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a b s t r a c t 

Given the driving advances on CNNs (Convolutional Neural Networks) [1], deep neural networks being de- 

ployed for accurate detection and semantic reconstruction in SLAM (Simultaneous Localization and Map- 

ping) has become a trend. However, as far as we know, almost all existing methods focus on design a 

specific CNN architecture for single task. In this paper, we propose a novel framework which employs a 

general object detection CNN to fuse with a SLAM system towards obtaining better performances on both 

detection and semantic segmentation in 3D space. Our approach first use CNN-based detection network 

to obtain the 2D object proposals which can be used to establish the local target map. We then use the 

results estimated from SLAM to update the dynamic global target map based on the local target map 

obtained by CNNs. Finally, we are able to obtain the detection result for the current frame by projecting 

the global target map into 2D space. On the other hand, we send the estimation results back to SLAM 

and update the semantic surfel model in SLAM system. Therefore, we can acquire the segmentation re- 

sult by projecting the updated 3D surfel model into 2D. Our fusion scheme privileges in object detection 

and segmentation by integrating with SLAM system to preserve the spatial continuity and temporal con- 

sistency. Evaluation performances on four datasets demonstrate the effectiveness and robustness of our 

method. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Understanding the content and the meaning of a perceived

cene is a crucial capability for a robot to execute more intelli-

ent behavior. To solve the core of this problem, the high accu-

acy of object recognition in 3D scene [1] and the inclusion of rich

emantic information within a dense map is inevitable. As a spe-

ific example, suppose a user want his robot to “fetch the slippers

rom the shoe rack”. This simple fetching task requires knowledge

f both what the target is and what’s the shape of it, as well as

here it is located. However, even simple as it seems, this fetching

ask is still challenging for most robots since current SLAM systems

re full of geometric information and lack of semantic information.

n order to address this challenge, we fuse the high-level features

rom CNNs with geometric information from SLAM system in or-

er to build a framework which enables a much greater range of

unctionality and a better understanding of the scene for robots. 

Another challenge when adapting CNNs into robots is that al-

hough CNNs are widely used in the field of computer vision
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2] , most of the existing CNN-based object detection and seman-

ic segmentation methods are processing of the single 2D frame

3,4] which lacks the spatial continuity and temporal consistency

f objects. Different pixels of the same object should be continuous

n space and the same object appears in the consecutive frames

hould be close in location. What we need to do is to adjust the

NNs to handle the consecutive frames and preserve the consis-

ency of space and time. Integrating SLAM system into Convolu-

ional Neural Networks provides a possible solution to preserve

ime-space consistency. 

The SLAM system beginning as a technique to enable real-time

obotic navigation has achieved great success in self-localization,

cene reconstruction, and other robotic fields. However, most

ision-only SLAM solutions [5–7] which employ simple sparse

orner-like features as well as edges, planes, often perform poorly

n object detection and reconstruction. For the next level of robot

ntelligence, maps need to extend beyond geometry they need to

ontain semantics [8] . The semantics information of objects can

pen a new perspective for the SLAM system. 

In this paper, we propose a novel framework for object detec-

ion and segmentation task based on SLAM system. The founda-

ion of our approach is built upon a general 2D object detection

https://doi.org/10.1016/j.neucom.2019.01.088
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.01.088&domain=pdf
mailto:cckaffe@hotmail.com
https://doi.org/10.1016/j.neucom.2019.01.088
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Fig. 1. A sketch of our performance on semantic segmentation task. The first and third rows are input images while the second and fourth rows are projection of 3D 

semantic surfel model of our method. 
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Convolutional Neural Networks and a visual SLAM system based on

surfel model. All common detection neural networks which output

bounding boxes as proposals such as YOLO [9] , SSD [10] , Fast RCNN

[11] , Faster RCNN [12] can be easily transplanted into our frame-

work to be combined with SLAM systems. Objects detected on 2D

images are represented as the proposals with its confidence scores.

We use a general object detection framework for each new frame

image to obtain the 2D object detection proposals. Then we use

SLAM system to predict the estimation proposal for the next frame

according to proposals from previous frame. This process will op-

timize inter-frame spatial continuity of the object by updating the

confidence scores in each frame. The proposals for current frame

and estimation results from SLAM are projected into a global 3D

surfel model [13] and update the global target map by pose trans-

formation matrix between new frame and historical frames, which

is obtained by the ICP algorithm for the point clouds registration.

Meanwhile, we project the global target map into 2D space and

predict new object detection proposals. Therefore, proposals both

from CNNs and SLAM are able to fuse together to achieve a better

performance on detection task. On the other hand, after filtering

the outliers, the fused proposals are used to update the 3D surfel

model in SLAM system to label every surfel element semantically.

When projecting the filtered surfel model into current 2D perspec-

tive, we can obtain the semantic segmentation results ( Fig. 1 ). 

In general, the contribution of this paper can be summarized as

follows: 

• By taking advantage of spatial continuity and temporal con-

sistency of objects from SLAM system, we combine knowl-

edge from single frame (extracted by Convolution Neural

Networks) with knowledge between frames to achieve remark-

able progress in accuracy. 
• By combining with SLAM system, we use only one single neu-

ral network to accomplish both the detection and the segmen-

tation. 

• We build more grounded and appropriate datasets, evaluate

our method on these datasets by comparing with the baseline,

which indicates an impressive progress of our method. 

• We experiment our proposed framework on benchmarks, com-

pared with state-of-the-art methods on the task of detection

and segmentation and prove the effectiveness and the robust-

ness of our approach. 

. Related work 

The field of fusing convolutional neural networks with SLAM

ystem towards building 3D semantic map or obtaining better seg-

entation results is a hot topic and has yield quite a few works.

mong these works, the most related ones are John McCormac

t al. [14] and Niko Sünderhauf et al. [15] . John McCormac et al.

