResNet-20 on CIFAR-10 regarding different t . black lines and yellow lines denote real-valued t and weight related t of three
experiments, respectively: (a) accuracy with different t , (b) pruning rate with different t , and (c) FLOPs drop with different t .

TABLE V

LAYER-WISE PRUNING RESULTS AND PRUNED MODELS (ABP-A1,
ABP-A2, AND ABP-B) STATISTICS FOR SSD-300 ON

PASCAL VOC DATASET

We find that the accuracy differences of the pruned model
between ternary weights and binary weights rise and fall as
the change of t , which can be observed in Fig. 3(a). This
indicates that adding more values in the appended auxiliary
attention layer may not contribute much to the accuracy of
the model. This is because new adding value (i.e., “�1”) also
indicates preserving the filter, which cannot bring much impact
to the pruning process.

2) Effect of Threshold Hyperpatameter Design: We evaluate
the effectiveness of the different designs of hyperparameter t .
Normally, we adopt a real number as the threshold t to binarize
the weights in the auxiliary attention layer. However, we also
attempt another threshold design (weight-related)

t = max(|m|) � t0 (17)

where m is the input filter tensor and t0 is the coefficient to
control the pruning rate of the filters.

We use the ResNet-20 with CIFAR-10 as a baseline to find
out the differences. Fig. 4 shows that using real-valued t as
hyperparameter to perform the binary procedure will relatively
bring higher pruning rate and FLOPs drop, but weight-related
t as threshold would achieve a slightly better result with the
accuracy because of low sparsity.

3) Effect of Varying Pruned FLOPs: To comprehensively
explore our ABP, We change the pruned ratio of FLOPs for
ResNet-110. The results is summarized in Fig. 3(b). We can
see that the accuracy of the pruned network even exceeds
the baseline when the pruned FLOPs is less than 0.55. This
indicates that our ABP may introduce a regularization effect
to the original model.

V. CONCLUSION

We propose a novel filter pruning method called ABP for
feature fusion schemes of DNNs. To that effect, we add an
auxiliary layer and regularize parameters in an auxiliary layer
instead of original weight values. Then, we mathematically
prove that our gradient estimator is reasonable and the esti-
mated gradient could behave such as the true descent on the
loss function. In addition, we combine filter training with
filter pruning by inserting our gradient estimator into the
back-propagation framework. Experiment results on popular
deep neural architectures illustrate our ABP’s effectiveness in
shrinking model size and computational complexity. In the
future work, we plan to further design an automobile feature
pruning framework that can adjust the hyperparameters to meet
the requirements.

APPENDIX

ADDITIONAL SUPPORTING LEMMAS

Lemma 1: Let Z be a random vector sampled from Gaussian
Distribution N (0, 1). Suppose the angel between vector
q and q̂ is �, then

E

1{ZTq>0}

�
=

1

2

E

1{ZTq>0,ZT q̂>0}

�
=

� � �
2�

E

Z1{ZT q>0}

�
=

1
	

2�
q

||q||

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

E

Z1{ZT q>0,ZT q̂>0}

�
=

cos(�/2)
	

2�

q
||q|| + q̂

||q̂||��� q
||q|| + q̂

||q̂||

���
.

Proof: Without loss of generality, suppose q = [q1, 0T]T

with q1 > 0, q̂ = [q̂1, q̂2, 0T]T. Then

E

1{ZTq>0}

�
= P(Z1 > 0) =

1

2
E

1{ZTq>0,ZT q̂>0}

�
= P

�
ZTq > 0, ZTq̂ > 0

�

=
� � �

2�
.

