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Abstract

In this paper, we present a formal 
model for the optimal weighted 
extreme learning machine (ELM) 

on imbalanced learning. Our model 
regards the optimal weighted ELM as an 
optimization problem to find the best 
weight matrix. We propose an approxi-
mate search algorithm, named weighted 
ELM with differential evolution (DE), 
that is a competitive stochastic search 
technique, to solve the optimization 
problem of the proposed formal 
imbalanced learning model. 
We perform experiments on 
standard imbalanced classifica-
tion datasets which consist of 39 
binary datasets and 3 multiclass 
datasets. The results show a 
significant performance improve-
ment over standard ELM with 
an average Gmean improvement 
of 10.15% on binary datasets 
and 1.48% on multiclass datasets, 
which are also better than other 
state-of-the-art methods. We 
also demonstrate that our pro-
posed algorithm can achieve 

high accuracy in representation learn-
ing by performing experiments on 
MNIST, CIFAR-10, and YouTube-8M, 
with feature representation from convo-
lutional neural networks.

I. Introduction
Extreme learning machine (ELM) [1]–[4], 
is an effective and efficient machine 
learning technique that has attracted 
attention in various fields. The essential 
advantage of ELM is that the hidden 

neuron parameters are randomly assigned 
which may be independent of training 
data and the output weights can be analyt-
ically decided by the Moore-Penrose gen-
eralized inverse [5], [6]. Thus, it provides 
simpler and faster implementation than 
other machine learning techniques.

In recent years, the imbalanced learn
ing problem [7]–[10] has drawn a signif-
icant amount of interest from academia, 
industry, and government funding agen-
cies as data continues to accumulate. As 

most of the standard learning 
algorithms assume the distri-
butions among all classes are 
equal, the equal misclassification 
costs are acceptable on algo-
rithms learning balanced datas-
ets. However, when dealing with 
a complex imbalanced dataset, 
standard algorithms [2]–[4] will 
fail to represent the distribu-
tion characteristics of the data 
and thus will lead to unfavor-
able accuracies across the data 
classes [11]. Unfortunately, clas-
sic ELM does not solve the 
problem of imbalanced data 
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distribution. When using classic ELM for 
imbalanced data, the majority class tends 
to push the separating boundary toward 
the minority side to gain better classifica-
tion results for itself. Therefore data in the 
minority class will be easily misclassified.

The most straightforward solution for 
imbalanced data learning is to assign the 
misclassification cost inversely to the class 
distribution, which may be simply calcu-
lated as the number of samples in each 
class. Thus Zong et al. [7] proposed 
weighted ELM to overcome the disad-
vantages of the original ELM for an 
imbalanced data problem. Their solution 
is based on the work regarding weighted 
regularized ELM presented by Toh [9] 
and Deng et al. [10], and the key essence 
of weighted ELM in Zong et al. [7] is to 
assign an extra weight to each sample to 
strengthen the impact of the minority 
class while weakening the relative impact 
of the majority class. Experimental results 
in their work showed superior perfor-
mance of weighted ELM compared with 
original ELM on various imbalanced 
datasets. However, the two weighting 
schemes used in their approach can only 
obtain empirical sub-optima, and global 
optima cannot be guaranteed. Following 
work [8] introduced the boosting meth-
od to obtain better weighting schemes; 
however, how to set the optimal weight-
ing scheme remains an open problem.

In this paper, we present a formal 
model for optimal weighted ELM 
applied to imbalanced learning. Our 
model assumes that the optimal weight-
ed ELM can be presented as an optimi-
zation problem to search the optimal 
weight matrix for the weighted ELM. 
We also present an approximate solution 
for the optimal weight matrix searching 
problem based on differential evolution 
(DE) [12], which is a competitive sto-
chastic search technique that performs 
well in various standard test functions 
and real-world optimization problems. 
We also evaluated the effectiveness of 
our learning machine algorithm by per-
forming experiments on various stan-
dard classification datasets, which consist 
of 39 binary datasets and 3 multiclass 
datasets: the MNIST [13], CIFAR-10 
[14], and YouTube-8M [15] datasets.

The contributions of our approach 
are as follows,

❏❏ We present a formal mathematical 
model to obtain the optimal weighting 
scheme. We introduce DE to calculate 
the approximate optimal solution.

❏❏ Our approach can achieve significant 
improvement in classification per-
formance compared with other 
state-of-the-art methods on various 
imbalanced datasets.

❏❏ Our approach can narrow the search 
range greatly compared with other 
state-of-the-art methods, which indi-
cates our approach may be more effi-
cient for the practical imbalanced 
learning problem.
The remaining sections are organized 

as follows. Sections II and III introduce 
the theoretical background of ELM and 
related ELM methods on imbalanced 
learning. Section IV presents the pro-
posed method. Section V reports the 
experimental results and performance 
analysis. Finally, the conclusions are sum-
marized in Section VI.

II. Theoretical Background
This section introduces a brief theoreti-
cal background of ELM.

ELM [1], [2] was originally proposed 
for single-hidden layer feedforward 
neural networks (SLFNs) and then ex
tended to ‘generalized’ SLFNs where 
the hidden layer does not require tun-
ing [3].

The main feature of ELM is the ran-
dom generation of hidden nodes which 
may be independent of the training data 
and the analytical calculation of output 
weights by the Moore-Penrose general-
ized inverse [3]. The hidden layer 
output (with l nodes) can be presented 
by a row vector ( ) [ ( ), ..., ( )]h x h x h xl1=  
where x  is the input sample. Given n  
training samples ( , ),x ti i  the mathemati-
cal model of the SLFNs is

	 .H Tb = � (1)

where H  is the hidden layer output 
matrix, b  is the output weight and T  is 
the target vector.

The least squares solution with mini-
mal norm is analytically determined 

using the Moore-Penrose “generalized” 
inverse [3], [16] as follows,

:
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ELM can also be explained from the 
optimization view. ELM tries to mini-
mize both H T 2

b -  and .2
b  There-

fore, a solution for formula (1) can be 
obtained [2] from

:

: ( ) , , ..., .

L C

h x t i n
2
1

2
1

1

Minimize

Subject to

i
i

n

i i
T

i
T

2 2

1
ELM b p

b p

= +

= - =
=

/

� (3)

where [ , ..., ], ,i i i m1p p p=  is the training 
error vector of the m  output nodes cor-
responding to training sample .x Ci  is 
the trade-off regularization parameter 
between the minimization of training 
errors and the maximization of the mar-
ginal distance. Based on the Karush-
Kuhn-Tucker (KKT) theorem [16], we 
can solve the optimization problem of 
formula (3) and obtain the same solution 
as formula (2).

Given a new sample ,x  the output 
function of ELM is obtained as follows.
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Here, ( ) ( ), ..., ( )f x f x f xm1= 6 @ is the out
put function vector. Users may determine 
the predication label of x  as follows.

.( ) ( ), [ , ..., ]arg maxlabel x f x i m1
i

i !=

� (5)

Recently, further focus has been 
placed on ELM algorithms and applica-
tions [17]–[19], and some advanced algo-
rithms [20]–[23] have been proposed to 
improve performance. In [20], a Bayes-
ian-based ELM (BELM), which incor-
porates the advantages of both ELM and 
Bayesian models, is proposed. It can 
build the corresponding confidence 
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interval without using additional meth-
ods such as bootstrap, and requires low 
computational cost.

