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A B S T R A C T

In this paper, we formalize memory- and tracking-based methods to perform the LiDAR-based Video Object
Segmentation (VOS) task, which segments points of the specific 3D target (given in the first frame) in a LiDAR
sequence. LiDAR-based VOS can directly provide target-aware geometric information for practical application
scenarios like behavior analysis and anticipating danger. We first construct a LiDAR-based VOS dataset named
KITTI-VOS based on SemanticKITTI, which acts as a testbed and facilitates comprehensive evaluations of
algorithm performance. Next, we provide two types of baselines, i.e., memory-based and tracking-based
baselines, to explore this task. Specifically, the first memory-based pipeline is built on a space–time memory
network equipped with the non-local spatiotemporal attention-based memory bank. We further design a more
potent variant to introduce the locality into the spatiotemporal attention module by local self-attention and
cross-attention modules. For the second tracking-based baseline, we modify two representative 3D object
tracking methods to adapt to LiDAR-based VOS tasks. Finally, we propose a refine module that takes mask
priors and generates object-aware kernels, which could boost all the baselines’ performance. We evaluate the
proposed methods on the dataset and demonstrate their effectiveness.
1. Introduction

Recently, the task of RGB-based Video Object Segmentation (VOS)
has attracted extensive attention [1–10] attributed to its widespread
applications in object tracking and behavior analysis. This task aims to
segment objects given in the first frame in successive video snippets.
Despite promising results, they face great challenges when dealing
with low-light conditions or textureless objects. In contrast, LiDARs are
insensitive to texture and robust to light variations, making them a
suitable complement to cameras. On the other hand, with the rapid
development of LiDAR sensors in the past decade, solving various
vision problems with point clouds has become a hot topic due to
the huge potential in applications such as autonomous driving and
robotics. However, we recognize that the task of LiDAR-based VOS has
been unexplored, mainly due to the lack of proper task formalization,
datasets, and evaluation benchmarks.

In this paper, we formalize the LiDAR-based VOS task that segments
the specific targets (provided in the first frame) in LiDAR sequences,
providing their motion and geometric information for practical appli-
cations such as behavior analysis and anticipating danger. 3D object
tracking is the most related task, which provides objects’ boundary and
orientation information, much coarser than point-wise segmentation.
One can easily obtain the target’s shape proposal (segmentation mask)
by cropping points inside the bounding box provided by the tracker.
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However, generating high-quality bounding boxes is challenging since
LiDAR points only exist on object surfaces. Moreover, due to the
inaccuracy of bounding boxes and the complex scenes, the cropped
points usually contain many noisy points or only part of objects, re-
sulting in low-quality segmentation, especially on large objects, which
is consistent with our experiments in Table 2.

To begin with, we construct a LiDAR-based VOS dataset named
KITTI-VOS based on SemanticKITTI [11] to lay the data foundation
for this task, facilitating comprehensive evaluations of algorithm per-
formance. SemanticKITTI is based on the KITTI Vision Benchmark,
providing panoptic annotations for all sequences of the Odometry
Benchmark. We choose traffic participants (cars, people, trucks, and
cyclists) as targets, whose annotations are generated by selecting the
corresponding instance mask from the panoptic annotations. We set
some constrained rules to form LiDAR sequences with reliable initial
frames. For example, we remove very far instances and choose frames
that contain instances with more than fifty points as the first frame and
the subsequent frames to form the LiDAR sequences.

Next, based on the constructed KITTI-VOS, we provide two types
of baselines for comprehensive evaluation. Firstly, inspired by 2D
memory-based VOS techniques, we propose a simple and flexible
memory-based method, termed 3DSTM, for the LiDAR-based VOS task.
As shown in Fig. 1(a), each module of the baseline is very concise
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Fig. 1. Overview of memory-based pipeline, which mainly consists of four components, i.e., input transformation modules, Siamese encoder, spatiotemporal attention module, and
decoder. The two input transformation modules are used to map the reference points 𝑃𝑅 with targets’ masks 𝑀𝑅 and query points 𝑃𝑄 to the embeddings 𝐸𝑅 and 𝐸𝑄. And the
Siamese encoder encodes the input embeddings to features 𝐹𝑅 and 𝐹𝑄. The spatiotemporal models the relationships between 𝐹𝑅 and 𝐹𝑄 and outputs the matching features 𝑂.
Finally, the decoder takes the matching features as input and predicts the segmentation masks of search points. (d) and (e) illustrate the details of the local self-attention block
(LSA) and the local cross-attention block (LCA). ⊖,⊕ denote element-wise reduction and element-wise summation. ⊗, ′ indicate matrix multiplication and concatenate operation.
⊙ means element-wise production and summation along the dimension of 𝐾.
-
to enable further exploration and improvement. Furthermore, the spa-
tiotemporal attention module in 3DSTM is inherently similar to the
non-local matching mechanism, lacking locality. However, the surface-
aggregated point cloud shows the property of local density, reflecting
the surface structure of objects. Besides, it is challenging to overcome
under-segmentation problems with global attention only. Therefore,
we replace the spatiotemporal attention block in the baseline with the
local-attention transformers as a potent variant dubbed 3DSTM-TR to
fully leverage the sequential nature and the local denseness structure of
LiDAR videos. Moreover, to provide a more comprehensive evaluation,
we added a simple post-processing operation after a 3D object tracker
to form the tracking-based baselines.

