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ABSTRACT

This paper focuses on LiDAR Panoptic Segmentation (LPS), which
has attracted more attention recently due to its broad application
prospect for autonomous driving and robotics. The mainstream
LPS approaches either adopt a top-down strategy relying on 3D
object detectors to discover instances or utilize time-consuming
heuristic clustering algorithms to group instances in a bottom-up
manner. Inspired by the center representation and kernel-based
segmentation, we propose a new detection-free and clustering-free
framework called CenterLPS, with the center-based instance en-
coding and decoding paradigm. Specifically, we propose a sparse
center proposal network to generate the sparse 3D instance centers,
as well as center feature embedding, which can well encode charac-
teristics of instances. Then a center-aware transformer is applied to
collect the context between different center feature embedding and
around centers. Moreover, we generate the kernel weights based
on the enhanced center feature embedding and initialize dynamic
convolutions to decode the final instance masks. Finally, a mask
fusion module is devised to unify the semantic and instance predic-
tions and improve the panoptic quality. Extensive experiments on
SemanticKITTI and nuScenes demonstrate the effectiveness of our
proposed center-based framework CenterLPS.
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1 INTRODUCTION

LiDAR is an essential tool for sensing and perception in autonomous
driving and robotics, providing highly accurate 3D point cloud data
of the environment. Typically, LIDAR segmentation aims to predict
point-level segmentation, allowing for a more comprehensive un-
derstanding of the 3D scene. This paper focuses on LiDAR Panoptic
Segmentation (LPS), a prevalent 3D scene understanding problem.
LPS unifies semantic and instance segmentation tasks, assigning
semantic categories and instance IDs for each point in the LIDAR
point cloud. It requires parsing the stuff (e.g., road, building, and
vegetation) and identifying the thing (e.g., car, cyclist, and person).

LiDAR point clouds can be sparse, noisy, and occluded, making it
difficult to provide accurate segmentation and distinguish between
different instances. Despite these challenges, recent advances in
deep learning have led to significant progress in LPS. To obtain
reliable LIDAR panoptic segmentation, one of the critical problems
is accurately localizing and segmenting instances. Regarding the
implementation of instance segmentation, most existing methods
follow two directions, ie., detection-based and clustering-based, to
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Figure 1: The mainstream LPS methods, i.e., Detection-based
(a), Clustering-based (b) and our center-based framework (c).

address these challenges. Detection-based methods [15, 31, 39, 40]
adopt a top-down strategy, which depends on object detection as an
independent branch to predict the region proposals and perform in-
stance segmentation based on proposals (Fig. 1 (a)). However, these
methods heavily rely on the detector’s performance, and the gener-
ation procedure of region proposals for object localization involves
alarge computational overhead. On the other way, clustering-based
methods (7, 9, 14, 19, 20, 27, 30, 46] utilize the geometric shifts pre-
dicted by an offset branch to implicitly localize instances and take
heuristic clustering algorithms to group instances in a bottom-up
manner (Fig. 1 (b)). While the process of heuristic instance grouping
is usually time-consuming. Besides, they usually introduce many
hand-crafted hyper-parameters, which are sensitive and limit the
robustness, and may lead to over-segmented problems in practice.
Overall, existing LPS methods suffer from sub-optimal performance
caused by either object detection or clustering algorithms.
Motivated by the center representation [43, 45, 47] in 2D/3D ob-
ject detection, we propose a new detection-free and clustering-free
framework (Fig. 1 (c)) for LiDAR panoptic segmentation, termed
as CenterLPS, which localizes and segments instances by centers
to solve the challenges above. We aim to predict the 3D centers to
localize instances and encode instances into center feature embed-
ding. Then the instance masks can be further decoded via center
feature embedding. The main insight lies that the instance centers
and feature embedding encode the location and object character-
istics, which can be used to represent each object and distinguish
between different instances. Specifically, we develop a Sparse Cen-
ter Proposal Network (SCPN) to generate 3D instance centers based
on the pseudo heatmap [20]. SCPN projects the shifted thing points
onto a BEV image to generate the 2D pseudo heatmap utilized to
find the pillar that 3D instance centers belong to by window-based
max-pooling. Furthermore, SCPN generates the 3D centers and
center feature embedding based on points in the selected pillars.
The semantic categories of these 3D centers are directly assigned
by majority voting on points in the selected pillars to explicitly
decouple the classification and segmentation to mitigate the compe-
tition between them, as proven in [12]. Compared to dense 2D/3D
heatmap learning for centers as [36, 43, 45, 47], our SCPN has two
key advantages: (1) Sparsity. There is no necessity to adopt top-k
along with NMS operation for center filtering. (2) Flexibility and
scalability. The maximum number of instances no longer needs to
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be set in advance. SCPN is scalable to handle a large number of
objects in the urban scene.