14] aims to build a dense, semantically annotated 3D map, they

ombined a specific segmentation neural network by Noh et. al.

o provide semantical result and then fuse it with the SLAM sys-

em. Unlike them, our framework explore the inherent redundancy

mong object task and segmentation task, using bounding boxes

s intermediate products to segment objects in surfel model and

nally build a framework to finish the object detection and seg-

entation at the same time with one single neural network. Niko

ünderhauf et al. [15] combined SSD [10] with SLAM system to-

ards obtain better segmentation results. Unlike us, They build the

emantic map based on point cloud and employ depth image to

egment objects to construct an adjacency graph. 

Then we discuss related work with respect to the several rele-

ant field that we incorporate within our method, i.e., SLAM, object

etection and semantic segmentation. 
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SLAM . SLAM has always been a hot topic in the feild of robotics

nd there exists a mass of literature on it. Depending on the dif-

erent type of input data being processed, SLAM can be divided

nto either monocular camera-based [16–18] or depth camera-

ased [6,19,20] . On the other hand, from the view of methodology,

t can be classified as straightforward [16,18,21] or feature-based

17,22,23] . Most feature-based SLAM solutions are mainly based

n simple sparse corner-like features such as edges, which tend

o perform poorly on semantic level object localization and recon-

truction. Under this circumstances, Salas-Moreno et al. [24] come

p with a novel approach to create a semantic annotated SLAM

ystem, SLAM ++ , which maps indoor scenes at semantically la-

eled objects level. However, SLAM ++ is limited since it only map

bjects that exist in a pre-defined database. Additionally, the fea-

ures it use to match template models are hand-craft. 

As for the fusion of object recognition and SLAM, Sudeep Pil-

ai et al. [25] from MIT propose to combine monocular SLAM with

raditional object recognition approach for the first time. They re-

onstruct the scene in a semi-dense way based on existing monoc-

lar SLAM (ORB-SLAM) and import object proposals which are

onsistent across multiple views into BoVW(Bag-of-Visual-Words)

o be classified by traditional well-trained object classifiers. Re-

ently developed deep Convolutional Neural Networks methods

9,11,12] has significantly outperformed former traditional meth- 

ds in terms of object recognition accuracy. Therefore, combin-

ng SLAM with deep neural networks seem to be a promising

olution. 

Object detection . The last decade has witness the success of

OG [26] and SIFT [27] due to their achievement in recognition

ccuracy. These methods are based on block-wise orientation his-

ograms, model the shape of objects via oriented-edge templates,

hich seems to be less informative when comparing with multi-

tage features extracted by CNNs. In CNN-based state-of-the-art

bject detection area, there exists two mainstream: models based

n region proposals [11,12] and models trained end to end [9,10] .

nd-to-end models like YOLO resize all images into 448 × 448,

tilize features from the whole image to predict bounding boxes

nd unify separate parts of object detection into one single net-

ork. The grid cell proposals is constrained in YOLO, which in-

icates that the processing time has dropped. But the negative

ffect is that the detection accuracy for targets, especially small

argets, has also declined. Another state-of-the-art techniques in

arge-scale object detection task is Faster RCNN, which divides the

etection process into two procedures: first use a region proposal

etwork to take in input images while outputting rectangular ob-

ect proposals and then the proposed regions are classified by the

aster RCNN detector network. By sharing computation and us-

ng neural networks to propose regions instead of Selective Search,

aster RCNN get a good balance between accuracy and time con-

umed. However, both models above focus on single frame instead

f consecutive frames, thus get a ordinary performance when apply

o detection task in consecutive frames. In this paper, we choose

aster RCNN as our baseline to be compared and it is also the fun-

amental neural network to be fused into SLAM system. 

Semantic segmentation . Before the arise of deep learning, ap-

roaches such as N-cut [28] and GrabCut [29] based on graph

artitioning take the lead in the area of semantic image segmenta-

ion. GrabCut proposed by Carsten Rother et.al uses separate Gus-

ian mixture models to model the foreground and background of a

mage and seek for the optimal parameters for the models by iter-

tion. But Grubcut need artificial bounding box or scribbled line as

uxiliary information for the sake of achieving a good performance.

hen it comes to the era of DL (deep learning), Long et al. [3] first

dopt the concept of fully convolutional network (FCN), adapt it

n image semantic segmentation and bring us a excellent end-

o-end solution. Another cutting-edge innovation is CRF-RNN [4] ,
hich brings in the Conditional Random Field to optimize the pre-

iction result after feature extraction. One weakness for DL-based

egmentation is that: Both FCN [3] and CRF-RNN [4] need a mass

f images and semantic labeled pixels to trained the network. Tak-

ng that into consideration, our method costs much less by updat-

ng the semantic labels in the 3D map when fusing object pro-

osals from the CNNs. Besides, we save quite a few computation

esources and improve the efficiency by using one single neural

etworks instead of two, because that, as we all known, CNNs are

ata driven and need plenty of GPU resources to train. 

. Our approach 

In this section, we demonstrate our proposed framework for

obot on object detection and segmentation task, where the pro-

osals predicted by CNNs are fused together with the estimation

esults from the SLAM system. The flow diagram in Fig. 2 sketches

he pipeline of our framework. First of all, the CNNs take in frames

o obtain the 2D object detection proposals to form the local tar-

et map. Then estimation results from SLAM and the local target

ap are fused to update the global target map. At the same time,

he global target map is projected to 2D to acquire the detection

esult for current frame. On the other hand, modified RANSAC is

dopted to remove the outliers and estimation results from SLAM

s sent back to SLAM to update the surfels. In the end, the updated

D surfel model is projected to 2D to obtain the segmentation

esult. 