Finally, we propose a refine module to boost all the baselines’
performance. The refine module is plug-and-play, which can be easily
extended to these baselines and trained end-to-end. It takes the coarse
masks as priors, learning object-aware kernels and mask features to
acquire high-quality segmentation masks. For memory-based baselines,
the refine module takes the predicted coarse segmentation masks as
priors to further improve the masks’ qualities. And for tracking-based
baselines, the refine module serves as a segmentation head to obtain
more accurate predictions with generated coarse masks as priors from
the predicted boxes. Thus, by taking advantage of prior knowledge, the
refine module can improve the ability to handle distraction problems
for memory-based baselines and break the limitation of the trackers.

Our main contributions can be summarized as follows:
∙ To our knowledge, we first perform the LiDAR-based VOS, which

segments specific 3D targets (given in the first frame) in LiDAR se-
quences.

∙ The 3D VOS dataset dubbed KITTI-VOS is constructed based on
SemanticKITTI to facilitate comprehensive evaluations of algorithms.
22
∙ We provide two types of baselines, i.e., memory-based and tracking
based baselines to perform LiDAR-based video object segmentation,
facilitating a more comprehensive study for this task.

∙ We design an effective refine module to explore the potential
solutions to boost performances of these baselines.

2. Related works

2D video object segmentation. Visual segmentation [12–14] is a fun-
damental problem in computer vision and has widespread real-world
applications such as robotics, video editing, and autonomous driving.
As one of the popular segmentation tasks, 2D semi-supervised VOS
provides the targets’ masks in the first frame, and the algorithms should
predict the segmentation masks for those targets in the subsequent
frames. The existing algorithms can be categorized as tracking-based
and matching-based methods. Tracking-based methods [1,3,4] combine
an object tracker to indicate the spatial locations of the interesting
objects, then segment masks in the detected bounding boxes. The
integration of the object tracker helps improve the inference speed,
which is more friendly to real-time applications such as edge intelli-
gence [14,15]. However, the segmentation accuracy would be limited
by the tracker’s performance. The matching-based methods [5–10,16–
19] match the features of the query frame and the reference frame
to learn the appearances of the target objects. One of the most repre-
sentative approaches is STM [7], which introduces a memory bank to
store the past frames’ features and uses a space–time attention module
to retrieve the information in the memory for segmentation. Here,
we follow the matching-based paradigms to construct the memory-
based baseline 3DSTM and a variant 3DSTM-TR that introduces local
correlation [20,21] for robust LiDAR-based VOS. To facilitate a more
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comprehensive evaluation, we also integrate the tracker to form the
tracking-based baselines.

3D singe object tracking. 3D single object tracking (SOT) aims at track-
ing a single reference object in consecutive LiDAR scans to provide its
boundary and orientation information. Most methods [21–27] adopt
a match-and-vote paradigm, which extracts features via a Siamese
network and locates the target in the search area using appearance
matching. P2B [23] proposed the target-specific feature augmentation
to integrate the template information and exploited VoteNet [28] to
predict the bounding box. MLVSNet [25] utilized multi-scale features
for relation modeling and target localization. Recently, M2Track [29]
introduced a motion-centric paradigm to handle 3D SOT from a new
perspective. Unlike 3DSOT, our LiDAR-based VOS implies target-aware
geometric understanding and can directly provide point-wise segmenta-
tion masks for practical robotic application scenarios such as behavior
analysis and anticipating danger.

3. Methods

3.1. Problem definition

LiDAR-based Video Object Segmentation (VOS) can be formulated
as follows: given a LiDAR sequence of length 𝑇 and the initial target
indicator (e.g. segmentation mask 𝑀0) of the first frame 𝑃0, the goal is
to predict the foreground masks of the target in all subsequent frames.
Specifically, at every timestamp 𝑡, we aim to obtain the target’s mask
𝑀𝑡 of the query frame 𝑃𝑡 according to reference frames, i.e., historical
frames and the corresponding predicted masks {(𝑃𝑖,𝑀𝑖)|𝑖 ∈ 𝑆, 𝑆 ⊆
0, 𝑡 − 1], 1 ≤ 𝑡 ≤ 𝑇 }.