Moreover, the abundant contextual information is beneficial for
instance encoding. Therefore, we design the center-aware trans-
former to collect context between different center feature embed-
ding and around the centers. By modeling the inter- and intra-
instance dependencies with global self-attention and local cross-
attention, we enhance the center feature embedding with more
informative cues, facilitating subsequent instance decoding.

Furthermore, we find that directly predicting instance masks
based on the class-known center feature embedding can natu-
rally avoid semantic conflicts in the same cluster brought by class-
agnostic clustering on thing points and correct potential wrong
semantic predictions. On the other hand, kernel-based methods
[4-6, 22, 35, 44] have recently achieved wide success in the 2D seg-
mentation. However, there are few studies to explore kernel-based
LiDAR panoptic segmentation. Thus, we utilize dynamic convo-
lution as [13, 35, 36] to generate kernel weights and initialize a
few convolution layers that are used to decode the final instance
masks. The dynamic convolution is conditional on the enhanced
center feature embedding, implying object-aware information such
as instance location, shape, and size. To expedite the convergence of
the network, we further enhance the dynamic convolution with po-
sition and shape priors. Moreover, observing that multiple centers
may be generated for a single instance (especially large objects) due
to inaccurate offsets prediction, we design a mask fusion module
to merge the masks decoded by the centers belonging to the same
instance and paste the merged masks on the semantic predictions
to unify the semantic predictions and instance masks. Our mask
fusion module merges the potentially overlapped masks belonging
to the same instance and improves the panoptic quality.

We evaluate our CenterLPS on two large-scale outdoor datasets
SemanticKITTI [1] and nuScenes [8]. Extensive experiments demon-
strate the effectiveness of our method.

The main contributions of this paper are summarized as follows:

e We propose a new detection-free and clustering-free frame-
work, dubbed as CenterLPS, with the paradigm of center-based
instance encoding and decoding for LIDAR panoptic segmentation.

e We develop a sparse center proposal network based on the
pseudo heatmap to predict instance centers and feature embedding,
which can well capture object information of instances.

o A center-aware transformer is designed to collect context be-
tween different center feature embedding and around centers. The
center-based queries facilitate the learning of the transformer.

e We introduce dynamic convolution with position/shape priors
to decode instance masks. A mask fusion module is devised to unify
the semantic and instance predictions.

2 RELATED WORKS
2.1 LiDAR Panoptic Segmentation

In terms of the implementation of instance segmentation, most
existing LPS methods can be divided into two types of frameworks,
i.e., detection-based and clustering-based methods.
Detection-based methods [15, 31, 39, 40] use an independent
3D detection branch to predict object region proposals and segment
instances based on proposals. SemanticKITTI [2] and nuScenes [8]
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released LiDAR panoptic segmentation datasets, exploring this task
with joint object detectors and semantic segmentation networks.
PanopticTrackNet [15] follows Mask R-CNN [12], utilizing a re-
gional proposal network (RPN), bounding box regression, and mask
generation for instance segmentation. Recently, LidarMultiNet [40]
proposed a multi-task network unifying 3D object detection and
segmentation, predicting refined panoptic segmentation by fusing
detection and semantic segmentation results. However, these meth-
ods heavily rely on detected region proposals, incurring additional
computational consumption during proposal generation.
Clustering-based methods [7, 9, 14, 19-21, 26, 27, 30, 46] implic-
itly localize instances by predicting offset vectors or embedding
vectors for thing points, and then apply heuristic clustering algo-
rithms to group instances. DS-Net [14] designed a learnable dy-
namic shift module that iteratively regresses centers for subsequent
clustering. Panoptic-PolarNet [46] predicts the center heatmap and
performs clustering among the shifted points on the polar BEV map.
SMAC-Seg [19] presented a novel multi-directional attention clus-
tering module to segment multi-scale instances. Panoptic-PHNet
[20] introduced a pseudo heatmap generated from the shifted thing
points and a center grouping module to yield 2D instance centers
for efficient clustering. However, these clustering-based methods
are either time-consuming or sensitive to hyper-parameters.