The whole framework are mainly connected by three funda-

ental units: a CNN-based object detection module, a surfel-based

LAM system and a Fusion-Update scheme. The role of CNN

odule in our framework is to process RGB frames from camera

nd output a set of candidate bounding boxes with its corre-

ponding probabilities of the target objects. Separately, The SLAM

ystem we used in the framework are ElasticFusion [5] , which

rovides long-term dense correspondences between frames of

GB-D video. These correspondences allow the object proposals

enerated by CNNs from multiple views to be fused into a global

onsistent sufel-based map. The Fusion-Update scheme uses the

orrespondences provided by SLAM system to fuse the estimation

esults from SLAM with the proposals from CNNs and updates the

arameters for each target object in both the global target map

nd the surfel model. 

.1. CNN architecture 

We adopt the classic Faster RCNN by Shaoqing Ren et al. [12] as

ur baseline detection neural network in the framework and the

NN is implemented on caffe [30] . As is depicted in Fig. 4 , the orig-

nal frames are passed through a pre-trained CNN up until an in-

ermediate layer, ending up with a convolutional feature map. We

se VGG-16 as a feature extractor in this part. Next, using the fea-

ures that the CNN computed, the Region Proposal Network (RPN)

s adopted to find up to a predefined number of regions (bound-

ng boxes), which may contain objects. Using the features extracted

y the CNN and the bounding boxes with relevant objects, Region

f Interest (RoI) Pooling is used to extract those features which

ould correspond to the relevant objects into a new tensor. Finally,

omes the R-CNN module, which uses that information to classify

he content in the bounding box and adjust the bounding box co-

rdinates. 

The Faster RCNN is pre-trained on Pascal VOC2012. For the

raining of RPN we adopt standard stochastic gradient descent,

ith a learning rate of 0.001, momentum of 0.9, and weight de-

ay of 0.0 0 05. The decay policy for learning rate is ‘step’, and the

tep size is 30 0 0 0. As for the training of RCNN, the learning rate

s 0.001, momentum is 0.9, and weight decay is 0.0 0 05. The decay
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Fig. 2. Pipeline of our proposed 3D Object Detection and Segmentation Framework. (a) The CNNs takes in RGB frame as input (b) First, our algorithm judge if the input 

frame is initial frame. (c) If the result is yes, the Global Target Map ( Map global ) is initialized M ap 0 
slam 

= M ap global = boxes . (d) If the answer is no, bounding boxes output from 

CNNs is used to update the Local Target Map. (e) Target Map from SLAM system ( Map k 
slam 

) at the current moment. (f) Target Map from SLAM system ( Map k 
slam 

) are fused 

with Local Target Map to update the Global Target Map. (g) Then we use the updated Global Target Map to predict Target Map from SLAM system in the next moment 

( Map k +1 
slam 

). (h) The SLAM system also takes depth data as input. (i) ICP + RGB is used for camera attitude estimation. (j) ( Map k +1 
slam 

) is used to update the surfel model in the 

SLAM system. (k) The final semantic map is based on the updated surfel model. 
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policy for learning rate is ‘exp’. We choose a batch size of 64, and

train the network for a total of 20k iterations. 

3.2. Surfel model 

Surfel model is a method of rendering objects with rich shapes

and textures at interactive frame rates and rendering presented in

surfel model is based on using simple surface elements (surfels) as

rendering primitives [31] . Surfels are point samples of a graphics

model which is defined as a zero-dimensional n-tuple with shape

and shade attributes that locally approximate an objects surface.

We choose surfel model because it is quite appropriate for the

modeling of dynamic geometric models which do not need to com-

pute topological information. 

Normally, surfel model is applied on the data representation of

medical scanners, real-time particle system rendering and so on. In

this work, each surfel in the model stores the following attributes:

color information ( R, G, B ), coordinates in 3D space ( x, y, z ), label

( l ), normal vector ( 
−→ 

n ) and radius ( r ), initialization timestamp ( t 0 )

and last updated timestamp ( t ): 

P sur fel = { x, y, z, (r, g, b) , l, r, 
−→ 

n } (1)

The radius of each surfel represents the local surface area around a

given point (which is the optical center of the camera in this work)

while minimizing visible holes. 

In the following dynamic modeling process, new surfels are

added into the 3D surfel model. Therefore the color, label, loca-

tion, radius and normal vector are updated in a weighting fusion

way. 
.3. Global target map 

We introduce the global target map in a scene in this sub-

ection. In general, the global target map is the universal set of

ounding boxes, which stores the information of each target at

ach position and one main goal of the fusion scheme is to get the

pdated global target map. As can be seen in the pipeline, after

eceiving RGB frames by CNN our framework need to judge if the

nput frame is the initial one. And different answers will result in

ifferent procedures. But both procedures involve the target map:

f the answer is yes, our algorithm will initialize the global target

ap, otherwise we will use the proposals from the CNN to form

he local target map. Acquiring and updating the global target map

s a crucial stage of our framework. 

The global target map, denoted as Map global , is defined as the

niversal set for each object and its corresponding parameters in

he whole scene. Correspondently, the local target map Map local is

he set of objects and its corresponding parameters for the current

rame. Typically, when projecting the global target map into the

urrent camera perspective, we can get the detection result. The

utput of the CNNs are bounding boxes, denoted as bdbox i , and its

onfidence, denoted as score i , with i represents the ith bounding

ox. We could use four parameters to locate bounding box: x left ,

 top , width, height . Then, we can get an example element (denoted

s boxI) of the global target map: 

oxI = { x le f tI , y topI , widthI, heightI, scoreI} (2)

s a result, the four endpoints of a bounding box can be described

s follows: 

(x le f t , y top ) = (x le f t , y top ) (3)
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[  
(x le f t , y bottom 

) = (x le f t , y top + height) (4) 

(x right , y top ) = (x le f t + width, y top ) (5) 