.2. LiDAR-based VOS dataset

We construct the KITTI-VOS dataset based on the large-scale out-
oor dataset SemanticKITTI [11] to train models and facilitate com-
rehensive evaluations of algorithm performance. Since the panoptic
nnotations in SemanticKITTI provide the point-wise semantic label
nd instance ID, extracting objects from the raw point cloud scans is
easible. In the 3D VOS task, the initial frame of each LiDAR sequence
s crucial for the subsequent tracking and segmentation. To provide a
obust initialization, we remove instances containing few points, which
re usually far away from the LiDAR sensor and unsuitable as initial
argets due to possible noise. Following DSNet [30], we choose the
nstance with more than fifty points as the valid initial target and
ombine it with the subsequent frames to form the sequences. Besides,
o provide more temporal context, we discard the sequences with a
hort temporal extent. Specifically, sequences with fewer than fifty
rames (about 5 s) are empirically removed. We generate sequences of
ifferent categories separately to alleviate the class imbalance issue.

We chose traffic participants such as cars, persons, trucks, and
yclists as the segmentation targets to form LiDAR sequences. KITTI-
OS has 18370 LiDAR frames, containing 200 LiDAR sequences, 125
ideos for cars, 39 videos for persons, 18 videos for trucks, and 18
or cyclists. And each video contains more than 50 frames. Table 1
hows the data distribution in detail. Note that the sequences of the
alidation split and train split are chosen from different scenes in the
emanticKITTI.

The segmentation quality is evaluated by measuring the overlap as
he 𝐼𝑜𝑈 between the predicted segmentation mask and its ground truth.

e calculate the average 𝐼𝑜𝑈 of all video sequences for each category
s the final evaluation result.

.3. Memory network for LiDAR-based VOS

Recently, matching-based methods [5–10,17] have achieved great
23

uccess in 2D VOS. Most of them introduce a memory bank to store
Table 1
Data distribution of KITTI-VOS dataset. Here lists the number of frames/videos for each
category.

Car Person Truck Cyclist

Train split 7684/75 1366/25 906/10 994/10
Valid split 5109/50 804/14 750/8 757/8
Total 12793/125 2170/39 1656/18 1751/18

the past frames’ features and use an attention-based matching method
to retrieve the information in the memory for segmentation. Inspired
by those approaches, we adopt the paradigm of memory networks to
design the memory-based baseline, termed 3DSTM, which is flexible to
exploit the spatiotemporal information of historical frames and concise
to enable further exploration. 3DSTM consists of four components,
i.e., input transformation modules, Siamese PointNet++ encoder, spa-
tiotemporal attention module, and PointNet++ decoder, as shown in
Fig. 1(a). To unify the inputs, 3DSTM adopts input transformation
modules to map two types of inputs, i.e., reference points with targets’
masks and query points, into the embedding space for the subsequent
hierarchical feature extraction. Based on the unified input representa-
tions, the abundant object features are extracted by the weight-share
Siamese encoder, which is compact and reduces the model complexity.
Afterward, we design the attention-based spatiotemporal module to
exploit the spatiotemporal cues in the extracted features better, which
helps alleviate the appearance changes and occlusion in the LiDAR
sequences. Finally, the decoder is attached after the spatiotemporal
module to upsample the feature maps and obtain the final prediction.
By this means, 3DSTM achieves a flexible and concise design.

Input transformation modules. We first design the transformation mod-
ules to encode points and corresponding masks into the embedding
space. As illustrated in Fig. 1(a), the reference/query transformation
modules (in gray color) have the same structure, which consists of
3 layers of a fully-connected network followed by ReLU layers [31]
and BN layers [32] with filter size [64, 128, 𝐷]. The only difference
between the two modules is their inputs. The query transformation
only takes the query points 𝑃𝑄 ∈ R𝑁𝑞×3 of the query frame as input
and outputs features 𝐸𝑄 ∈ R𝑁𝑞×𝐷. While we concatenate the reference
points 𝑃𝑅 ∈ R𝑁𝑟×3 and corresponding object masks 𝑀𝑅 ∈ R𝑁𝑟×1 along
the channel dimension to form the input of the reference transformation
module, and it outputs the features 𝐸𝑅 ∈ R𝑁𝑟×𝐷.

Siamese encoder. The point-wise MLP in the transformation module has
a weak ability to integrate local structural information, while the fea-
ture matching procedure in the following attention module may cause a
heavy computational burden due to large amounts of points. Therefore,
we construct our siamese encoder using the PointNet++ [33] encoder,
which utilizes multi-scale neighborhoods to achieve both robustness
and detail capture. The encoder processes a set of points sampled in a
metric space in a hierarchical fashion to extract features from 𝐸𝑄 and
𝐸𝑅. The first three stages are used to aggregate point sets and reduce
the number of input points by eight times and output the encoded
reference features 𝐹𝑅 ∈ R(𝑁𝑟∕∕8)×𝐶 and query features 𝐹𝑄 ∈ R(𝑁𝑞∕∕8)×𝐶 .

Spatiotemporal attention module. To extract supportive cues from the
reference features to the query features, we design two types of spa-
tiotemporal attention modules, i.e., non-local attention module (in
Fig. 1(b)) and local transformer attention module (in Fig. 1(c)).