Unlike these mainstream LPS methods, our CenterLPS eliminates
the dependence on object detection and clustering algorithms for
instance localization and segmentation. It adopts the paradigm
of center-based instance encoding and decoding to localize and
segment instances effectively and efficiently, which can exert the
power of the center and kernel representations.

2.2 Kernel-based Segmentation

Recently, kernel-based 2D segmentation methods [5, 6, 22, 25, 35,
44] have been studied extensively. CondInst [35] encodes instances
into dynamic filters for decoding instances. Panoptic-FCN [22]
implements 2D panoptic segmentation using kernel generators in
a unified workflow. K-Net [44] designs a kernel update strategy
for consistent instance and semantic segmentation. MaskFormer
[6] uses the transformer with learnable queries to output binary
masks with class labels for semantic segmentation. Mask2Former
[5] applies masked attention for universal image segmentation.

Building on 2D segmentation, there are kernel-based studies
[13, 32, 36, 37] for 3D segmentation tasks. DyCo3D [13] generates
convolution filters based on instances to decode instance masks.
DKNet [36] represents instances as kernels encoding semantic,
positional, and shape information of 3D instances. Following Mask-
Former, MaskRange [11], and MaskPLS [24] use learnable queries
for range-based and point-based LiDAR panoptic segmentation,
respectively. PUPS [32] employs point-level classifiers to predict
semantic masks and instance groups directly.

Similar to kernel-based methods, our CenterLPS uses kernel
representation and dynamic convolution to generate conditional
kernel weights from the center feature embedding for effective
instance mask decoding. This naturally avoids semantic conflicts
from class-agnostic clustering on thing points. We also enhance
dynamic convolution with position and shape priors for faster
network convergence.
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2.3 Center Representation

In the domain of 2D object detection, CenterNet [45] first proposes
to model the 2D object as a single point, i.e., the center point of its
bounding box, which bypasses the need for anchor boxes. For 3D
object detection, CenterPoint [43] proposed to represent, detect,
and track 3D objects as points. Following CenterNet, CenterPoint
detects centers of objects using a 2D center heatmap head and
regresses to other attributes, including 3D size, 3D orientation,
and velocity. By employing the center representation, CenterPoint
realizes simple yet efficient, real-time, and accurate detection per-
formance. Based on CenterPoint, CenterFormer [47], a query-based
and center-based 3D detection framework, introduces the trans-
former with the center embedding as queries to extract object fea-
tures and predict the bounding box effectively. On the other hand,
the very recent 3D instance segmentation method DKNet [36] pro-
poses to localize instances by a learned 3D centroid heatmap and
devises an aggregation strategy to merge duplicate candidates.

As proven by these pioneer works, instance centers and feature
embedding encode the location and object characteristics, which
can well represent each object and distinguish between different
instances. Thus, we adopt the center-based instance encoding and
decoding paradigm to localize and segment instances for outdoor
LiDAR panoptic segmentation. However, different from these meth-
ods, which learn a dense 2D/3D Gaussian heatmap for center discov-
ery and exploit top-k strategy for center filtering, our CenterLPS
predicts the sparse 3D instance centers and feature embedding
based on a pseudo heatmap, which does not require fixing the
maximum number of instances and is simple and flexible.

3 METHOD

3.1 Overview

In this paper, we propose to segment instances by centers for Li-
DAR panoptic segmentation. The overall framework is illustrated in
Fig. 2. Firstly, the voxel-based backbone, i.e., GASN [41], is applied
to extract the point-wise features, and a two-layer MLP is used
to provide the semantic prediction (Sec. 3.2). Then, we devise the
sparse center proposal network to generate sparse 3D centers as
well as the center feature embedding (Sec. 3.3). And a center-aware
transformer is designed to collect contextual information to en-
hance the center feature embedding by modeling the inter- and
intra-instance relationships (Sec. 3.4). Finally, dynamic convolution
is utilized to decode the instance masks; and a mask fusion module
is developed to unify the semantic and instance prediction and
improve the panoptic quality (Sec. 3.5).