Bai et al. [21] proposed a sparse ELM 
(S-ELM) by replacing the equality con-
straints in traditional ELM model with 
inequality constraints, which can reduce 
the storage space and testing time. Bai 
et al. [22] also proposed a S-ELM for 
regression analysis that can reduce the 
storage space and testing time. In addi-
tion, they have developed an efficient 
training algorithm based on iterative 
computation, which scales quadratically 
with respect to the number of training 
samples. In [23], a random projection-
based ELM (RP-ELM), which is esti-
mated on the analysis of the random 
projection feature mapping schema in 
the ELM, is proposed. RP-ELM can sig-
nificantly reduce the number of neurons 
in the hidden layer without affecting the 
accuracy of the generalization perfor-
mance. As a result, the final learning 
machine will benefit from a consider-
able simplification in the feature-map-
ping stage.

III. Related ELM Methods  
on Imbalanced Learning

A. Weighted ELM [7]
The main goal of the ELM classifier is 
to find a boundary to separate data from 
two or multiple parts with maximal 
margin distance between any two parts. 
This separating boundary is supposed to 
be pushed toward the side of the minor-
ity class for imbalanced data so that 
the minority classes are easy misclassi-
fied. To resolve this issue, weighted 
ELM (WELM) [7] has been recent-
ly proposed.

WELM improves the classification 
performance for data with imbalanced 
class distribution while maintaining the 
advantages of the original ELM stated 
above. Specifically, each training sample 
is assigned with an extra weight. Mathe-

matically, an n n#  diagonal matrix W  
associated with every training sample xi
is defined. Usually, if xi  comes from a 
minority class, the associated weight wii  
is relatively larger than samples from a 
majority class. Therefore, the impact of 
the minority class is strengthened while 
the relative impact of the majority class 
is weakened. Considering the diagonal 
weight matrix W, the optimization for-
mula of ELM can be revised [7] as

:
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According to the KKT theorem [16], 
the solution to formula (6) is

,
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They also proposed two empirical weight-
ing schemes [7] as follows,

:
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where #ti  is the number of samples 
belonging to class ,ti  and (# )tAVG i  re
presents the average number of samples 
for all classes.

Although WELM proposes two 
weighting schemes in formula (8) for 
imbalanced data, these matrices are not 
optimal, which can be proven by the 
following toy experiment. In the toy 
experiment, we first randomly generate 
an imbalanced dataset containing two 
categories with a category ratio of 10:1, 

and we also apply the standard ELM, 
WELM with ,W1  WELM with W2  and 
two other WELMs with randomly 
selected weights. The original dataset and 
the classification results are shown in 
Fig. 1, where the ground truth labels of 
every data instance are denoted by dif-
ferent symbols and the classification 
results are denoted by different colors. 
The results in Fig. 1 show that although 
WELM with W1  and W2  policies can 
achieve better results than the ELM 
method in this dataset, their perfor-
mances are worse than the two WELMs 
with randomly selected weights, which 
indicates the policies with W1  and W2  
in WELM are not optimal. In this paper, 
these two WELM classifiers are referred 
to as WELM-W1 and WELM-W2.

WELM [7] can improve the perfor-
mance of ELM greatly for imbalanced 
data. The classification error of the class 
with fewer elements was reduced by set-
ting an unequal cost distribution for 
each class with the weight matrix. How-
ever, the approach relied on empirical 
weighting schemes, which were designed 
according to the element number of 
each class. Thus, it can also be called ex
perienced WELM.

B. Boosting Weighted ELM [8]
To overcome this shortcoming of ex
per ienced WELM, boosting-based 
WELM (BWELM) [8] was proposed. 
BWELM tries to determine the opti-
mal weight matrix using an AdaBoost 
algorithm [24].

Inspired by the distribution weights 
updating mechanism of AdaBoost, they 
embedded WELM seamlessly into a 
modified AdaBoost framework. Intui-
tively, the distribution weights in Ada-
Boost, which reflect the importance of 
training samples, are input into WELM 
as training sample weights. Further-
more, such training sample weights are 
dynamically updated during iterations 
of AdaBoost.

Considering the characteristics of 
imbalanced learning, they modify the 
original AdaBoost.M1 [24] in two 
aspects. First, the initial distribution 
weights are set to be asymmetric to make 
AdaBoost converge at a faster speed. 

Gmean is a conventional evaluation metric in the case 
of imbalanced learning; it is the geometric mean of the 
recall values of all m classes.
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This results in a boosting classifier with 
a smaller number of WELM classifiers 
and can save much computational time. 
Second, the distribution weights are 
updated separately for different classes 
to avoid destroying the distribution 
weights’ asymmetry.

In this paper, we also address the 
problem of obtaining the best weighted 
matrix for the ELM-based imbalanced 
learning problem, and we propose a DE-
based WELM (DE-WELM) for imbal-
anced dataset learning.

DE was first presented by R. Storn 
and Price [12], and it has been recog-
nized as a powerful method for solving 
optimization problems. It resembles the 
structure of evolutionary algorithms, but 
differs from their traditional versions in 
the generation of new candidate solu-
tions and the use of a greedy selection 
scheme. As shown in previous research 

[25], DE is far more efficient and robust 
(with respect to reproducing the results 
in several runs) compared to other evo-
lutionary computation algorithms such 
as particle swarm optimization (PSO) 
[26] and evolutionary programming (EP) 
[27]. In addition, it has few parameters to 
set, and the same settings can be adapted 
to many different problems. Thus, this 
method has been actively used in various 
fields [28]–[30]. Some works [31]–[33] 
have focused on updating ELM using 
DE. However, they only use DE to search 
the hidden neuron parameters instead of 
searching the weighted matrix for imbal-
anced learning.

As parameters such as NP, F, and CR 
in the DE algorithm are critical for its 
performance, there are also many 
improved DE algorithms [34]–[40], 
and [41] which can adaptively control 
those parameters.

IV. Our Approach
Although the two weighting schemes in 
formula (8) can obtain superior results 
compared with the original ELM, they 
are only empirical schemes and cannot 
guarantee the optima, which was proven 
in the toy experiment. In this section, 
we present the formal mathematical 
model to obtain the optimal weighting 
scheme, and we also introduce the DE 
method [12] to calculate the approxi-
mate optimal weight matrix used in 
WELM, as the calculation for the formal 
model is infeasible.