The non-local attention module firstly uses two parallel convo-
lutions to map features 𝐹𝑅/𝐹𝑄 concatenated with point coordinates
to the pairs of key and value maps {(𝑘𝑅, 𝑣𝑅), (𝑘𝑄, 𝑣𝑄)}. Then the
similarities between the query key map 𝑘𝑄 and the reference key map
𝑘𝑅 are computed by matrix multiplication and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 normalization.
Next, we perform dot-product with the reference value 𝑣𝑅 to extract

informative features, and the results are concatenated with the query
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value 𝑣𝑄 as the final matching results 𝑂 ∈ R(𝑁𝑞∕∕8)×(2⋅𝐶𝑣). The attention
module can be expressed as:

𝐹 ′
∗ = [𝐹∗, 𝑃∗], 𝑘∗ = 𝛷𝑘(𝐹 ′

∗), 𝑣
∗ = 𝛷𝑣(𝐹 ′

∗) (1)

𝑂(𝑝) = [𝑣𝑄(𝑝),
∑

∀𝑞
𝜎(𝑘𝑄(𝑝), 𝑘𝑅(𝑞)) ⋅ 𝑣𝑅(𝑞)] (2)

where ‘‘*’’ denotes ‘‘R’’ (reference) or ‘‘Q’’ (query), 𝑃𝑄 and 𝑃𝑅 are
Cartesian coordinates of down-sampled query and reference points. 𝛷∗
is 1 × 1 Convolution, [⋅, ⋅] is the concatenation operation. ‘‘⋅’’ denotes
dot-product and 𝜎 is a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function.

As discussed above, the non-local mechanism-based spatiotemporal
attention module only models global relationships, lacking modeling of
the local aggregation nature of point clouds. The variant model 3DSTM-
TR adopts the local transformer to construct the spatiotemporal module
to alleviate the above challenge. As shown in Fig. 1(c), the transformer-
based interaction module consists of two local self-attention blocks
(LSA) [21] and one local cross-attention block (LCA) designed in the
spirit of LSA. The two LSAs are exploited to enhance the features of
the reference and query points, respectively. While the LCA is adopted
to perform the features interaction between the reference and adjacent
query points. We show the structure of the LSA in Fig. 1(d). Specifically,
the LSA can be expressed as:

𝑞∗ = 𝛷𝑞(𝐹∗), 𝑘∗ = 𝛷𝑘(𝐹∗), 𝑣∗ = 𝛷𝑣(𝐹∗) (3)

𝑦(𝑝) =
∑

𝑛∈ (𝑝)
𝜎(𝛾(𝑞∗(𝑝) − 𝑘∗(𝑛) + 𝛿)) ⋅ (𝑣∗(𝑛) + 𝛿) (4)

𝑂 = 𝛼(𝑦) + 𝐹∗ (5)

where ‘‘*’’ denotes ‘‘R’’ (reference) or ‘‘Q’’ (query). 𝛷∗ is linear projec-
tion. 𝑝 denotes points in query maps 𝑞∗.  (𝑝) is a set of points in a
local neighborhood (specifically, 𝑘 nearest neighbors) of 𝑝. ‘‘⋅’’ denotes
dot-product and 𝜎 is a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 normalization function. 𝛿 is positional
encoding function 𝛿 = 𝜃(𝑝𝑖−𝑝𝑗 ). 𝑝𝑖 and 𝑝𝑗 are the 3D point coordinates.
The mapping function 𝛼, 𝛾 and 𝜃 are MLPs with two linear layers and
one ReLU function.

As shown in Fig. 1(e), in the spirit of the LSA, we designed the LCA,
which can be expressed as:

𝑞𝑄 = 𝛷𝑞(𝐹𝑄), 𝑘𝑅 = 𝛷𝑘(𝐹𝑅), 𝑣𝑅 = 𝛷𝑣(𝐹𝑅) (6)

𝑦(𝑝) =
∑

𝑛∈ (𝑝,𝛺𝑅)
𝜎(𝛾(𝑞𝑄(𝑝) − 𝑘𝑅(𝑛) + 𝛿)) ⋅ (𝑣𝑅(𝑛) + 𝛿) (7)

𝑂 = 𝛼(𝑦) + 𝐹𝑄 (8)

where  (𝑝,𝛺𝑅) is the set of points of reference points 𝛺𝑅 in the
neighborhood of the query point 𝑝.

Decoder. We construct a decoder similar to the segmentation decoder
of PointNet++ to predict the segmentation masks of the target objects.
The decoder takes the matching features from the spatiotemporal at-
tention module and the hierarchical features of the Siamese encoder
as input, gradually upscaling the feature maps with three stages. Each
stage takes both the previous stage’s output and the feature map from
the Siamese encoder at the corresponding scale through skip connection
and upscales the compressed feature map by two at a time. The output
of the last stage is passed through the final MLP followed by a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
operation to predict the object mask.