3.2 Point-wise Semantic Prediction

Following GASN [41], we take the multi-scale sparse 3D CNN
as the backbone to aggregate multi-scale 3D features. Given the
input LiDAR point cloud P € RN*# (coordinates and intensity),
a voxelization layer similar to DRINet [42] is utilized to obtain
the voxel-wise features F) with a dense spatial resolution of L x
H x W. After that, four cascaded encoder blocks used in GASN
extract the multi-scale 3D features (F}, F2, F3, Fa). And these voxel-
wise 3D features are further back-projected to get the point-wise
features (F 0 Fjl,, Fg, Fg, F ;), which imply multi-scale contextual and
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Figure 2: Pipeline of our CenterLPS. The framework consists of a voxel-based backbone for point-wise features, a semantic head
for semantic predictions, a sparse center proposal network for instance encoding, a center-aware transformer for collecting
context, dynamic convolutions for instance decoding, and a mask fusion module to unify the semantic and instance predictions.

geometric information. After that, these point-wise features are
concatenated along channel dimension and fed into the linear layer
for encoding the final point features F,, € RN*D Finally, a semantic
head consisting of a two-layer MLP takes point features F, and
outputs the semantic scores S = {s1,...,SN} € RNXNeiass for N
points over N,j,s, categories. During training, we use cross-entropy
loss and lovasz loss [3] to supervise the semantic backbone.

3.3 Sparse Center Proposal Network

After the point-wise semantic prediction, we take the remaining
work as the instance segmentation task. And different from the
mainstream detection- and clustering-based methods, inspired by
center representation [36, 43, 45, 47], we propose to segment in-
stances by centers. Specifically, a sparse center proposal network
is devised to locate and encode instances, as illustrated in Fig. 3.
To begin with, we construct a two-layer MLP to learn the offset
vectors O = {01, ..,0N} € RNX3, representing the geometric shifts
from each point to the center of the instance that it belongs to. We
use L1 regression loss and cosine direction loss to construct the
L, to optimize the shift vectors during training:

3 (lor = (@ - p)l +
Ximi 7

where M = {my,..,mn} is a binary mask, indicating the thing
points. m; is set 1 if point i belongs to thing points, and otherwise
0. ¢; is the instance center that point i lies in.

With the predicted offset vectors, the thing points are first shifted
toward instance centers to make points in the same instance closer
to each other. Then, we project the shifted thing points onto a
BEV image to generate a 2D pseudo heatmap [20] based on the
assumption that the geometric centers of outdoor instances are

0; - (¢ — pi)
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separate from each other under the bird’s eye view. Specifically,
we first discrete the shifted thing points into an evenly spaced grid
in the x-y plane to create a set of pillars P with |P| = H- W as
[17]. And each grid I; in the BEV image I € RT*W corresponds
with a pillar P;. Then we can acquire the quantitative density of
the pseudo heatmap by counting the number of points in the pillar.
Furthermore, we leverage window-based max pooling to pick out
the local maximum, which is used to select the pillar where the
3D instance center may exist. By scattering the coordinates and
features of points in the k-th selected pillar Py, the 3D center ¢z and
center feature embedding f, € RP can be generated. The scatter
procedure is achieved by:

c = AvgPool(GY) ()

©)

where Gz and G{ are points and point features in the pillar Py. As
proven in Mask R-CNN [12], explicitly decoupling segmentation
and classification can alleviate the competition problem between
them. Thus, we take the majority voting strategy based on the
semantic prediction of the points in the corresponding pillar to di-
rectly assign the semantic category to the center feature embedding.
Different from the commonly used heatmap learning for centers
[36, 47], our SCPN does not require fixing the maximum number
of instances in advance and is scalable to handle a large number of
objects in the urban scene. We provide visualizations of the sparse
3D centers generated by our SCPN in Fig.4. The results show that
our SCPN generates accurate centers in complex scenes and can
handle crowded scenes well. The cases where multiple centers may
be generated for large objects are addressed by our mask fusion
module, which will be explained in Sec. 3.5.

fer, = MLP [Angool(Gz)]
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Figure 3: The sparse center proposal network.