A. Mathematical Model for  
Optimal Weighted Scheme
The problem of calculating the optimal 
weight matrix in WELM can be formal-
ly defined as follows, Given training data 

{( , ), { , , ..., }, , , ...,x t t m i1 2 1 2i i i !X = =

},n  and there are m  classes in ,X  the 
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(a) Original Data (b) ELM (Gmean: 95.3463) (c) WELM-W1 (Gmean: 98.5347)

(d) WELM-W2 (Gmean: 98.9949) (f) Random Selected
Weight (2) (Gmean: 99.7269)

(e) Random Selected
Weight (1) (Gmean: 99.6357)

Figure 1 Classification results produced by ELM, WELM-W1, WELM-W2, and WELM with random selected weights on a randomly-generated 
dataset with an imbalanced ratio of 1:10. Blue circles and red circles represent the correctly classified instances and incorrectly classified instanc-
es in the majority class, respectively. Red crosses and blue crosses represent the correctly classified instances and incorrectly classified instances 
in the minority class, respectively.
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optimal weight matrix can be obtained 
by optimizing the following formula,

( ( ( , ), ))
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( , )

,

, .

arg min

W

Gmean H W T

W

H C
I WHH WT n l

C
I H WH H WT n l

1

Subject to

when

when

W

T T

T T

1

1

1

$

b

b

X

X

=

-

=

+

+

)

-

-`
`

j
j*

� (9)

where H  is the hidden layer output 
matrix, T  is the target vector, and l  is 
the number of hidden layer nodes in 
WELM. As b  is the output weight 
computed in WELM using W  as the 
weight matrix, this formula can be con-
sidered as the function of W  and .X
Gmean is a conventional evaluation 
metric in the case of imbalanced learn-
ing; it is the geometric mean of the 
recall values of all m  classes and is 
defined as follows,

	 ( , )Gmean Y T p
q
j

j

j

m m

1

1

=
=

= G% � (10)

where Y  is the class prediction vector, 
q j  is the number of elements belonging 
in class j  correctly classified among ,Y
and p j  is the number of elements 
belonging in class j  among .T  Although 
we may use the Levenberg Marquardt 
(LM) algorithm [42] to search for the 
optimal solution to this problem, the 
results are quite sensitive to the initial 
values, so we introduce the DE algo-
rithm to calculate the approximate opti-
mal solution.

B. DE-based Approximate 
Weight Calculation Algorithm for 
Weighted ELM
DE is a method that optimizes a prob-
lem by iteratively trying to improve a 

candidate solution with regard to a 
given measure of quality; it has been 
successfully applied in many domains 
[28]–[30]. There are three major control 
factors in the DE algorithm, i.e., popula-
tion size (NP), scaling factor (F ), and 
crossover rate (CR). There are also three 
operations involved, i.e., mutation oper-
ation, crossover operation, and selection 
operation. We present our approximate 
weight calculation algorithm based on 
the three factors and three operations 
in DE.

There are two stages in our algorithm: 
the initial stage and the update stage.

1) Initial Stage
The initial stage generates an initial 
population that contains NP candidates 
in the weight matrix W, and searches for 
the best weight from the current candi-
date set.

First, the values in training set X are 
normalized to [-1,1], and we also select a 
subset vd 1X X  as the validation set, 
which is used to avoid overfitting.

The initial population contains NP 
candidate weight matrixes, NP – 2 can-
didates are generated randomly in [0,1], 
and the remaining two candidates are set 
as W1  and W2 , respectively, which are 
presented in WELM [7]. Thus the initial 
population WR  consists of NP n-dimen-
sional vectors as follows,

.
{ ( , , ..., ),
, , ..., } { , }

W W W w w w
i NP W W1 2 2

, , , , ,R i R i R i R i R i R
n1 2

1 2,

= =

= -
� (11)

Note that the weight matrix in WELM 
is a diagonal matrix, so all elements are zero 
except for the diagonal elements. There-
fore we will express a diagonal matrix 
using a vector.

Second, we transform (W i,i R = 
, , ..., )NP1 2  into a weight matr ix 

( )diag W ,i R
1 and compute the er ror 

( , ..., )E i NP1W ,i R =  of the WELM clas-
sifier on validation set ,vdX  and the 
candidate optimization weight vector 
which produces the lowest error is 
defined as .W ,best R

( ( , ( )), )

( , , ..., ).arg min

E

Gmean H W T
W

E i NP

1

1 2

diag ,

,

W

vd i R

R

W
W
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,

,

,

i R

i R

i R

b X

=

-
=

=� (12)

2) Update Stage
The update stage will generate a new 
candidate population based on the 
results of the previous iteration and per-
forms the operations of mutation, cross-
over, and selection.

The input of the update stage is a 
candidate population of the previous 
stage and the candidate optimal weight 
vector from the previous stage, and the 
output of the update stage is a candidate 
population of the next stage and a can-
didate optimal weight vector for the 
next stage.

First, we transform candidate popula-
tion WR  to mutant population VR  with 
the mutation operation. Each mutant 
vector of VR  is calculated according to 
the following equation.

.

{ (

) ( ),
, , ..., }

V V V W F W

W F W W
i NP1 2

, , , ,

, , ,

R i R i R i R R

i R r R r R

best

i i
1 2

= = +

- + -
=� (13)

The indices ri1  and ri2  are mutually 
exclusive integers randomly generated 
within the range [ , ],NP1  which are also 
different from the index .i  Indices are 
randomly generated once for each mutant 
vector. The scaling factor F  is a positive 
control parameter for scaling the differ-
ences among vectors.

After the mutation operation, we 
apply the crossover operation to each 
pair of target vector W ,i R  and its corre-
sponding mutant vector V ,i R  to gener-
ate a trial vector ( , , ..., )U u u u, , , ,i R i R i R i R

n1 2=  
as follows,

We compare the performance of our proposed  
method with four state-of-the-art methods, i.e., the 
Softmax classifier [43], the classic ELM classifier [1],  
the experienced WELM classifier [7], and the  
BWELM classifier [8].

1diag(.) is the function to map input vectors to a diago-
nal matrix as diagonal elements and all elements are 
zero except for the diagonal elements.
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[ , ) ) ( )
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Here if the values of the newly gen-
erated trial vectors exceed the correspond-
ing upper and lower bounds, they will 
be re-normalized into the range [ , ]0 1 .

CR is defined by users as a constant 
within the range [ , ]0 1 , which controls 
the fraction of parameter values copied 
from the mutant vector. jrand  is a ran-
domly chosen integer in the range [ , ]n1 . 
This operation copies the jth parameter 
of the mutant vector V ,i R  to the corre-
sponding element in trial vector U ,i R  if 

.[ , ) ) ( )CR j j0 1( orrand j rand# =  Other-
wise, the parameter is copied from the 
corresponding target vector .W ,i R  The 
condition j jrand=  is introduced to 
ensure that the trial vector U ,i R  will be 
different from its corresponding target 
vector W ,i R  by at least one parameter.

We then use ( )Udiag ,i R  ( , , ...,i 1 2=  
)NP  as a weight matrix to compute the 

error of the WELM classifier on valida-
tion set .vdX  The element which has the 
lowest error is defined to .U .Rbest  We can 
calculate the error of U ,i R  as follows.

( ( , ( )), )
( , ..., ) .

E Gmean H U T
i NP

1
1

diag ,U vd i R,i R b X= -

=� (15)

Then the next candidates popula-
tion { , , , ..., }W W i NP1 2,R i R1 1= =+ +  
and its best candidate can be decid-
ed according to the following select 
operation.

E E

E E

W
U
W

W
W
U

if
otherwise
if

otherwise.