3.4. Integrate tracker for LiDAR-based VOS

To provide a more comprehensive evaluation, we added a sim-
ple post-processing operation after a 3D object tracker to form the
second type of baseline, i.e., tracking-based baselines. Since the KITTI-
VOS only provides segmentation annotations, we use the segmentation
24
Fig. 2. The frameworks of these baselines equipped with the proposed refine module.
The architecture of the refine module is illustrated in (c), which consists of a kernel
branch and a mask branch.

masks to obtain the objects’ points, which are further used to gen-
erate bounding boxes. Then we trained two representative tracking
approaches, i.e., P2B [23] and MLVSNet [25], on the extended KITTI-
VOS to acquire the trackers. After training the trackers, we simply
choose those points inside the bounding box predicted by the tracker
as the foreground points to obtain the segmentation masks.

3.5. Enhance baselines with refine module

In this section, we propose a refine module to boost these baselines’
performance. The refine module is plug-and-play, which can be easily
extended to the methods discussed above and trained end-to-end. For
memory-based baselines, the refine module takes the predicted coarse
segmentation masks as priors to further improve the masks’ qualities
(Fig. 2(a)). And for tracking-based baselines, the refine module serves
as a segmentation head to obtain more accurate predictions with the
generated coarse masks from the predicted boxes as priors (Fig. 2(b)).
As shown in Fig. 2(c), the refine module consists of two branches,
i.e., the kernel branch and mask branch, which are composed of a stack
of fully-connected layers. We first calculate the offsets between each
point to the object centroids (mass centers of the coarse masks) to inject
the object-aware positional information. Then the offsets, mask priors,
and the point features are concatenated along the feature dimension
and fed into the kernel branch to generate the 1-D object-aware kernels
𝐾 ∈ R1×𝐷𝑘 . Meanwhile, the mask branch takes point features as input
and aims to encode mask features 𝐹𝑀 ∈ R𝑁𝑞×𝐷𝑘 . Thus, given 𝐾 and 𝐹𝑀 ,
the refined segmentation masks are produced by 𝑀 = 𝐾

⨂

𝐹𝑀 . Here,
⨂ denotes the convolution operation. Note that the point features for
memory-based baselines are taken from the output of the decoder’s last
stage (Fig. 2(a)). While for tracking-based baselines, we use another
lightweight MLP to encode the point features from the query point
clouds (Fig. 2(b)).

4. Experiments

4.1. Implementation details

The output dimension 𝐷 of the input transformation module is set
to 16. The first three stages of the Siamese encoder are used, and
output features with channel [128, 256, 𝐶 = 256]. The dimensions 𝐶𝑘, 𝐶𝑣
of the pairs of key and value maps in the spatiotemporal attention
module used in 3DSTM are 64 and 128. The hidden dimension of the
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Table 2
Quantitative results on the validation of the constructed KITTI-VOS dataset. The
evaluation metric is the average of 𝐼𝑜𝑈 (%). ‘RM’ indicates equipping with the refine
module.

Methods Car Person Truck Cyclist Mean

3DSTM 29.5 14.2 36.1 63.8 35.9
3DSTM-TR 33.0 21.4 38.9 64.7 39.5
P2B [23] 58.2 24.8 11.0 59.8 38.5
MLVS [25] 53.4 28.5 31.4 43.8 39.3

P2B-RM 66.7 31.0 21.5 59.1 44.6(+6.1)
MLVS-RM 𝟕𝟐.𝟕 𝟒𝟒.𝟔 40.6 55.2 53.3(+14)
3DSTM-TR-RM 39.5 21.7 𝟒𝟑.𝟒 𝟔𝟗.𝟖 43.6(+5.1)

Fig. 3. The exploration of hype-parameter 𝑘 in local transformers.

transformer-based attention module is set to 256. The hyper-parameter
𝑘 of the LSA and LCA is set to 16 by default. The dimension of the
object kernel is 𝐷𝑘 = 64. Similar to [23], the input points are cropped
and normalized according to the targets. Following many 3D SOT
methods [21,23–25], we train and evaluate our models on four target
types (Car, Person, Truck, Cyclist), respectively. And all segmentation
models are trained using cross-entropy loss on a single TITAN RTX GPU.

4.2. Main results

Table 2 reports the evaluation results on the constructed KITTI-VOS
dataset. The reference frame is set to the previous frame for all these
baselines for a fair comparison. Compared with 3DSTM, 3DSTM-TR’s
performances are boosted by 3.5% on cars, 7.2% on the person, 2.8%
on trucks, and 0.9% on cyclists, demonstrating the effectiveness of the
local attention in transformer-based spatiotemporal attention module.