3.4 Center-aware Transformer

Let Pc = {c1,...cn,} € RNeX3 and F, = {ferr o fon, } € RNeXxD
denote 3D centers and center feature embedding generated by the
sparse center proposal network for N, instances. We design the
center-aware transformer to collect the context between different
center feature embedding and around the centers and output the
enhanced center feature embedding F., = {f e I Ne }. Specifically,
we take the center feature embedding as the query features and
encode the centers into the position embedding using a linear layer
to inject position information explicitly. The center-aware trans-
former consists of L encoder blocks. Each block has a self-attention
layer, a local cross-attention layer, and a feed-forward layer. A skip
connection is used for each layer to connect the normalized input
features using layer normalization and the output features. The self-
attention layer aims to model the inter-instance dependencies. Let
Fe={fd:fou b € RNeXD denote the input of the self-attention
layer. The multi-head self-attention is achieved as:

MHSA(c;) = i o [i o) @
h=1 Jj=1 VD

gi = $q(f3) +6(c) )

Kj = d(f2) +6(c).05 = do(f3) ®)

where h is the head index, ¢ is the linear layer, and o denotes the
softmax function. § is the linear layer for position embedding. c;
is the center for i-th instance.

We also apply the local cross-attention to learn the intra-instance
relationships. The local cross-attention explicitly makes the query
center focus on its neighbor points in the point cloud and effectively
reduces the computation complexity. Similar to the voxelization
operation in Sec. 3.2, we scatter the points and point features by
average pooling according to the voxel indices to downsample the
point cloud. Then, the indices of k nearest points are calculated for
each center based on the spatial location. Through the indices, the
attentive points in € R**3 and the corresponding point features

Q{i € R¥*D for center ¢; are indexed. In the multi-head local cross-
attention, similar to MHSA, the query g; is calculated from the
center feature embedding and position. While the key k; and value

vj come from the attentive points Qfl. and point features Q{i. The
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formulation of multi-head local cross-attention is expressed as:

H
MHCA(e)) = ) gl D, o

=1 jeN(c)

ikj
B o)1 )

VD

where N (c;) denotes the neighbors of center c;.

3.5 Dynamic Convolution Network

After obtaining the enhanced center feature embedding as well as
their semantic categories, we aim to decode the instances masks
further. The clustering-based methods group instances upon the
thing points, which usually suffer from the semantic conflicts prob-
lem in the same cluster due to the wrong semantic segmenta-
tion or inaccurate clustering. We introduce dynamic convolution
based on the enhanced center feature embedding to naturally avoid
the above problem by decoding the instance mask of the scene
around the instance center. We first use the kernel branch consist-
ing of a stack of convolution layers to generate the kernel weights
We = {wey, s Wep, } € RNeXLw from the enhanced center feature
embedding generated by the center-aware transformer. The L,,
denotes the dimension of the kernel weights. After that, the kernel
weights, which have encoded the object characteristics of instances
such as positional and shape cues, are transformed into the weights
of shallow convolution network ¥, as [13, 36]. The network %,
consists of two 1 1 convolution layers. A ReLU activation function
follows the first layer, and the second one is attached with a sigmoid
function to obtain the mask decoding.

Before the convolution operation, we designed the mask branch
constructed with several linear layers to generate the mask fea-
tures F,, € RVXP1. Since positional information is essential for
distinguishing between different instances, we encode center-aware
position embedding into the mask features. Similar to [13], we cal-
culate the offsets from each point to the center it belongs to. Then
the offsets are concatenated with the point features Fp. Further-
more, we concatenate the coarse binary mask with them to form
the final input features Fj’J € RNX(D+3+1) which are fed into the
mask branch to obtain mask features F,. The coarse binary mask
is generated based on instance centers and the experience radius
R. The value in the mask is set to 1 if the point belongs to thing
points and is within the R-radius neighbor of a certain center, and 0
otherwise. In this way, we can inject the position and shape priors
to the mask features, expediting the network’s convergence.

Given the output channels [Ds, 1] of convolution network 7,,
we can compute the dimension L,, of the kernel weights by:

L,y = D1 X D2 +D2(bias) + D2 X 1+1(bias) (8)
| — N——
weight weight
And the instance mask M, for center c; is decoded by:
Mc,- = gjw(Fm, Wc,-) (9)

During training, the ground truth Mci for the decoded mask M,
is determined using majority voting on the ground-truth instance
IDs in the pillar that ¢; belongs to. We use binary cross-entropy
loss and dice loss to form the segmentation loss:

Ne
1 A «
-Eins = F Z [2 'LBCE(MCisMCi) +Ldice (MCi’MCi)] (10)
¢ i=1
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Figure 4: Our SCPN generates accurate 3D centers (red points)
in complex scenes. While there still exist cases where dupli-
cated centers (red circle) are generated (e.g., large objects).