,
,

,

,
,

,

U W

W U

i R
i R

i R

best R
R

R

1

1
best

best

, ,i R i R

best, best,R R1

#
=

=

+

+

'

'
� (16)

We compare the EU ,i R  of each trial 
vector U ,i R  with the EW ,i R  of its corre-
sponding target vector in the current 
population. If the trial vector has less or 
equal error value to the corresponding 
target vector, the trial vector will replace 

the target vector and enter the next can-
didate population. Otherwise, the target 
vector will remain in the population for 
the next generation.

The update stage will be executed 
iteratively several times, and we obtain 
the approximate optimal weight matrix 

( )Wdiag ,Rbest max  once the algorithm com-
pletes, where Rmax  is the number of it-
erations in the DE algorithm.

In short, our method obtains the ini-
tial population and the candidate weight 
vectors in the initial stage and calculates 
an approximate optimized matrix by 
updating the population using the DE 
algorithm in the update stage. The pseu-
do-code of our proposed algorithm is 
given in Algorithm 1.

V. Performance Evaluation
In this section, we conduct comparison 
experiments to evaluate the classification 
capability of our DE-WELM on imbal-
anced learning problems and the analy-
ses on the results are also presented. We 
compare the performance of our pro-
posed method with four state-of-the-art 
methods, i.e., the Softmax classifier [43], 
the classic ELM classifier [1], the experi-
enced WELM classifier [7], and the 
BWELM classifier [8].

We select a subset of the KEEL 
(Knowledge Extraction based on Evolu-
tionary Learning) imbalanced dataset 

repository2 to evaluate the methods. We 
also use the datasets of MNIST [13] 
(handwritten digit image dataset), the 
CIFAR-10 [14] (tiny image dataset), and 
the YouTube-8M database in our experi-
ments. The results are averaged over ten 
runs. Brief descriptions of the datasets are 
provided in the following subsections.

In our experiments, we also intro-
duce the imbalanced ratio (IR) [7] to 
quantitatively measure the imbalanced 
degree of a dataset.

: #( )
#( )

: (#( ))
(#( ))

, , ..., .max
min

IR

IR t
t

i m

1
1

1

Binary

Multiclass
i

i

=
-
+

= =

� (17)

Above, #( )1+  is the number of samples 
in a minority class, #( )1-  is the num-
ber of samples in the majority class, and 
#( )ti  is the number of samples in class ti  
for a multiclass dataset.

The attributes of all the datasets are 
normalized to [–1,1].

In ELM theory, there are many 
choices for feature mapping. In our 
experiments, we use the sigmoid addi-
tive based feature mapping function 
[4], which is a popular choice for 
researchers.  There are two parameters 

Algorithm 1 DE-WELM.

Input: Training set {( , ),x t ti i i !X = { , , ..., }, , , ..., },m i n1 2 1 2=  .Rmax

Output: Approximate optimal weight matrix .W *

1: �All data values xi  of training set X are normalized in [–1,1], and then select valida-
tion set .vdX  Set .R 0=

2: �Generate initial population { , , , ..., }W W i NP1 2,R i R= =  by formula (11).
3: �Compute the error ( , ..., )E i NP1W ,i R =  of WELM classifier with weight matrix 

( )Wdiag ,i R  on validation set vdX  and the candidate optimal weight vector W ,Rbest  by 
formula (12).

4: while R Rmax1  do
5:	� Compute the trial vectors ( , ..., )U i NP1,i R =  from WR  by formulas (13) and (14).
6:	� Compute the error ( , ..., )E i NP1U ,i R =  of WELM classifier with weight matrix 

( )Udiag ,i R  on validation set vdX  by formula (15).
7:	� Obtain next stage population WR 1+  and a candidate optimal weight vector of the 

next stage W ,R 1best +  by formula (16).
8:	 R R 1= + .
9: end while

10: .( )W Wdiag*
,Rbest max=

2http://sci2s.ugr.es/keel/study.php?cod=24
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to tune for ELM, i.e., the trade-off 
constant C  and the number of hidden 
nodes .l  In our exper iments, these 
two parameters for DE-WELM are 
set as follows,

	
{ , , , , , , }

{ , , , ..., , } .
C
l

2 2 2 2 2 2 2
10 110 210 810 910

6 4 2 0 2 4 6!

!

- - -

�
(18)

We set the control parameters to 
, , .NP F CR50 1 0 8= = =  in our ap

proach. The number of iterations Rmax  
is set to 10. The validation set is random-
ly assigned as a subset with half the ele-
ments of the training set.

In the experiments involving ELM, 
experienced WELM [7], and BWELM, 
the grid search ranges for C  and l  are 
conducted over { , , ..., , }2 2 2 218 16 48 50- -  
and { , , ..., , }10 20 990 1000 , respectively.

The search range of m  for the Soft-
max classifier is set as { , , ,8 7 6- - -

..., , , }1 2 3 .
To compare our algorithm with 

other computational methods, we also 
introduce the approximate weight search 
method based on PSO [44], [45]. Parti-
cle swarm optimization is one of the 
most popular nature-inspired meta-
heuristic optimization algorithms, devel-
oped by Kennedy and Eberhart in 1995 
[44], [45]. Since its development, many 
variants have also been developed for 
solving practical issues related to optimi-
zation [46]–[48]. In our paper, we use 
the PSO proposed in [26].

In the following experiments involv-
ing the PSO method, two acceleration 
parameters c1  and c2  are set to 2, the 
inertia factor w is set to [ . , . ]0 4 0 9 , and 
the maximal iteration is set to 50. The 
size of the initial population (swarm) 
that is the initial set of candidate weights 
is set to 50, and ,W W1 2 , which are pre-
sented in [7] are included in the initial 
population (swarm) and the remaining 
elements are randomly generated 
between [0,1]. The grid search ranges 
for C  and l  are also conducted over 
{ , , ..., , }2 2 2 218 16 48 50- -  and { , , ...,10 20

, },990 1000  respectively. We call this 
algorithm “PSO-WELM” in the follow-
ing sections.

A. Dataset Specification

1) Standard Classification Datasets
Similar to the data specifications men-
tioned in the experienced WELM [7] 
and BWELM [8], we have selected 39 
binary datasets and 3 multiclass datasets 
from the KEEL dataset repository 
which have different degrees of imbal-
ance. Details of the datasets used in 
our experiments are shown in Tables 1 
and 2, where the number of attributes 

Table 1 Specification of binary classification problems.