As shown in Table 2, when comparing tracking-based baselines
(P2B, MLVS) and memory-based baselines (3DSTM, 3DSTM-TR), we
found the former performs better on cars and persons while the latter
achieves better performance on trucks and cyclists. And compared to
tracking-based baselines, memory-based baselines achieve a signifi-
cant improvement on trucks. We explain that tracking-based baselines
cannot properly track large objects like trucks, which are always under-
segmentation, especially when LiDAR points are sparsely distributed
on the part of their surfaces since it is difficult to accurately esti-
mate the center and size of the object from limited observations. On
the contrary, the memory-based baselines can effectively solve the
under-segmentation problem of large objects and are more suitable for
distraction-free scenes since the matching procedure is easily disturbed
by noisy points. Thus, the memory-based methods perform worse than
the tracking-based methods on cars and persons, which are usually
surrounded by more distracting objects that are hard to distinguish.
The second part of Table 2 shows that the proposed refine module can
significantly boost these baselines’ performance. By taking the coarse
masks as priors, the refine module can improve the ability to handle
distractions and break the tracker’s limitations. For example, MLVS-RM
gains 19.3% on cars against MLVS. And refine module also improves
the 3DSTM-TR’s performance on cars from 33.0% to 39.5%.
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Table 3
Components analysis on LSA.

Variants Car Person Truck Cyclist

w/o LSA 29.6 11.3 36.9 62.2
w/ LSA 𝟑𝟑.𝟎↑3.4 𝟐𝟏.𝟒↑10.1 𝟑𝟖.𝟗↑2.0 𝟔𝟒.𝟕↑2.5

Table 4
The exploration of reference frames.

Reference Car Person Truck Cyclist

First frame 32.8 21.3 31.0 63.7
Previous frame 33.0 21.4 38.9 64.7
First & previous 32.3 21.7 39.7 65.0
All previous frames 32.9 21.3 38.7 65.4

Fig. 4. Visualizations on the validation set of the KITTI-VOS dataset. 3DSTM-TR
learned to discriminate the target points from the background in multiple scenes.

Fig. 5. Visual comparison between 3DSTM-TR and MLVS on the validation set of the
KITTI-VOS dataset.

4.3. Visualizations

We show qualitative results to provide more analysis on these
baselines. Firstly, we visualize the representative 3DSTM-TR in Fig. 4.
We can observe that 3DSTM-TR had learned to robustly discriminate
the target points from the background in multiple scenes. Furthermore,
we illustrate the visual comparison between two types of baselines
(3DSTM-TR vs. MLVS) in Fig. 5. 3DSTM-TR is more easily affected by
distractions, which performs worse on cars and persons. In contrast,
MLVS performs worse on large objects such as trucks due to the inac-
curacy of bounding boxes. Besides, the cropped points contain many
noisy points of ground (cyclists).
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4.4. Ablation study

We further provide the ablation study on the constructed dataset
to analyze the effect of the individual components of memory-based
baselines. The reference frame is set to the previous frame by default.

The effectiveness of local transformer. We conduct an ablation study on
the components of the spatiotemporal attention module in 3DSTM-TR.
We trained models without the LSA to demonstrate its effectiveness.
Table 3 shows that with LSA, the performance is higher than without
it. LSA brings improvements of 𝐼𝑜𝑈 by 3.4% on cars, 10.1% on the
person, 2.0% on trucks, and 2.5% on cyclists.

The value 𝑘 for k-nearest neighbor. We do experiments to investigate
the number of neighbors 𝑘 used to determine the local neighborhood
around each point in the LSA and LCA of 3DSTM-TR. The results are
shown in Fig. 3. The best performance is achieved for the category car
when 𝑘 is set to 48. The model’s performance drops dramatically when
the neighborhood is smaller (𝑘 = 16). We explain that the LSA and LCA
annot learn sufficient context information under the lower 𝑘 setting.
or other categories, a larger neighborhood (𝑘 = 32, 𝑘 = 48, 𝑘 = 64)
amages the model’s performance. The possible reason is that the LSA
nd LCA would be provided with more irrelevant points when 𝑘 is

larger, introducing excessive noise into the attention-based feature-
matching process. And due to the limited training samples, the model
cannot learn the accurate local correlation and exclude the interference
caused by a large 𝑘 value.

Effect of different reference frames. Finally, we investigate the effect of
choosing different reference frames on 3DSTM-TR. We consider four
configurations: (1) using the first LiDAR frame as the reference; (2)
initially using the first LiDAR frame and then the previous LiDAR frame.
(3) take the first and previous frames as reference. (4) take all the
historical frames as reference. As shown in Table 4, for the ‘‘truck’’
category, the model performs poorly with only the first frame as the
reference. We explain that the target’s object information, especially
for large objects, may not be fully reflected in the first frame, which
typically contains a limited number of target points since it is always
sensed from a large distance. We also notice that not all previous frames
are beneficial since the historical frames with low-quality segmentation
may mislead the subsequent prediction. And for other categories, such
as ‘‘car’’ and ‘‘person’’, the first frame plays a more important role, and
the influence of other historical frames is slight.