Mask Fusion. Due to inaccurate offsets prediction, multiple cen-
ters may exist in a single instance (especially large objects), as
illustrated in Fig.4. Thus, we design a mask fusion module to merge
the masks decoded by the centers belonging to the same instance
and paste the merged masks on the semantic predictions to unify
the semantic and instance masks. Specifically, let Mc,, Mc; be the
mask decoding for center c;, c; with the same semantic category.
We first convert the Mc,, Mc; to the binary masks by assigning
points with a score greater than 0.5 as the foreground. Then M,
and Mc; are merged if their overlap score exceeds a certain thresh-
old 8;p,,¢s- The overlap score is calculated in terms of IoU between
them. After the merging operation, these masks are pasted on the
semantic predictions. And the semantic categories of overlapping
regions are reset to be those assigned to the instance masks. The
order of the pasting is based on the confidence score, defined as the
average score of the foreground points. The pasting strategy can
correct the possible wrong semantic segmentation and improve the
final panoptic quality. Notably, due to the sparsity of the generated
centers by SCPN, our mask fusion module is efficient and can be
used in a plug-and-play manner. The detailed process and analysis
of the mask fusion are illustrated in the appendix.

4 EXPERIMENTS

We evaluate our CenterLPS and conduct extensive experiments on
the SemanticKITTI [1] and nuScenes [8] datasets. Due to the page
limitation, more details on the datasets, metrics, experiments, and
qualitative results are provided in the appendix.

4.1 Implementation details

We use GASN [41] as the voxel-based backbone by default. Follow-
ing GASN, the voxelization resolution is [0.2, 0.2, 0.1] in meters, and
the voxelization space is limited in [[+48m], [+48m], [-3m, 1.8m]].
We set the model dimension D = 64, the channels D; = 16 for the
mask feature, and output channels Dy = 16 of the first layer in
dynamic convolution. The number k for the center-aware trans-
former is set to 64. We use L = 2 encoder blocks for the transformer,
and the number H of attention heads is set to 4. The radius R for
shape prior is determined according to the average size of instances
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for each category in SemanticKITTIL During training, similar to
[14], we apply data augmentation such as global scaling, random
rotation, and random flipping on the input points of both datasets.
We combine the loss from the semantic predictions, offset pre-
diction, and instance segmentation for the overall training loss:

L =-£sem +£off+£ins (11)

where Lgem is the loss for semantic segmentation as in [41]. Our
model is trained for 50 epochs following [41] for semantic segmen-
tation, 10 epochs for the offset prediction, and another 20 epochs
for instance segmentation with a total batch size of 16 on 4 NVIDIA
RTX 3090 GPUs. We use the Adam [16] optimizer with an initial
learning rate of 5e-4 and a weight decay of 1e-5 to train the network.
During inference, the merging threshold 6,,., for the mask fusion
module is set to 0.85.

4.2 Comparison with the State-of-the-art

Results on SemanticKITTI. Table 1 and Table 2 show the com-
parison results between our CenterLPS and other state-of-the-art
methods on the SemanticKITTI validation and test sets.

e Compared with detection-based methods [15, 17, 34] our Cen-
terLPS performs significantly better than them in terms of PQ and
PQ™ on both validation and test sets, demonstrating that center rep-
resentation can well encode the object characteristics of instances,
which can be used to represent each object and distinguish between
different instances, discarding extra bounding box predictions.

e Compared with clustering-based methods [9, 14, 27, 46] and
Panoptic-PHNet [20]) which employ heuristic clustering algorithms
to group shifted thing points, our CenterLPS achieves comparable
performance on validation and test sets. Notably, our CenterLPS is
clustering-free and directly predicts instance mask for each center,
which is robust and can naturally avoid potential semantic conflicts
and correct wrong semantic predictions.

e Compared to a recent kernel-based method [24] which utilizes
learnable queries to predict binary masks and semantic classes,
our CenterLPS outperforms it by 2.3% and 3.4% in terms of PQ on
validation and test sets, respectively. It proves that center-based
queries generated by the spare center proposal network contain
more effective object information, which can facilitate the learn-
ing procedure of the network. Furthermore, explicitly decoupling
segmentation and classification helps alleviate mutual competition
and boost the segmentation performance.