DATASETS # ATTRI # TRAIN # TEST IR 

YEAST05679VS4 8 422 106 0.1047

YEAST1458VS7 8 554 139 0.0453

YEAST1289VS7 8 385 97 0.0327

YEAST1VS7 7 367 92 0.0700

ECOLI1 7 268 68 0.2947

ECOLI2 7 268 68 0.1806

ECOLI3 7 268 68 0.1167

ECOLI4 7 268 68 0.0635

YEAST2VS4 8 411 103 0.1078

YEAST2VS8 8 385 97 0.0434

GLASS0123VS456 9 171 43 0.3053

GLASS016VS2 9 153 39 0.0929

GLASS016VS5 9 147 37 0.0500

PIMA 8 614 154 0.5350

YEAST1 8 1187 297 0.4064

YEAST3 8 1187 297 0.1230

YEAST4 8 1187 297 0.0349

YEAST5 8 1187 297 0.0304

SHUTTLEC0VSC4 9 1463 366 0.0726

SHUTTLEC2VSC4 9 103 26 0.0404

SEGMENT0 19 1846 462 0.1661

WISCONSIN 9 546 137 0.5380

HABERMAN 3 244 62 0.3556

IRIS0 4 120 30 0.5000

VOWEL0 13 790 198 0.1002

NEW-THYROID1 5 172 43 0.1944

NEW-THYROID2 5 172 43 0.1944

PAGE-BLOCKS1 10 377 95 0.0620

GLASS0 9 173 43 0.4786

GLASS1 9 171 43 0.5405

GLASS2 9 171 43 0.0823

GLASS4 9 171 43 0.0621

GLASS5 9 171 43 0.0427

GLASS6 9 171 43 0.1554

VEHICLE0 18 676 170 0.3075

VEHICLE1 18 676 170 0.3439

VEHICLE2 18 676 170 0.3466

VEHICLE3 18 676 170 0.3330

YEAST6 8 1187 297 0.0243
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(#ATTRI), the number of classes 
(#CLASS), the number of training 
samples (#TRAIN), the number of test 
samples (#TEST), and IR are listed. 
The IR of the binary datasets selected 
from the KEEL dataset varies from 
0.0243 to 0.5405, and the IR of the 
multiclass datasets varies from 0.0061 
to 0.5882.

2) MNIST Dataset [13]
The MNIST dataset (Mixed National 
Institute of Standards and Technology 
database) is a large database of handwrit-

ten digits that is commonly used for 
training various image processing sys-
tems. The database is also widely used 
for training and testing in the field of 
machine learning [13], [49]–[52]. The 
MNIST dataset contains 60,000 training 

images and 10,000 test images with each 
image labeled by an integer, and 7,000 
images per class. Each example is a 28 × 
28 single channel grayscale image. Exam-
ple images of the MNIST dataset are 
shown in Fig. 2(a).

Table 2 Specification of multiclass classification problems.

DATASETS # ATTRI # CLASS # TRAIN # TEST IR 

HAYES-ROTH 4 3 105 27 0.5882

NEW-THYROID 5 3 172 43 0.2066

PAGE-BLOCKS 10 5 438 110 0.0061

13,756 
15,945 

43,941 
50,448 
50,448 

62,252 
70,971 
71,306 

106,686 
152,482 
160,147 

226,161 
252,385 

327,335 
370,558 
388,718 
394,785 
435,991 

489,413 
580,627 

1,099,091 
1,149,528 
1,202,429 

2,884,721 
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Figure 2 Example digital images of MNIST database and CIFAR-10 database, and number histograms of top training videos in YouTube-8M.
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Table 3 Experimental results of binary problem.

DATASETS GMEAN (SIGMOID MODE)

SOFTMAX ELM WELM-W1 WELM-W2 BWELM PSO-WELM DE-WELM

(%) (%) (%) (%) (%) (%) (%) 

YEAST05679VS4 62.58 84.13 86.02 80.02 85.56 85.69 86.53 

YEAST1458VS7 45.12 61.07 67.10 64.26 68.09 68.55 72.18 

YEAST1289VS7 46.52 59.23 75.83 73.92 74.21 78.48 90.16

YEAST1VS7 49.72 74.70 76.65 81.36 86.23 88.24 85.45 

ECOLI1 86.40 87.77 90.69 90.26 93.02 90.80 95.13

ECOLI2 91.82 89.44 90.19 88.64 90.80 94.50 95.04 

ECOLI3 73.70 77.38 90.17 90.00 93.21 92.84 93.61

ECOLI4 85.15 91.96 97.83 95.90 100 100 99.19 

YEAST2VS4 85.28 86.25 91.56 90.02 93.78 97.75 98.01

YEAST2VS8 81.63 72.83 75.56 76.01 81.32 80.32 81.65 

GLASS0123VS456 97.10 95.34 95.66 95.55 100 100 100

GLASS016VS2 49.28 67.78 83.77 83.06 92.85 94.11 95.26 

GLASS016VS5 100 92.41 98.55 98.70 100 100 100

PIMA 74.32 70.10 74.74 71.51 75.79 74.97 78.06 

YEAST1 54.19 63.26 72.57 70.32 73.36 73.37 77.06

YEAST3 73.42 80.75 93.25 91.08 92.52 93.92 94.06 

YEAST4 40.54 65.52 87.92 73.92 83.51 93.05 93.01

YEAST5 61.02 81.04 95.39 95.15 98.25 98.79 99.04 

SHUTTLEC0VSC4 100 100 100 100 100 100 100 

SHUTTLEC2VSC4 100 93.54 100 100 100 100 100 

SEGMENT0 100 99.24 99.75 99.70 99.78 100 100 

WISCONSIN 95.58 97.85 97.62 96.95 97.34 98.25 98.48 

HABERMAN 23.57 49.16 65.11 59.26 73.74 77.24 78.95 

IRIS0 100 100 100 100 100 100 100 

VOWEL0 85.58 100 100 100 100 100 100 

NEW-THYROID1 98.64 98.24 99.44 99.72 100 100 100 

NEW-THYROID2 100 95.55 99.72 100 100 100 100 

PAGE-BLOCKS1 97.78 99.09 99.43 99.42 100 100 100 

GLASS0 74.65 78.51 80.29 81.35 86.66 88.98 87.18 

GLASS1 38.29 78.79 78.96 80.87 79.54 84.04 86.09 

GLASS2 57.01 90.61 91.33 88.34 90.15 93.07 94.08 

GLASS4 69.79 85.72 91.34 91.46 96.45 96.74 97.33 

GLASS5 97.47 90.81 95.99 96.60 100 100 100 

GLASS6 89.44 94.96 95.72 95.90 100 100 100 

VEHICLE0 95.97 98.51 99.12 99.09 96.71 100 99.62 

VEHICLE1 69.54 84.14 85.21 82.75 75.98 87.23 87.47 

VEHICLE2 95.99 98.43 99.12 98.78 97.31 100 100 

VEHICLE3 60.92 78.15 85.13 84.34 85.37 86.52 87.37 

YEAST6 70.59 70.77 87.77 88.29 90.68 89.67 90.02 

AVERAGE 76.37 84.18 89.60 88.52 91.07 92.49 93.33 
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3) CIFAR-10 Dataset [14]
The CIFAR-10 dataset is a labeled sub-
set of the 80 Million Tiny Images data-
set3, containing 60,000 color images (32 
× 32) in 10 classes, with 6,000 images 
per class. They are split into 50,000 
training images and 10,000 test images. 
Example images of the CIFAR-10 data-
base are shown in Fig. 2(b).

4) YouTube Dataset
The YouTube-8M dataset [15] contains 
approximately 8 million YouTube vid-
eos. Each video is annotated with one 
or multiple tags for a total of 4,716 class-
es. All 4,716 classes can be grouped into 
24 top-level vertical categories. In Fig. 2(c), 
we show histograms with the number of 
training videos in each top-level vertical 
(or top-level) category.