5. Discussion about the initialization

As mentioned in Section 3.1, the initial indicator of the target is
needed in the setting of LiDAR-based VOS. However, obtaining accurate
information about the target object for the initialization can be chal-
lenging in practical applications. We can use a hand-labeled bounding
box to initialize the tracking-based baselines during inference. On the
other hand, memory-based baselines require the initial segmentation
mask, which can also be generated from an accurate tightened bound-
ing box. Besides, clustering algorithms based on the manually selected
centers could also be exploited to generate the initial masks. We will try
to implement weak initialization, such as scribbles or points, in future
work.

6. Conclusions

This work first performs LiDAR-based 3D Video Object Segmen-
tation (VOS) for practical application scenarios of robotics and con-
structs a LiDAR-based VOS dataset dubbed KITTI-VOS based on Se-
manticKITTI. Besides, based on KITTI-VOS, two types of baselines,
i.e., memory-based and tracking-based baselines, are provided for com-
prehensive evaluation. Furthermore, a refine module is developed to
boost all baselines’ performances, improving the ability to handle dis-
26

tractions, and break trackers’ limitations. For example, MLVS-RM gains
19.3% on cars against MLVS. The refine module also improves the
3DSTM-TR’s performance on cars from 33.0% to 39.5%. We hope this
work will foster a new direction in this line of research. And in future
work, we will try to explore label-efficient algorithms such as weakly
supervised methods to alleviate the cost of point-wise labels.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by a Grant from The National Natural
Science Foundation of China (No. U21A20484).

References

[1] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, Philip HS Torr, Fast online
object tracking and segmentation: A unifying approach, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
1328–1338.

[2] Vipul Sharma, Roohie Naaz Mir, SSFNET-VOS: Semantic segmentation and fusion
network for video object segmentation, Pattern Recognit. Lett. 140 (2020) 49–58.

[3] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, Bastian Leibe, Siam r-cnn:
Visual tracking by re-detection, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 6578–6588.

[4] Xuhua Huang, Jiarui Xu, Yu-Wing Tai, Chi-Keung Tang, Fast video object seg-
mentation with temporal aggregation network and dynamic template matching,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 8879–8889.

[5] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe,
Liang-Chieh Chen, Feelvos: Fast end-to-end embedding learning for video object
segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 9481–9490.

[6] Haochen Wang, Xiaolong Jiang, Haibing Ren, Yao Hu, Song Bai, Swiftnet: Real-
time video object segmentation, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 1296–1305.

[7] Seoung Wug Oh, Joon-Young Lee, Ning Xu, Seon Joo Kim, Video object seg-
mentation using space-time memory networks, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9226–9235.

[8] Yongqing Liang, Xin Li, Navid Jafari, Jim Chen, Video object segmentation with
adaptive feature bank and uncertain-region refinement, Adv. Neural Inf. Process.
Syst. 33 (2020) 3430–3441.

[9] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping Zhang, Wenxiu Sun,
Efficient regional memory network for video object segmentation, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 1286–1295.

[10] Meng Lan, Jing Zhang, Fengxiang He, Lefei Zhang, Siamese network with
interactive transformer for video object segmentation, in: Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 36, (2) 2022, pp. 1228–1236.

[11] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill
Stachniss, Jurgen Gall, Semantickitti: A dataset for semantic scene understanding
of lidar sequences, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9297–9307.

[12] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz,
Demetri Terzopoulos, Image segmentation using deep learning: A survey, IEEE
Trans. Pattern Anal. Mach. Intell. 44 (7) (2021) 3523–3542.

[13] Guangchen Shi, Yirui Wu, Jun Liu, Shaohua Wan, Wenhai Wang, Tong Lu,
Incremental few-shot semantic segmentation via embedding adaptive-update
and hyper-class representation, in: Proceedings of the 30th ACM International
Conference on Multimedia, 2022, pp. 5547–5556.

[14] Chen Chen, Chenyu Wang, Bin Liu, Ci He, Li Cong, Shaohua Wan, Edge intel-
ligence empowered vehicle detection and image segmentation for autonomous
vehicles, IEEE Trans. Intell. Transp. Syst. (2023).

[15] Yirui Wu, Lilai Zhang, Zonghua Gu, Hu Lu, Shaohua Wan, Edge-AI-driven
framework with efficient mobile network design for facial expression recognition,
ACM Trans. Embedded Comput. Syst. 22 (3) (2023) 1–17.