(x right , y bottom 

) = (x le f t + width, y top + height) (6) 

s can be seen from Fig. 2 , the update of global target map is

 dynamic process which involves the local target map ( Map local )

erived from CNNs and estimation results from SLAM system

 Map slam 

). Both of them are fused with each other continuously

o update the global target map: Simply speaking, if proposals for

 target from CNNs are consistent with estimation results from

LAM, the confidence score for the target will increase, vice versa.

he whole update procedures for the global target map are de-

cribed detailedly in Algorithm 1 . 

lgorithm 1 Procedures of updating the global target map. 

nput: The target bounding boxes for each frame, denoted as boxes ;

utput: The final global map after fusion and update; Map global ; 

1: if Initial f rames then 

2: Initialize the global target map: M ap 0 
slam 

= M ap global = boxes ; 

3: else 

4: (1) Get Map local by projecting Map global into current per-

spective, preserve other targets beyond the scope of current

perspective as: Map tmp ; 

5: (2) Remove the boxes under the threshold by function MIX:

M ap local = M IX(boxes, M ap local ) ; 

6: (3) Put the updated local target map into the global target;

map: M ap global = M IX(M ap tmp , M ap local ) ; 

7: (4) Fuse the current global target map with the predicted

target map from SLAM: M ap global = M IX(M ap k 
slam 

, M ap gloabl ) ; 

8: (5) Get the prediction for the next frame from current global

target map: M ap k +1 
slam 

= predict(M ap global ) ; 

9: end if 

The Mix function in Algorithm 1 is used to fuse the results from

oth inputs, which are consist of two subsidiary functions: reward

nd punish . The definition of MIX is shown in Algorithm 2 . Label A,

lgorithm 2 Function MIX. 

nput: M ap A , M ap B 
utput: Map C 

1: Suppose M ap C = M IX(M ap A , M ap B ) 

2: for all box A in Map A do 

3: if IOU(box A, box B) > threshold and label A = label B then 

4: Map C = reward(box A, box B ) 

5: else 

6: Map C = punish (box A, box B ) 

7: end if 

8: end for 

9: return Map C ; 

abel B are labels of elements in Map A , Map B , respectively and IOU

eans Intersection over Union: 

OU(A, B ) = (A ∩ B ) / (A ∪ B ) (7)

Function mix and punish are defined as follows: 

reward(box A, box B ) = 

{ 

x le f tA + x le f tB 

2 

, 
y topA + y topB 

2 

, 

wid th A + wid th B 

2 

, 
height A + height B 

2 

, 

f rac (score A + score B ) θcon f 2 } 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(8) 
punish (box A, box B ) = decay (box A or box B ) 

= { x le f tA , y topA , width A , height A , θpunA score } 
or { x le f tB , y topB , width B , height B , θpunB score } 

⎫ ⎬ 

⎭ 

(9) 

θ conf is a parameter to raise the scores when both sets find the

ame target. θ conf is taken to be 1.06 by cross validation and the

aximum for the score of a box is 1. Correspondingly, θpunA and

punB are parameters to punish the scores due to the mismatch-

ng of two sets. Normally, the appropriate value for θpun is 0.94 by

ross validation. However, when mixing Map tmp with Map local , the

alue is set as 1 since we need to combine the local target map

ith new targets to complete the global target map. 

.4. SLAM prediction map (Map_slam) 

In our object detection and segmentation Fusion-Update

cheme, there are two kinds of information need to be fused to-

ether: proposals from CNNs (in the form of local target map) and

redictions from SLAM (in the form of Map slam 

). During the fusion

rocess, we update the global target map and obtain the Map k +1 
slam 

y SLAM. Then Map k +1 
slam 

is sent back to be fused with the next local

arget map, as is shown as dotted portion in Fig. 2 . Since proposals

rom CNNs are regular bounding boxes with coordinates, we focus

n how to get the predictions for the (k + 1) th frame from the kth

rame in this subsection. 

Suppose the current frame is k and the SLAM systems’ predic-

ion of the target map for the next frame is denoted as Map k +1 
slam 

,

e can get the 3D coordinates for a target point of the kth frame

n the world coordination by: 

 k = z w 

(10) 

 k = 

(u k − c x ) z k 
f x 

(11) 

 k = 

(v k − c y ) z k 
f y 

(12) 

here u k , v k is the 2D coordinates of the target bounding box’s

entral point in the image coordination. As the depth data obtained

rom depth image contains holes, to eliminate the instability by

dopting data from one single point, we use the mean depth value

f a small patch around the target bounding box’s central point to

eplace the original depth data. 

The coordinate relationship between the k th frame and the p th

rame is defined as: 
 

 

 

x p 
y p 
z p 
1 

⎤ 

⎥ ⎦ 

= in v (tanrs f p /trans f 0 )(tanrs f k /trans f 0 ) 

⎡ 

⎢ ⎣ 

x k 
y k 
z k 
1 

⎤ 

⎥ ⎦ 

(13)

here transf 0 is the initial pose matrix while transf p and transf k 
s the corresponding pose matrix for the k th frame and the p th

rame. Then we can project the pth frame’s 3D coordinates into

D: 

 p = 

f x x p 

z p 
+ c x (14) 

 p = 

f y y p 

z p 
+ c y (15) 

y these transformations we can get the predicted bounding box

f a target object in the p th frame from the k th frame, as can be

hown in fig. 3 . 

.5. 3D surfel model update and semantic label fusion 

Previous segmentation architectures such as SemanticFusion

14] mostly use deep models that are tailored to solve one
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Fig. 3. Prediction from k th frame to p th frame. Left: Bounding box of the target 

chair in the k th frame. Right: The predicted bounding box of the target chair in the 

p th frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3 Procedures of updating surfel model. 