The third claim can be proved by Lemma A.1 from [2].
Using the polar representation of 2-D Gaussian random
variables

E

Z11{ZT q>0,ZT q̂>0}

�

=
1

2�

� +�

0
r2e� r2

2 dr
� �

2

� �
2 +�

cos(�)d� =
1 + cos �

2
	

2�
E

Z21{ZT q>0,ZT q̂>0}

�

=
1

2�

� +�

0
r2e� r2

2 dr
� �

2

� �
2 +�

sin(�)d� =
sin �

2
	

2�
E

Zi 1{ZT q>0,ZT q̂>0}

�

= 0 (i
 3).

where � is the angle and r is the radius. d P� = (1/2�)d�
and d Pr = re�(r2/2)dr . Then

E

Z1{ZT q>0,ZT q̂>0}

�

=
1

	
2�

cos2(�/2), sin(�/2) cos(�/2), 0T�

=
cos(�/2)

	
2�

cos(�/2), sin(�/2), 0T�

=
cos(�/2)

	
2�

q
||q|| + q̂

||q̂||��� q
||q|| + q̂

||q̂||

���

where (q/||q||) and ((q/||q||) + (q̂/||q̂||))/(||(q/||q||) +
(q̂/||q̂||)||) are unit-normed vectors. The angle between them
is �/2. �

Lemma 2: Let Z be a random vector sampled from Gaussian
Distribution N (0, 1). Suppose the angel between vector
q and q̂ is �

E

Z1{�t<ZT q<t}

�
= v(0, q)

q
||q||

E

Z1{�t<ZT q<t,ZT q̂>0}

�

=

�

(v(�, q) � cot(�/2)w(�, q))
q

||q||

+ csc(�/2)w(�, q)
q

||q|| + q�

��� q
||q|| + q�

���

�

�

where

v(�, q) =
1

2�

� �
2 +�

� �
2

cos(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd�

w(�, q) =
1

2�

� �
2 +�

� �
2

sin(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd�.

Proof: Following the above proof, suppose: q = [q1, 0T]T

with q1 > 0, q̂ = [q̂1, q̂2, 0T]T, we can get

E

Z11{�t<ZT q<t}

�

=
1

2�

� �
2

� �
2

cos(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd� = v(0, q)

E

Z21{�t<ZT q<t}

�

=
1

2�

� �
2

� �
2

sin(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd� = w(0, q) = 0

E

Zi 1{�t<ZT q<t}

�

= 0 (i
 3).

The second equation stands because the integrand is an odd
function in �. From the above, the first claim holds. Then we
have

E

Z11{�t<ZT q<t,ZT q̂>0}

�

=
1

2�

� �
2 +�

� �
2

cos(�)
� sec(�)

t ||q||

� sec(�)
t ||q||

r2e� r2

2 drd� = v(�, q).

Similarly, E[Z21{�t<ZT q<t,ZT q̂>0}] = w(�, q). So

E

Z1{�t<ZT q<t,ZT q̂>0}

�
=

v(�, q),w(�, q), 0T

�
.

So it is not difficult to testify that the second identity stands
because

q
||q||

=

1, 0T

�

q
||q|| + q�

��� q
||q|| + q�

���
=

cos(�/2), sin(�/2), 0T�.

�

REFERENCES

[1] A. Brutzkus and A. Globerson, “Globally optimal gradient descent for a
convnet with Gaussian inputs,” in Proc. Int. Conf. Mach. Learn. (ICML),
2017, pp. 605–614.

[2] S. Du, J. Lee, Y. Tian, A. Singh, and B. Poczos, “Gradient descent learns
one-hidden-layer CNN: Don’t be afraid of spurious local minima,” in
Proc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 1339–1348.

[3] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The Pascal visual object classes challenge:
A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,
Jan. 2015.

[4] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for effi-
cient DNNs,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016,
pp. 1379–1387.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1–14.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[7] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proc. 27th Int. Joint
Conf. Artif. Intell., Jul. 2018, pp. 2234–2240.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: ABP: SPARSE FILTER FUSION FOR DEEP CNNs VIA AUXILIARY ATTENTION 13

[8] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4340–4349.

[9] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389–1397.

[10] G. Hinton, “Neural networks for machine learning,” Coursera, vol. 264,
no. 1, pp. 2146–2153, 2012.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. Neural Inf. Process. Systems (NIPS), 2015, pp. 1–9.