Moreover, following Panoptic-PHNet[20], we also report our
version with test-time-augmentation (TTA) and model ensemble
on the SemanticKITTI test set in Table 2.

Results on NuScenes. Unlike SemanticKITTI, panoptic segmen-
tation is even more challenging on the nuScenes dataset due to
the extremely sparse point clouds that are collected by a 32-beam
LiDAR sensor. As shown in Table 3, our method surpasses all recent
works and achieves state-of-the-art performance in terms of PQ.
For example, CenterLPS exceeds SCAN [38], and Panoptic-PHNet
[20] by 11.3% and 1.7%. We notice that CenterLPS surpasses these
methods on thing classes by a large marge, e.g., 3.5% better than
Panoptic-PHNet on PQ™, though it is not the best on stuff’ classes.
The higher segmentation quality on thing classes demonstrates the
effectiveness of our center-based instance encoding and decoding
paradigm for LiDAR panoptic segmentation, which encodes object
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Table 1: LiDAR panoptic segmentation performance on the validation set of SemanticKITTI[1]. All results in [%].

Method PQ  pQf RQ sQ | pg™  RrQM™  sQ™ | pQSt  RQSt  sQ
RangeNet++[28] + PointPillars[17] 36.5 - 44.9 73.0 19.6 24.9 69.2 47.1 59.4 75.8
LPSAD[27] 365 46.1 - - - 28.2 - - - -
PanopticTrackNet[15] 40.0 - 483 730 29.9 33.6 76.8 474 591 703
KPConv([34] + PointPillars[17] 411 - 503 743 28.9 33.1 69.8 50.1 628  77.6
Panoster[9] 55.6 - 668  79.9 56.6 65.8 - - - -
Panoptic-PolarNet[46] 501 641 702 783 65.7 74.7 87.4 543 669 716
SCAN([38] 57.2 - - - - - - - - -
Panoptic-PHNet[20] 61.7 - - - 69.3 - - - - -
DS-Net[14] 577 634 680 776 61.8 68.8 78.2 548 673 771
EfficientLPS[31] 592 651 698 750 58.0 68.2 780 | 609 710 728
MaskPLS-M [24] 59.8 - 69.0 763 - - - - - -
CenterLPS (Ours) 621 670 720 807 | 684 752 910 | 575 697 732

Table 2: LIDAR panoptic segmentation results

ensemble. All results in [%].

on the test set of SemanticKITTI. | denotes the results with TTA and model

Method PQ pQf RQ sQ | Q™ RrQ™  sQ™ | pQSt  RQS  sQ%
RangeNet++ [28] + PointPillars [17] | 37.1 459 470 759 20.2 25.2 75.2 493 628 765
LPSAD [27] 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2
KPConv [34] + PointPillars [17] 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0
Panoster [9] 527 599 641 807 49.4 585 833 55.1 682 788
Panoptic-PolarNet [46] 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2
CPSeg [18] 57.0 63.5 68.8 82.2 55.1 64.1 86.1 58.4 72.3 79.3
DS-Net [14] 559 625 667 823 55.1 62.8 87.2 565  69.5  78.7
EfficientLPS [31] 57.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5
SCAN [38] 61.5 67.5 72.1 84.5 61.4 69.3 88.1 61.5 74.1 81.8
Panoptic-PHNet [20] 61.5 67.9 72.1 84.8 63.8 70.4 90.7 59.5 73.3 80.5
MaskPLS-M [24] 58.2 69.3 68.6 83.9 55.7 61.7 89.2 60.0 73.7 80.0
CenterLPS (Ours) 616 679 726 840 63.8 71.8 88.4 600 732  80.8
CenterLPS (Ours) 654 714 760 853 | 68.0 75.8 895 | 634 762  82.2

Table 3: LiDAR panoptic segmentation results on the validation set of nuScenes. All results in [%].