Input: surfel model; Map slam 

Output: 3D semantic surfel map 

1: if Initial f rames then 

2: Initialize the surfel model 

3: else 

4: (1) Project Map slam 

into surfel model to update the parame- 

ters(label, probability) of each corresponding surfel elements in 

the model; 

5: (2) Searching the maximal cluster in these surfel elements; 

6: (3) Label the surfel elements in this maximal cluster as the 

target object; 

7: (4) Project the surfel model in to 2D and we can get the 

semantic segmentation result. 

8: end if 

h  

t  

p  

u  

f  

d  

g  

n  

a  

n  

s  

b  

l

 

p  

l  

f  
specific task, i.e., semantic segmentation. They do not explore the

inherent redundancy among different tasks, which can be formu-

lated by geometry regularities via the nature of 3D scene un-

derstanding. Besides, large corpus of labels for pixel are needed

to train a traditional deep segmentation neural network in or-

der to preserve high performance with more general scenarios.

Nevertheless, Our ObjectFusion framework can finish the segmen-

tation task by processing the detection results from the object

detection deep neural network in the framework and label the

elements in surfel model [13] from SLAM system, which will

eventually reconstruct a 3D semantic surfel model for the scene.

The whole update procedures for surfel model is presented in

Algorithm 3 . 

In consideration of the spatial continuity of objects in a frame,

we filter the surfel model based on the spatial location. More

specifically, for each object proposal, we use RANSAC for removing

the outliers by sampling. For the clusters on the location of surfel

model elements, we search and discard the largest plane, which

is mostly likely to be the background. The left largest cluster in

the remaining model of this object proposal is what the filtered

object proposal. The filtered surfel model preserves the spatial co-
Fig. 4. Faster RCNN architecture: Object detection architectu
erence and improves the accuracy of segmentation by segment

he bounding box of objects. The estimation error of the camera

ose will accumulate over time. Therefore, we calculate the resid-

al loss of the two viewpoints for the new frame and the history

rames to determine whether or not to take the local loop closure

etection. The local loop closure detection is based on deformation

raph [32] which has been widely used in mesh deformation and

on-rigid reconstruction. In addition, We encode raw RGB-D data

nd the pixel level semantic labels as 5 channels features into bi-

ary codes with Random Ferns method [33] for the global loop clo-

ure detection. The accuracy of the estimation of camera pose can

enefit from the local loop closure detection and global semantic

oop closure detection. 

Before removing the outliers, we need to update the label and

robabilities for each element in surfel model. Let’s consider P (O =
 i | I k ) denotes the probabilities for target object from Map slam 

, and

ormer parameters from sufel model, denoted as P (l i | I 1 , ... ,k −1 ) .
re of Shaoqing Ren et al. [12] used in our framework. 
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hey are fused together to obtain the updated prediction results:

 (l i | I 1 , ... ,k ) = 

1 

X 

P (l i | I 1 , ... ,k −1 ) P (O = l i | I k ) (16)

hich is applied to all label probabilities per surfel, finally normal-

zing with constant Z to yield a proper distribution According to

he above equation, the label of surfel element is based on prob-

bility which updates every frame. The final label is the one with

he maximum probability. If the new-coming frame has the same

abel with the history record, the probability increases and vice

ersa: 

 

(
ˆ M 

sur fel 

l abel i 

)
= λP 

(
M 

sur fel 

l abel i 

)
(17) 

= λ
[
1 −

(
2 ×

∣∣sgn 

(
l abel p 

old 
− l abel p new 

)∣∣ − 1 

)]
× θλ] (18) 

hen the current label match the historical one, the output of

unction sgn is 0 and λ = λ × (1 + θλ) otherwise sgn would out-

ut 1 and λ = λ × (1 − θλ) . θλ is a constant, normally is taken to

e 0.96 by cross validation. 

We take advantage of depth data, history record as well as

ap slam 

to update the surfel model’s parameters (location, color,

abel) in SLAM. Since the SLAM prediction map ( Map slam 

) includes

lanes such as ground and other objects besides target object, we

hould remove these disturbed elements in the surfel model to

ake sure the label for each surfel element is accurate. We adopt

ANSAC(Random Sample Consensus) [34] to remove the ground.

nlike common RANSAC, we tend to choose three point ( x 1 , y 1 ,

 1 ), ( x 2 , y 2 , z 2 ), ( x 3 , y 3 , z 3 ) around the bounding box as the initial

et instead of choosing randomly in the surfel database, which im-

roves the efficiency of finding the background. These three points

an establish a plane. By computing the distance between other

oints and this plane we can count the points near the plane. By

pdate the initial set we can find the plane that have most points

ear it. That’s the target plane which we called outliers to be re-

oved. 

After removing the outliers by RANSAC we still need to filter

he surfel model in order to discard disturbed objects. Since each

roposal from CNNs contain only one target object, we can ac-

omplish the filtering process by finding the maximal cluster. The

earching procedures are presented in Algorithm 4 . 

lgorithm 4 Searching the maximal cluster in surfel model. 

1: Using Kd-tree to store Set P; 

2: Initialize Set C and Set Q as Null Set; 

3: for p i ∈ P do 

4: Add p i into Q; 

5: end for 

6: for p i ∈ Q do 

7: Find the neighbourhood of Set P k 
i 

for p i ; if d( p i ,

q i ) < threshold: q i ∈ P k 
i 

; (d( p i , q i ) is the Euclidian Distance) 

8: end for 

9: for all q i in P k 
i 

do , 

10: if not processed, add into Q; 

11: After every element in Q is processed, count the number of

Q and C, replace C with the bigger one and reset Q as Null Set;

12: end for 

13: After every element in P is processed, return C. 

In the end, Our system reconstruct the 3D semantic map based

n surfel model and depth camera in an incremental way. By pro-

ecting the 3D semantic map to 2D image, we can get the segmen-

ation result. 
. Experiments 

In this section, we carry out experimental evaluation to vali-

ate the contributions of our proposed approach in terms of de-

ection and semantic segmentation, by means of both qualitative

nd quantitative comparison against the state-of-the-art methods

n four datasets. 