[12] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming:
A data-driven neuron pruning approach towards efficient deep archi-
tectures,” 2016, arXiv:1607.03250. [Online]. Available: http://arxiv.
org/abs/1607.03250

[13] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[14] Z. Huang and N. Wang, “Data-driven sparse structure selection for
deep neural networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 304–320.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2016, pp. 4107–4115.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167

[17] X. Jiang, Y. Pang, M. Sun, and X. Li, “Cascaded subpatch networks for
effective CNNs,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 2684–2694, Jul. 2018.

[18] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Citeseer, Princeton, NJ, USA, Tech. Rep., 2009.

[19] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–13.

[20] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu, “Compressing con-
volutional neural networks via factorized convolutional filters,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 3977–3986.

[21] Y. Li, Y. Pang, J. Cao, J. Shen, and L. Shao, “Improving single
shot object detection with feature scale unmixing,” IEEE Trans. Image
Process., vol. 30, pp. 2708–2721, 2021.

[22] M. Lin et al., “HRank: Filter pruning using high-rank feature map,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 1529–1538.

[23] S. Lin et al., “Towards optimal structured CNN pruning via generative
adversarial learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 2790–2799.

[24] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. (ECCV). Berlin, Germany: Springer, 2016, pp. 21–37.

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2736–2744.

[26] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2019,
pp. 1–21.

[27] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5058–5066.

[28] Y. Pang, J. Cao, Y. Li, J. Xie, H. Sun, and J. Gong, “TJU-DHD:
A diverse high-resolution dataset for object detection,” IEEE Trans.
Image Process., vol. 30, pp. 207–219, 2021.

[29] A. Paszke et al., “Automatic differentiation in pytorch,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2017, pp. 1–4.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

[31] S. A. Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, and
G. Hamarneh, “Deep semantic segmentation of natural and medical
images: A review,” Artif. Intell. Rev., vol. 54, no. 1, pp. 137–178,
2020.

[32] F. Wang et al., “Residual attention network for image classification,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3156–3164.

[33] H. Wang, C. Qin, Y. Bai, and Y. Fu, “Dynamical isometry: The miss-
ing ingredient for neural network pruning,” 2021, arXiv:2105.05916.
[Online]. Available: http://arxiv.org/abs/2105.05916

[34] H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured probabilistic
pruning for convolutional neural network acceleration,” in Proc. Brit.
Mach. Vis. Conf. (BMVC), 2018, p. 3.

[35] J. Xie, Y. Pang, H. Cholakkal, R. Anwer, F. Khan, and L. Shao,
“PSC-Net: Learning part spatial co-occurrence for occluded pedes-
trian detection,” Sci. China Inf. Sci., vol. 64, no. 2, pp. 1–13,
Feb. 2021.

[36] K. Yamamoto and K. Maeno, “PCAS: Pruning channels with attention
statistics for deep network compression,” in Proc. Brit. Mach. Vis. Conf.
(BMVC), 2019, pp. 1–13.

[37] A. Yang, B. Yang, Z. Ji, Y. Pang, and L. Shao, “Lightweight group
convolutional network for single image super-resolution,” Inf. Sci.,
vol. 516, pp. 220–233, Apr. 2020.

[38] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[39] T. Zhang et al., “A systematic DNN weight pruning framework using
alternating direction method of multipliers,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 184–199.

[40] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian,
“Variational convolutional neural network pruning,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 2780–2789.

[41] K. Zhong, Z. Song, P. Jain, L. Peter Bartlett, and S. Inderjit Dhillon,
“Recovery guarantees for one-hidden-layer neural networks,” in Proc.
Int. Conf. Mach. Learn. (ICML), 2017, pp. 4140–4149.

[42] Z. Zhuang et al., “Discrimination-aware channel pruning for deep
neural networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2018,
pp. 875–886.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2021 at 06:39:47 UTC from IEEE Xplore. Restrictions apply.