[16] Mengmeng Wang, Jianbiao Mei, Lina Liu, Guanzhong Tian, Yong Liu, Zaisheng
Pan, Delving deeper into mask utilization in video object segmentation, IEEE
Trans. Image Process. 31 (2022) 6255–6266.

http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb1
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb2
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb2
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb2
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb3
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb3
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb3
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb3
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb3
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb4
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb5
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb6
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb6
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb6
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb6
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb6
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb7
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb7
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb7
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb7
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb7
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb8
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb8
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb8
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb8
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb8
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb9
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb10
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb10
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb10
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb10
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb10
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb11
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb12
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb12
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb12
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb12
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb12
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb13
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb14
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb14
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb14
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb14
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb14
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb15
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb15
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb15
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb15
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb15
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb16
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb16
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb16
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb16
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb16


Pattern Recognition Letters 178 (2024) 21–27J. Mei et al.
[17] Xiankai Lu, Wenguan Wang, Martin Danelljan, Tianfei Zhou, Jianbing Shen, Luc
Van Gool, Video object segmentation with episodic graph memory networks, in:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part III 16, Springer, 2020, pp. 661–679.

[18] Jianbiao Mei, Mengmeng Wang, Yu Yang, Yanjun Li, Yong Liu, Fast real-time
video object segmentation with tangled memory network, ACM Trans. Intell.
Syst. Technol. (2023).

[19] Li Hu, Peng Zhang, Bang Zhang, Pan Pan, Yinghui Xu, Rong Jin, Learning
position and target consistency for memory-based video object segmentation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 4144–4154.

[20] Yue Zhang, Fanghui Zhang, Yi Jin, Yigang Cen, Viacheslav Voronin, Shaohua
Wan, Local correlation ensemble with GCN based on attention features for cross-
domain person re-ID, ACM Trans. Multimed. Comput., Commun. Appl. 19 (2)
(2023) 1–22.

[21] Changqing Zhou, Zhipeng Luo, Yueru Luo, Tianrui Liu, Liang Pan, Zhongang
Cai, Haiyu Zhao, Shijian Lu, Pttr: Relational 3d point cloud object tracking with
transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 8531–8540.

[22] Silvio Giancola, Jesus Zarzar, Bernard Ghanem, Leveraging shape completion for
3d siamese tracking, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 1359–1368.

[23] Haozhe Qi, Chen Feng, Zhiguo Cao, Feng Zhao, Yang Xiao, P2b: Point-to-box
network for 3D object tracking in point clouds, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 6329–6338.

[24] Chaoda Zheng, Xu Yan, Jiantao Gao, Weibing Zhao, Wei Zhang, Zhen Li,
Shuguang Cui, Box-aware feature enhancement for single object tracking on point
clouds, in: Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 13199–13208.
27
[25] Zhoutao Wang, Qian Xie, Yu-Kun Lai, Jing Wu, Kun Long, Jun Wang, MLVSNet:
Multi-level voting siamese network for 3D visual tracking, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 3101–3110.

[26] Jiayao Shan, Sifan Zhou, Zheng Fang, Yubo Cui, PTT: Point-track-transformer
module for 3D single object tracking in point clouds, in: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, 2021,
pp. 1310–1316.

[27] Le Hui, Lingpeng Wang, Linghua Tang, Kaihao Lan, Jin Xie, Jian Yang, 3D
siamese transformer network for single object tracking on point clouds, in:
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part II, Springer, 2022, pp. 293–310.

[28] Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas, Deep hough voting for
3d object detection in point clouds, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9277–9286.

[29] Chaoda Zheng, Xu Yan, Haiming Zhang, Baoyuan Wang, Shenghui Cheng,
Shuguang Cui, Zhen Li, Beyond 3D siamese tracking: A motion-centric paradigm
for 3D single object tracking in point clouds, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 8111–8120.

[30] Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, Ziwei Liu, Lidar-based
panoptic segmentation via dynamic shifting network, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.
13090–13099.

[31] Vinod Nair, Geoffrey E. Hinton, Rectified linear units improve restricted
boltzmann machines, in: Icml, 2010.

[32] Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: International Conference on
Machine Learning, PMLR, 2015, pp. 448–456.

[33] Charles Ruizhongtai Qi, Li Yi, Hao Su, Leonidas J Guibas, Pointnet++: Deep
hierarchical feature learning on point sets in a metric space, in: Advances in
Neural Information Processing Systems, vol. 30, 2017.

http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb17
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb18
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb18
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb18
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb18
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb18
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb19
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb20
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb21
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb22
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb22
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb22
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb22
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb22
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb23
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb23
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb23
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb23
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb23
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb24
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb25
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb25
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb25
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb25
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb25
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb26
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb27
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb28
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb28
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb28
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb28
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb28
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb29
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb30
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb31
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb31
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb31
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb32
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb32
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb32
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb32
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb32
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb33
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb33
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb33
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb33
http://refhub.elsevier.com/S0167-8655(23)00360-4/sb33

	LiDAR video object segmentation with dynamic kernel refinement
	Introduction
	Related Works
	Methods
	Problem definition
	LiDAR-based VOS Dataset
	Memory Network for LiDAR-based VOS
	Integrate Tracker for LiDAR-based VOS
	Enhance Baselines with Refine Module

	Experiments
	Implementation Details
	Main Results
	Visualizations
	Ablation Study

	Discussion about the initialization
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