Our experiments are carried on desktop PC with an Intel Xeon

5-2620 v3 CPU at 2.4 GHz with 16 GB of RAM and a Nvidia

esla K40C GPU with 12 GB of VRAM. As for the implementation

f the Convolutional Neural Networks, we choose Faster RCNN as

ur fundamental detection neural framework and the CNNs are

mplemented on caffe [30] and pre-trained on PASCAL VOC2012

35] dataset. 

.1. Dataset 

Considering most relative existing datasets such as NYUv2

36] do not provide significant variations in viewpoints for a given

cene and the correspondence between depth image and RGB im-

ge is not always consistent, we choose to build our own test

atasets by collecting RGB-D images using the Xtion live pro depth

amera, which aims for a relatively reconstruction of an indoor

cene. The trajectory we choose to build the datasets are notably

ore loopy, both locally and globally. We believe the trajectory in

ur dataset is more representative of the scanning motion when

nspecting a scene. Examples from the four datasets are shown in

ig. 5 . 

The first dataset (Dataset I) is a single target dataset, collect-

ng in indoor scene with enough light. It consists 1801 successive

rames. The second dataset (Dataset II) is multiple targets dataset,

hich contains multiple objects such as chairs, dogs, pot plants

nd so on. Dataset II is collected with changing light and composed

f 1625 successive frames. Dataset III and IV are more challenging:

ataset III contains multiple objects with occlusion while dataset

V add moving obstacles. We also annotate each image in the four

atasets manually. 

.2. Frame selection and convergence verification 

There is no need to process every frame in actual practice,

ince the detection results between adjacent frames are analogous.

n order to maintain a high processing efficiency, not all frames are

rocessed by the framework, we use reasonable strategy to select

arget frames in a reasonable way: we design an experiment to

valuate the relationship between accuracy and frames skipped.

e evaluate the performance of our CNN framework when per-

orming a prediction on every 2 n frames, n ∈ 0,1,...,7. As is shown

n Fig. 7 , when n ≤ 2, the accuracy almost remain unchanged. By

eploying Tesla K40, the average time for processing a image is

.237s. Therefore, we can improve the efficiency by 4 × when

hoosing n = 2. 

The SLAM system we used depends on surfel model to label the

lements. Each label can not generate immediately since the exist-

ng surfel database need evidences from new surfels to update the

nformations such as location, label, probability and so on. How-

ver, the surfels will be updated to the global map only when the

onfidence score has surpassed the threshold. As a result, the first

ew frames are not able to label all of the surfels that belong to

he object when first recognizing it. Therefore, we need to mea-

ure how many frames are necessary before an acceptable seman-

ic surfel model map can be reconstructed. Fig. 8 is the process

f reconstruct a chair in the indoor scene. We can figure out that

hen it comes to the 10th frame, the object’s reconstruction map

s on the edge of convergence. Therefore, the first ten frames are
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Fig. 5. Examples frbbom self-build datasets. From Left row to Right row: I, II, III, IV. 

Fig. 6. Detection bounding boxes results in both methods. The first row is our method, the second row is Faster RCNN and the third row is Ground Truth. 
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removed in the following experiments to guarantee the compara-

bility between our framework and the compared methods. 

4.3. Object detection performance 

Based on the same criterion with Faster RCNN [12] , when

IOU (Intersection over Union) ≥ 0.7, the test result is defined as

hit the true value. Under this circumstances, we use the precision,

recall and F − measure as an evaluation criteria for different meth-

ods: 

precision = 

n t p 

n t p + n f p 

(19)

recall = 

n t p 

n t p + n f n 

(20)
t  
 − measure = 

2 × precision × recall 

precision + recall 
(21)

 tp means the number of predictions that hit the true value, while

 fp means the number of predictions that hit the wrong value. n fn 
epresents the number of predictions fail to detect the target. In

rder to take into account the possible imbalance among object

lasses, we compute the precision, recall and F − measure in a micro

ay. We evaluate the accuracy of our ObjectFusion pipeline against

hat of achieved by a single frame CNN framework. The quantita-

ive results can be seen in Table 1 . 

From Table 1 , we can draw a conclusion that our proposed

ethod remarkably improve the precision at the cost of a slight

ecline of recall rate. The reason why the recall rate drop is that

he fused detection system will remove some detected objects

hat only exist on a single view. Nevertheless, from the result of
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Table 1 

Comparison with faster RCNN on different data sets. 

Datasets Algorithm Micro-Precision Micro-Recall Micro-F-measure 

Dataset I (Single Object) 2D Faster RCNN baseline 0.6553 0.9898 0.7885 

Our proposed method 0.8694 0.9025 0.8856 

Dataset II (Multiple Objects) 2D Faster RCNN baseline 0.7632 0.8056 0.7838 

Our proposed method 0.9032 0.7778 0.8358 

Dataset III (Multiple Objects with occlusion) 2D Faster RCNN baseline 0.8032 0.8492 0.8256 

Our proposed method 0.907 0.8058 0.8534 

Dataset IV (Multiple Objects with moving obstacles) 2D Faster RCNN baseline 0.7727 0.7391 0.7555 

Our proposed method 0.9459 0.7309 0.8246 

Fig. 7. The average class accuracy of our RGB-D based method on the single object 

dataset against the number of frames skipped between fusing semantic predictions. 

Fig. 8. Object reconstruction map convergence vertification test. 
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Table 2 

Comparison with FCN,CRF-RNN, Mask RCNN, and Deeplabv3 + on 

Dataset I. 

Category Algorithm IOU Pixel Accuracy Precision 

Chair FCN-voc8s 0.5211 0.6239 0.7923 

CRF-RNN 0.5925 0.6373 0.9386 

Mask RCNN 0.596 0.6451 0.8954 

Deeplabv3 + 0.5845 0.6354 0.8562 

SORS(global) 0.713 0.726 0.954 

SORS(active) 0.7022 0.724 0.9366 
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-measure, a more comprehensive evaluation criterion that balance

he precision and recall , we can draw a conclusion that our frame-

ork performs steadily better than the baseline (Faster RCNN). 