B. Experimental Results on  
Standard Classification Datasets
The experimental results of seven meth-
ods (Softmax, ELM, WELM-W1, 
WELM-W2, BWELM, PSO-WELM, 
and DE-WELM) under 39 binary im
balanced datasets and 3 multiclass imbal-
anced datasets are given in Tables 3 and 4, 
respectively. The results in both tables 
show that our DE-WELM can perform 
much better than all the other state-of-
the-art methods, and the evaluation 
metric Gmean can improve by 30% 
compared to the classic ELM classifier. 
The average performance metrics also 
indicate significant improvement using 
our approach.

1) Comparison with  
Softmax Classifier
As can be seen in Tables 3 and 4, our 
DE-based algorithm can achieve satis-
factory performance for all datasets 
compared with the Softmax classifier. 
Specifically, on the datasets YEAST-
1289VS7, HABERMAN, YEAST4, 
GLASS1, and GLASS016VS2, DE-WELM 
can achieve an improvement of more 
than 40% on Gmean. There are six datas-
ets where both classifiers achieve perfect 
100% Gmean values. The Softmax classifi-
er can perform much better than other 

algorithms except for our DE-WELM 
on the datasets of ECOLI2 and GLASS-
0123VS456, which also indicates that 
WELM-W1, WELM-W2, and BWELM 
are not optimal.

2) Comparison with  
Experienced Weighted ELM
Based on the results in Table 3, our DE-
WELM can perform much better in all 
datasets compared with experienced 
WELM, especially on the datasets 
YEAST1289VS7 , YEAST4 , and 
GLASS016VS2, achieving an improve-
ment of more than 10% on Gmean. 
Regarding the balanced datasets such as 
GLASS1, WISCONSIN, PIMA, etc., the 
experimental results of DE-WELM are 
also better than experienced WELM, 
which shows that our method is applica-
ble to not only imbalanced datasets, but 
also to balanced datasets. It also indicates 
that the two experienced weighting 
schemes employed in [7] are not optimal.

3) Comparison with  
Boosting Weighted ELM
As shown in Table 3, DE-WELM can 
achieve superior performance on 39 
datasets (92.85%) versus BWELM 
except for ECOLI4, YEAST6, and 
YEAST1VS7. There are 11 datasets 
(26.19%) where both DE-WELM and 
BWELM achieve perfect 100% Gmean 
values, which indicates that optimal 
weights are reached for those datasets. 
We further focus on the three datasets 
where DE-WELM performs worse than 
BWELM. The Gmean values of our 
approach are all slightly lower (less than 
1%) than BWELM. The Gmean values 
of our approach on other datasets are 

better than the values of BWELM, 
where the Gmean values in some datas-
ets, such as VEHICLE1, YEAST4, and 
YEAST1289VS7, are 10% higher than 
the values of BWELM. The overall com
parable results indicate that DE-WELM 
potentially represents a superior solution 
as an optimal WELM classifier com-
pared with BWELM. This conclusion is 
further supported by the results for aver-
age Gmean values.

4) Multiclass Imbalanced Learning
The experimental results on multiclass 
data are shown in Table 4, the results 
also show that DE-WELM can achieve 
much better performance compared 
with other methods except on NEW-
THYROID, where the Gmean value of 
our method is 0.04% lower than the 
value of BWELM. The results in Table 4 
indicate that our DE-WELM potential-
ly represents the best solution as an opti-
mal WELM classifier in multiclass 
imbalanced datasets.

5) Analysis on the Search Ranges
In ELM related methods, the best 
parameters for the trade-off constant C  
and the number of hidden nodes l are 
normally obtained by a grid search pol-
icy, which pre-sets search ranges for 
these two parameters and exhaustively 
searches all possible combinations of 
these two parameters. Obviously, the 
computation efficiencies are negatively 
related to the search ranges, while the 
probabilities to obtain the optimal 
solution are positively related to the 
search ranges.

In the beginning of our experiment 
section, we mentioned that the settings 

Table 4 Experimental results of multiclass problems.

DATASETS GMEAN (SIGMOID MODE)

SOFTMAX ELM
WELM-
W1

WELM-
W2 BWELM

PSO-
WELM

DE-
WELM

(%) (%) (%) (%) (%) (%) (%) 

HAYES-ROTH 42.51 67.94 69.65 63.52 71.65 71.20 72.20 

NEW-THYROID 80.69 93.11 92.83 92.58 93.15 93.51 93.11 

PAGE-BLOCKS 88.46 94.41 89.71 94.33 93.52 92.85 94.60 

AVERAGE 70.55 85.15 84.06 83.47 86.10 85.85 86.63 3http://groups.csail.mit.edu/vision/TinyImages/
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of C and l in our DE-WELM are based 
over  { , , , , , , }2 2 2 2 2 2 26 4 2 0 2 4 6- - -  and 
{ , , , ..., , }10 110 210 810 910 , respectively, 
and the settings of C and l in other 
methods are { , , ..., , }2 2 2 218 16 48 50- -  and 
{ , , ..., , }10 20 990 1000 , respectively. The 
experimental results in Tables 3 and 4 
indicate that DE-WELM uses a smaller 
search range compared to other state-of-
the-art methods, and can achieve much 
better performance compared to other 
state-of-the-art methods. Thus, our DE-
WELM represents a more efficient opti-
mal WELM classifier.

6) Analysis of the Convergence  
on Iterations
In this section, we will further evaluate 
the convergence on iteration of our 
DE-WELM. We carry out two experi-
ments on six datasets, i.e., WISCONSIN, 
HABERMAN, GLASS5, SEGMENT0, 
GLASS0, and PIMA. We use two sets of 
C  and l  parameters for the two experi-
ments and plot the training Gmean val-
ues after every iteration of the DE 
algorithm. The results are shown in 

Fig. 3. As shown in Fig. 3, a minimum 
of 9 iterations are required for the train-
ing process to converge in WISCON-
SIN, 10 in PIMA, 6 in GLASS5, 7 in 
SEGMENT0, 10 in HABERMAN, and 
10 in GLASS0.

The results in Fig. 3 indicate that 
although the two sets of parameters are 
quite different, DE-WELM will quickly 
converge to the optimum within 10 iter-
ations on all the test datasets, which indi-
cates DE-WELM can easily converge 
toward the optimal solution. Therefore, 
we set the number of iterations to 
R 10max =  in the previous experiments.

7) Comparison with  
Other Computational  
Method Based WELM
As shown in Tables 3 and 4, our DE-
WELM can achieve superior perfor-
mance to PSO-WELM on 36 datasets 
(85.71%) except for ECOLI4, YEAST4, 
GLASS0, VEHICLE0, YEAST1VS7, 
and NEW-THYROID. Among all datas-
ets, there are 13 datasets (30.95%) where 
both methods achieve perfect 100% 

Gmean values. Comparing with PSO-
WELM, there are six datasets (14.29%) 
(YEAST1458VS7, YEAST1289VS7, 
ECOLI1, PIMA, YEAST1, GLASS1) 
where DE-WELM achieves an improve-
ment of over 2% on Gmean, 11 datasets 
(26.19%) (YEAST05679VS4, ECOLI2, 
ECOLI3, YEAST2VS8, GLASS016VS2, 
HABERMAN, and so on) where DE-
WELM can achieve an improvement 
greater than 0.5% on Gmean, and six data-
sets (14.29%) where DE-WELM achieves 
an improvement of more than 0.14% on 
Gmean. DE-WELM achieves an improve-
ment above 0.84% regarding average 
Gmean for binary datasets, and an 
improvement greater than 0.78% on aver-
age Gmean for multiclass datasets com-
pared with PSO-WELM.

8) Temporal Complexity Analysis
Regarding the temporal complexity, 
assuming that the temporal computation 
cost of a single WELM on the given 
parameters of ,C  l  is denoted as ,tWELM  
then the temporal complexities of 
WELM based methods can be expressed 
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Figure 3 Gmean values after every iteration of our DE-based method on six standard classification datasets.
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as the search numbers multiplied by the 
basic temporal computation cost of a 
single ELM as follows,

( )

T t

P I C Lmax

WELM

size number number

#

# # #

=
�
(19)

where Psize  is the size of the candidate 
population, Imax  is the number of itera-
tions, Cnumber  is the number of possible 
trade-off constants ,C  and Lnumber  is the 
number of possible hidden nodes l.

Considering the above equation and 
our experiment settings, the temporal 
complexity of our algorithm is tWELM  

,t50 10 7 10 35 000WELM# # # # #=  
and the temporal complexity of PSO-
WELM is t 50 100 35 100WELM # # # #  

, , .t 17 500 000WELM #=  Consider ing 
that the initial candidate weight of 
BWELM is one and requires 10 itera-
tions, the temporal complexity of 
BWELM is t 1 10 35 100WELM # # # #  

, .t 35 000WELM #=  That is to say, our 
DE-WELM is 500 times faster than 
PSO-WELM and is equal to BWELM 
in terms of temporal complexity.

As mentioned for BWELM in [8] 
and considering the very fast learning 
speed of ELM, such costs for DE-WELM 
are quite acceptable.

9) Analysis of the Convergence  
on Different Initializations
Both our DE-WELM and PSO-WELM 
employ candidate weight populations 
that are randomly generated at the 
beginning of the algorithm. In the case 
of BWELM, the initial weights are 
determined directly by the data. In this 
section, we will further evaluate the con-
vergence on different initial candidate 
weight populations. We set the same ini-
tial population, which is generated ran-
domly, for the former two methods and 
perform comparative experiments on 
two datasets (ECOLI1, GLASS2). The 
experiments were carried out ten times 
with different initializations. At the same 
time, corresponding experiments on 
BWELM were also performed. The 
results can be seen in Fig. 4.

In Fig. 4, the horizontal axis indicates 
the sequence number of the different ini-
tial candidate weight populations and the 
vertical axis denotes the resulting Gmean 
values obtained in each experiment. 
Among 10 experiments for ECOLI1, 
DE-WELM achieved better classification 
performance than PSO-WELM in 9 
experiments (90%), and in 7 experiments 
(70%) compared to BWLEM. Among 
the 10 experiments for GLASS2, DE-

WELM achieved better classification 
performance than PSO-WELM in 8 ex
periments (80%), and in 9 experiments 
(90%) compared to BWLEM.

C. Experimental Results  
on MNIST Dataset
We introduce the LeNet-5 model to 
evaluate the performance of DE-WELM 
versus three state-of-the-art methods 
(classic ELM classifier, experienced 
WELM classifier, and BWELM) on the 
MNIST dataset. The LeNet-5 model [13] 
is a classic convolutional neural network 
(CNN) architecture proposed by LeCun 
et al. in 1998, which was applied in hand-
written digit character recognition.

We perform experiments with the 
LeNet-5 model regarding the first few 
layers of the network as feature extrac-
tors to evaluate DE-WELM.

We first arbitrar ily select three 
datasets that do not overlap and bal-
ance among the 70,000 MNIST datas-
ets (60,000 training sets, 10,000 test 
sets). These three datasets are referred 
to as RES_DATA (representation 
training set), C_TRAIN (classifier 
training set), and C_TEST (classifier 
test set). The details of the selected 
datasets are provideds in Table 5, 
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Figure 4 Experimental results of the convergence on initialization of weight on two datasets (ECOLI1, GLASS2).
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where the number of attributes (#ATTRI), 
the number of classes (#CLASS), the num-
ber of selected data (#SAMPLE) and, IR 
are listed.

Then we train the LeNet-5 model 
on Res_Data by a popular deep learning 
framework known as Caffe [53]. The 
parameters we used for training the 
CNN are the default values in Caffe.

The LeNet-5 model outputs fea-
ture images of original image data 
which have 500 dimensions in its first 
fully connected layer. We regard the 
output of the LeNet-5 model’s first 
fully connected layer on C_TRAIN as 
the training set to evaluate our classifi-
er algorithm, and we take the output 
of LeNet-5 model’s first fully connect-
ed layer on C_TEST as the test set to 
evaluate our DE-WELM. We also eval-
uate the classification of LeNet-5 using 
the above two data to compare with 
DE-WELM.

The experimental results of six 
methods (LeNet-5, ELM, WELM-W1, 
WELM-W2, BWELM, and DE-WELM) 
under selected datasets are given in 
Table 7. The parameters used in the 
experiment were the same as those used 
for the standard classification problem 
datasets. Table 7 indicates that DE-
WELM achieves better performance 
than the other methods.

D. Experimental Results on  
CIFAR-10 Dataset
We introduce the CifarNet model [14] to 
evaluate the performance of our DE-
WELM with four state-of-the-art meth-
ods (ELM, WELM-W1, WELM-W2, 
and BWELM) on CIFAR-10. Proposed 
by Alex Krizhevsky, CifarNet is the state-
of-the-art method for object classification 
on the CIFAR-10 dataset. It has three 
convolution layers and three pooling lay-
ers for feature extraction, and a fully con-

nected layer on top for classification. We 
use the simplest implementation to train 
a CifarNet model as a baseline model 
without any preprocessing such as image 
translations or transformations.

We perform experiments on Cifar-
Net regarding the first few layers of the 
network as feature extractors to evaluate 
our classifier algorithm.

We first arbitrarily select three datasets 
that do not overlap and balance (among 
60,000 images from the CIFAR-10 data-
set: 50,000 for the training set, 10,000 for 
the test set), as Res_DATA (representa-
tion training set), C_TRAIN (classifier 
training set) and C_TEST (classifier test 
set). The details of the selected datasets are 
shown in Table 6, where the number of 
attributes (#ATTRI), the number of 
classes (#CLASS), the number of selected 
data (#SAMPLE), and IR are listed.

We train CifarNet on Res_Data 
using Caffe and its default parameters [53].