The qualitative performance is shown in Fig. 6 . It can be seen

hat even for object with part of which exists in the image, our

ethod can successful recognize it because of predictions from the

lobal target map. Besides, evidence from Fig. 6 shows that even

or object that breaks into the image our system can still detect it

moothly. 

.4. Object semantic segmentation evaluation 

We adopt the classic evaluation criteria in the semantic

egmentation field to evaluate our framework : pixel accuracy ,
recision, IOU, mean accurary, mean IOU and mean precision. IOU in

his section is based on the number of the pixels instead of bound-

ng boxes in the previous section. 

pixel accuracy = 

∑ 

i n ii ∑ 

i t i 
(22) 

ean accuracy = 

1 

n cl 

∑ 

i n ii ∑ 

i t i 
(23) 

OU = 

∑ 

i 

n ii 

t i + 

∑ 

j n ji − n ii 

(24) 

ean IOU = 

1 

n cl 

∑ 

i 

n ii 

t i + 

∑ 

j n ji − n ii 

(25) 

precision = 

∑ 

i n ii ∑ 

j n ji 

(26) 

ean precision = 

1 

n cl 

∑ 

i n ii ∑ 

j n ji 

(27) 

n ij is the number of pixels which classified as j while the true

alue is i. n cl is the total number of all classes. t i = 

∑ 

j n i j is the

umber of pixels that belongs to class i . 

In this section, our approach, denoted as SORS(SLAM-based Ob-

ect Recognition and Segmentation), is compared with two exist-

ng state-of-the-art 2D semantic segmentation methods: CRF-RNN

4] and FCN [3] . In the architecture of ElasticFusion [5] , the system

eparate the scene into active area and inactive area according to

he interval between current frame and other frames. We adopt

he conception of active areas to update the surfel model. In the

uantitative experiments, we perform our algorithm with two sep-

rate strategies: “global” and “active”. “Global” means updating the

lobal surfel-based 3D map based on each frame and project the

esults to 2D planes while “active” only reconstruct the 3D map

or current active areas and project the results to 2D images. Ob-

iously, the “global” strategy concerns the whole scene while the

local” one focus more on adjacent areas. Comparisons on all four

atasets can be seen in Tables 2–5 . 

Discussion Tables 2 –5 show that the semantic segmentation be-

ome increasingly challenging as the scene tends to be more com-

licated. Nevertheless, we can see that our method prevails in all

our datasets, especially in the results of pixel accuracy and IOU,

hich are more important because the precision only take samples

hat are recognized as positive into account. 
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Table 3 

Comparison with FCN, CRF-RNN, Mask RCNN, and Deeplabv3 + on 

Dataset II. 

Category Algorithm IOU Pixel Accuracy Precision 

Chair FCN-voc8s 0.4596 0.5893 0.4656 

CRF-RNN 0.4921 0.5065 0.5219 

Mask RCNN 0.5670 0.5971 0.7865 

Deeplabv3 + 0.5235 0.5214 0.6924 

SORS(global) 0.6396 0.7113 0.794 

SORS(active) 0.5486 0.5789 0.8561 

Dog FCN-voc8s 0.49 0.5025 0.8549 

CRF-RNN 0.2827 0.2859 0.2706 

Mask RCNN 0.3213 0.3315 0.4535 

Deeplabv3 + 0.3542 0.3653 0.5634 

SORS(global) 0.4727 0.4881 0.7577 

SORS(active) 0.4382 0.4513 0.8398 

Potplant FCN-voc8s 0.6012 0.6981 0.8104 

CRF-RNN 0.656 0.6781 0.8974 

Mask RCNN 0.5683 0.5778 0.8976 

Deeplabv3 + 0.5771 0.5914 0.9013 

SORS(global) 0.6545 0.7319 0.8449 

SORS(active) 0.6035 0.6994 0.8918 

Table 4 

Comparison with FCN, CRF-RNN, Mask RCNN, and Deeplabv3 + on 

Dataset III. 

Category Algorithm IOU Pixel Accuracy Precision 

Chair FCN-voc8s 0.4199 0.5299 0.3887 

CRF-RNN 0.4609 0.4788 0.3242 

Mask RCNN 0.416 0.4326 0.3079 

Deeplabv3 + 0.4235 0.4654 0.3412 

SORS(global) 0.5159 0.5534 0.9015 

SORS(active) 0.4267 0.4465 0.9347 

Dog FCN-voc8s 0.4306 0.4301 0.8545 

CRF-RNN 0.3675 0.3715 0.2675 

Mask RCNN 0.3957 0.4012 0.2965 

Deeplabv3 + 0.3658 0.3704 0.2567 

SORS(global) 0.4087 0.4768 0.8001 

SORS(active) 0.3635 0.3871 0.8683 

Potplant FCN-voc8s 0.6545 0.7854 0.7009 

CRF-RNN 0.612 0.7134 0.6989 

Mask RCNN 0.6722 0.7854 0.7422 

Deeplabv3 + 0.6715 0.7753 0.7394 

SORS(global) 0.6669 0.7904 0.9303 

SORS(active) 0.6166 0.7499 0.9385 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison with FCN, CRF-RNN, Mask RCNN, and Deeplabv3 + on 

Dataset IV. 