We extract and reshape the output of 
the “Pool3” layer, which has 1024 dimen-
sions, and use the extracted features of 
the CIFAR-10 dataset to evaluate five 
classifiers (ELM, WELM-W1, WELM-
W2, BWELM, and DE-WELM). We 
regard the output of CifarNet model’s 
“Pool3” layer on C_TRAIN as the 
training set, and the output of CifarNet 
model’s “Pool3” layer on C_TEST as 
the test set to evaluate DE-WELM. We 
also evaluated classification by the Cifar-
Net model using the above two datasets 
to compare with our DE-WELM.

The experimental results for six meth-
ods (CifarNet, ELM, WELM-W1, 
WELM-W2, BWELM, and DE-WELM) 
under selected imbalanced datasets are 
given in Table 7. The parameters in the 
experiment were the same as previous 
experiments. As shown in Table 7, 
DE-WELM achieves better performance 
than other methods except for CifarNet.

Table 7 Experimental results on MNIST and CIFAR-10.

DATABASES GMEAN (SIGMOID MODE)

LENET-5 CIFARNET ELM WELM-W1 WELM-W2 BWELM DE-WELM

(%) (%) (%) (%) (%) (%) (%) 

MNIST 96.82 95.57 97.58 97.5 97.48 97.72 

CIFAR-10 58.84 37.33 53.94 55.73 55.54 57.25 

We perform experiments with the LeNet-5 model 
regarding the first few layers of the network as feature 
extractors to evaluate DE-WELM.

Table 5 Selected imbalanced datasets from MNIST.

DATASETS # ATTRI # CLASS # SAMPLE IR 

RES_DATA 500 10 13470 0.0848

C_TRAIN 500 10 3329 0.0872

C_TEST 500 10 4991 0.0872

Table 6 Selected imbalanced datasets from CIFAR-10.

DATASETS # ATTRI # CLASS # SAMPLE IR 

RES_DATA 1024 10 12351 0.0839

C_TRAIN 1024 10 3121 0.0918

C_TEST 1024 10 4679 0.0918
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Figure 5 Confusion matrices obtained by applying six algorithms (CifarNet, ELM, WELM-W1, WELM-W2, BWELM, DE-WELM) on CIFAR-10 dataset.
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The Gmean value of our approach is 
1.59% lower than CifarNet with the 
original Softmax classifier. We can argue 
that the model has been custom-trained 
in the network training stage for the 
Softmax classifier layer by back-propaga-
tion from the classification layer to the 
feature extraction part. Hence the origi-
nal structure of the classifier works bet-
ter for the feature extractor than our 
independent classifier. A relatively similar 
work to this paper is [54]. The authors 
compared a “one-shot” fine-tuning 
with Softmax to a multi-stage training 
method using support vector machines 
(SVMs) and the results indicated that 
Softmax slightly outperforms SVMs. On 
the other hand, the number of parame-
ters in the classifier is much smaller than 
the number in the feature extraction 
layers, which leads to a fast recovery for 
the Softmax layer during the classifier 
training stage. To some degree, the Soft-
max layer recalls the samples in the 
network training set. In the case with 
an independent classifier (DE-WELM), 
the results are close to the original clas-
sifier performance of CifarNet, indicat-
ing the effectiveness and robustness of 
our algorithm.

In Fig. 5, we show the confusion 
matrices obtained by applying the six 
methods (CifarNet, ELM, WELM-W1, 
WELM-W2, BWELM, and  DE-
WELM). As can be observed, our meth-
od achieves better performance than 
CifarNet for four classes (bird, dog, frog, 
truck). It is worth considering here that 
“bird” and “truck” classes belong to the 
minority class. The sample numbers of 

“bird” and “truck” in C_TRAIN are 
respectively 95 and 58, which are the 
two smallest classes among the classes of 
C_TRAIN. This shows that our DE-
WELM is more suitable for imbalanced 
data classification.

The experimental results on the 
selected feature data also show that DE-
WELM achieves better performance 
compared with the other four methods.

E. Experimental Results  
on YouTube Dataset
In this dataset, visual and audio features 
are pre-extracted. Visual features are 
obtained using the Google Inception 
CNN, which is pre-trained on ImageN-
et [55], and those features are then 
reduced by PCA-compression into a 
1024-dimensional vector. The audio fea-
tures are extracted from a pre-trained 
VGG [56] network. In the official split, 
the dataset is divided into three parts: 
70% for training, 20% for validation, and 
10% for testing. In our experiment, we 
randomly selected 15,801 videos, which 
have unique top-level vertical categories 
with visual features from the official 
dataset, to validate our algorithm on 
video classification problems. The de
tails of the selected datasets are shown 
in Table 8.

The experimental results of these five 
methods, i.e., WELM-W1, WELM-W2, 
BWELM, PSO-WELM, and DE-
WELM, under selected imbalanced 
datasets are given in Table 9. The param-
eters for the experiment were the same 
as the ones in the experiment on stan-
dard classification datasets. As shown in 

Table 9, our DE-WELM achieves better 
performance than the other methods.

The experimental results indicate 
that our DE-WELM model is an effec-
tive and efficient algorithm for solving 
the class imbalanced problem in varied 
datasets. However, owing to an embed-
ded optimization search procedure in 
the algorithm, DE-WELM requires 
more training time. Table 9 provides the 
total running time of various learning 
algorithms on the YouTube datasets. 
From Table 9, the execution time of 
DE-WELM is several times higher than 
WELM-W1 and WELM-W2. As our 
proposed DE-WELM employs the vali-
dation set in the training step, our algo-
rithm is a little slower than BWELM.

VI. Conclusions
In this paper, we present the formal 
mathematical model to obtain the opti-
mal weight scheme in WELM for 
imbalanced learning problems. We also 
propose DE-WELM to calculate the 
approximate optimal weight matrix of 
the model. The effectiveness of DE-
WELM is proven by experiments con-
ducted using 39 binary datasets and 3 
multiclass datasets which have different 
degrees of imbalance, as well as two 
large-scale image datasets from MNIST 
and CIFAR-10, and one large-scale 
video dataset from YouTube-8M.

Our DE-based approximate weight 
calculation algorithm requires only 10 
iterations to converge to a solution and 
uses a smaller search range than other 
state-of-the-art methods for the trade-
off between constant C and the number 
of hidden nodes l. As the initial popula-
tion in our approach contains two expe-
rienced weighting schemes, W1 and W2, 
our algorithm can preserve the advan-
tages of WELM [7]. We also performed 
experiments comparing other computa-
tional methods, and the experimental 
results show that DE-WELM can im
prove overall classification performance 
significantly with less temporal com-
plexity. Future work will focus on more 
effectively structuring the initial popula-
tion into the DE algorithm, and apply-
ing DE-WELM to datasets with large 
variety in class distributions.

Table 9 Experimental results on YouTube dataset.

EXPERIMENT 
INDEX WELM-W1 WELM-W2 BWELM PSO-WELM DE-WELM

GMEAN(%) 47.78 47.40 46.25 47.84 49.51  

TOTAL RUNNING 
TIME(S)

2287.57 2236.45 23301.35 3535679.05 24805.23 

Table 8 Selected imbalanced datasets from YouTube.

DATASETS # ATTRI # CLASS # SAMPLE IR 

TRAINDATA 1024 24 10534 0.0018

TESTDATA 1024 24 5267 0.0018
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