Category Algorithm IOU Pixel Accuracy Precision 

Chair FCN-voc8s 0.3994 0.452 0.8317 

CRF-RNN 0.327 0.3452 0.6331 

Mask RCNN 0.3557 0.3817 0.7112 

Deeplabv3 + 0.3326 0.3774 0.6875 

SORS(global) 0.4591 0.4727 0.7597 

SORS(active) 0.469 0.4776 0.835 

Dog FCN-voc8s 0.2845 0.3048 0.8236 

CRF-RNN 0.154 0.165 0.6147 

Mask RCNN 0.2301 0.2564 0.7074 

Deeplabv3 + 0.2236 0.2602 0.7012 

SORS(global) 0.2993 0.3064 0.7855 

SORS(active) 0.2652 0.2739 0.7521 

Potplant FCN-voc8s 0.3747 0.4937 0.5441 

CRF-RNN 0.3381 0.3866 0.5387 

Mask RCNN 0.3167 0.4114 0.6002 

Deeplabv3 + 0.3564 0.4611 0.7124 

SORS(global) 0.4453 0.4991 0.7965 

SORS(active) 0.3841 0.412 0.7758 

Person FCN-voc8s 0.8048 0.8782 0.7383 

CRF-RNN 0.8066 0.8593 0.3553 

Mask RCNN 0.8306 0.8856 0.8452 

Deeplabv3 + 0.8295 0.8774 0.8395 

SORS(global) 0.8338 0.8848 0.8561 

SORS(active) 0.8042 0.8596 0.8666 

Table 6 

Mean performance on different datasets. 

Category Algorithm Mean IOU Mean Pixel 

Accuracy 

Mean Precision 

Dataset I FCN-voc8s 0.5211 0.6239 0.7923 

CRF-RNN 0.5925 0.6373 0.9386 

Mask RCNN 0.5960 0.6451 0.8954 

Deeplabv3 + 0.5845 0.6354 0.8562 

SORS(global) 0.713 0.726 0.954 

SORS(active) 0.7022 0.724 0.9366 

Dataset II FCN-voc8s 0.5169 0.5966 0.7103 

CRF-RNN 0.4769 0.4899 0.5633 

Mask RCNN 0.4855 0.5021 0.7125 

Deeplabv3 + 0.4 84 9 0.4927 0.7190 

SORS(global) 0.5889 0.6438 0.7989 

SORS(active) 0.5301 0.5765 0.8626 

Dataset III FCN-voc8s 0.5775 0.6559 0.6708 

CRF-RNN 0.5618 0.6058 0.4115 

Mask RCNN 0.4946 0.5397 0.4489 

Deeplabv3 + 0.4869 0.5370 0.4458 

SORS(global) 0.6063 0.6764 0.872 

SORS(active) 0.5528 0.6106 0.902 

Dataset VI FCN-voc8s 0.3529 0.4168 0.7361 

CRF-RNN 0.273 0.2989 0.5955 

Mask RCNN 0.3433 0.3938 0.716 

Deeplabv3 + 0.3484 0.3952 0.7351 

SORS(global) 0.4012 0.4261 0.7806 

SORS(active) 0.3728 0.3878 0.7873 

t  

p  

C  

e  

s  

d  

a  

b  

o  

f  

4

One detail we can see from Tables 2–5 is that our SORS make

a big progress in the segmentation of chair while only improved

within limits when it comes to dog. Apparently, chairs are more

difficult to be recognized and segmented due to the wheels and

discrete shape. But our method could handle these details quite

well and get a better performance by combining with SLAM. In ad-

dition, our SORS algorithm is able to segment more detailedly such

as the branches and leaves of pot plant, human arms and legs, etc.

Qualitative comparisons are presented in Fig. 9 . 

Another phenomenon from Tables 2–5 is that sometimes the

performance of “active” is better than “global”, especially in

Dataset IV. That’s because the global map is designed to fuse with

each frame. If our CNNs framework fail to detect target in several

successive frames, the global map will lower the probability for

certain label, which will cause the ineffectiveness of semantic seg-

mentation. However, Average performance in Table 6 proves that

the global SORS algorithm is still more robust and could be a more

promising choice. 

4.5. Run-time performance 

To evaluate the run-time performance of our framework we

perform experiments on a sample of random 20 sequences from
he test set. Each sequence last for 5 s. The experiments were

erformed on an Intel Xeon(R) CPU E5-2620 v3 @ 2.40 GHz 16

PU and an Nvidia Tesla K40C GPU. It requires 45.6 ms on av-

rage to process one frame and update the map in the SLAM

ystem. Besides, it need an additional 1.5 ms on average to up-

ate the surfel model for each chosen frame. As is illustrated

bove, the other deployments in the framework do not need to

e applied for each frame. The average time for a forward pass

f our CNN and the update of our global target map on one

rame is 121.7 ms. And our standard scheme performs this every

 frames. 
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Fig. 9. Comparation with FCN, CRF-RNN, Mask RCNN and DeepLabv3 + on segmentation task. 
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. Conclusion 

We have shown that the integration of SLAM with 2D propos-

ls via a deep neural network is a effective direction to solve the

roblems of object detection and semantic segmentation. We per-

orm experiments on single object, multiple objects, occlusion, il-

umination changes, exist moving obstacle environments with the

sus Xtion Pro RGB-D sensor and show that our model obvi-

usly improves the robustness for object detection problem in the

ich variety of environments. For the semantic segmentation task,

ur method is compared to previous 2D methods such as FCN-8s

3] , CRF-RNN [4] , Mask RCNN [37] and DeepLabv3 + [38] with all

f the models trained on Pascal VOC 2012 dataset [39] . The re-

ults demonstrate that our model can obtain a high-quality object

emantic segmentation performance. Evaluations reveal our frame-

ork is capable of incrementally reconstructing the semantic la-

eled scene as well as fusing proposals from CNNs, which is a new

erspective towards scene understanding and semantic segmenta-

ion with RGB-D camera. 

A future research schedule going further into exploit more effi-

ient CNN architectures, combining high-level representations from

NNs and low-level representations such as edges, corners from

LAM to reconstruct a more accurate and detailed 3D semantic

ap. 
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