Method PQ pQf RQ sQ | pQh RQ™ sQm | pQSt RQS SQSt
PanopticTrackNet [15] 51.4 56.2 63.3 80.2 45.8 55.9 81.4 60.4 75.5 78.3
DS-Net [14] 425 51.0 50.3 83.6 325 38.3 83.1 59.2 70.3 84.4
EfficientLPS [31] 62.0 65.6 73.9 83.4 56.8 68.0 83.2 70.6 83.6 83.8
Panoptic-PolarNet [46] 63.4 67.2 75.3 83.9 59.2 70.3 84.1 70.4 83.5 83.6
GP-S3Net [30] 61.0 67.5 72.0 84.1 56.0 65.2 85.3 66.0 78.7 82.9
PVCL [23] 64.9 67.8 77.9 81.6 59.2 72.5 79.7 67.6 79.1 77.3
SCAN [38] 65.1 68.9 75.3 85.7 60.6 70.2 85.7 72.5 83.8 85.7
Panoptic-PHNet [20] 74.7 77.7 84.2 88.2 74.0 82.5 89.0 75.9 86.9 86.8
MaskPLS-M [24] 57.7 60.2 66.0 71.8 64.4 73.3 84.8 52.2 60.7 62.4
CenterLPS (Ours) 76.4 79.2 88.0 86.2 ‘ 77.5 88.4 87.1 ‘ 74.6 87.3 84.9

characteristics of instances with the center feature embedding and
decodes instance masks with dynamic convolution.

4.3 Ablation Study

Baseline. We build a strong baseline by taking the dynamic shift
(DS) module [14] to perform instance segmentation. For a fair com-
parison, the baseline keeps the same semantic prediction and offset
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regression as our CenterLPS. As presented in Table 4, the baseline
achieves 62.0% in terms of PQTh.

Effectiveness of proposed components. We analyze the effect
of the proposed sparse center proposal network (SCPN), mask fu-
sion module (MF), center-aware transformer (CTR), and dynamic
convolution. The results are presented in Table 4 and show that
our model (Variant 1) equipped with SCPN and the vanilla dynamic
convolution (without any priors such as PP and SP) has already
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Table 4: Effect of the components.

Variants|SCPN MF CTR PP SP| PQ [PQ™ RQ™ SQ™|mloU

baseline 59.4| 62.0 69.7 87.4 | 66.2
1 v 59.3| 625 70.9 854 | 68.1
2 v v 60.4| 65.1 73.1 87.9 | 67.9
3 v v v 61.0| 66.4 734 894 | 67.9
4 v v v/ 61.7| 67.5 751 88.4 | 68.1
5 v vV v Vv V/|621]684 752 910 | 68.1

Table 5: Ablation study on different backbones.

Dataset ~ Backbone | PQ | PQ™ RQ™ SQ™ | mloU
GASN 62.1 68.4 75.2 91.0 68.1
SemKITTL opuonN | 607 | 664 741 900 | 680
nuScenes GASN 76.4 77.5 88.4 87.1 77.1
SPVCNN | 757 | 772 881 870 | 767

achieved high performance and surpasses the baseline by 0.5% and
1.9% in terms of PQH] and mlIoU, respectively. It demonstrates the
effectiveness of our paradigm of center-based instance encoding
and decoding. When using the mask fusion module (MF) to pro-
cess the predictions, the performance can be boosted by 2.6% on
PQTh (Variant 2 vs. Variant 1), showing that our MF module can
effectively improve the panoptic quality. Furthermore, we demon-
strate the effectiveness of the center-aware transformer (CTR). We
achieve the 1.3% gain on PQ™ when using CTR to collect the con-
text between different center feature embedding and around centers
(Variant 3 vs. Variant 2). We also provide the results that use po-
sition prior/embedding (PP) for dynamic convolution as [13]. As
shown in Table 4 (Variant 4), PP improves the performance by 1.1%
in terms of PQ™. Finally, we analyze the effect of the proposed
shape prior (SP) to dynamic convolution. Comparing Variant 5 with
Variant 4 in Table 4, we can see that SP boosts the performance by
0.9% on PQ™ demonstrating that shape prior can further enhance
the mask features and expedite the convergence of the network.

Effect of different backbones. The backbone extracts point-wise
features for semantic prediction and instance segmentation. We pro-
vide detailed experiments in Table 5 to show the effect of different
backbones, i.e., grid-based GASN [41] and hybrid-based SPVCNN
[33] using sparse point-voxel convolutions. Both backbones have
4 scales and 64 dimensions for SemanticKITTI, and 6 scales and
128 dimensions for nuScenes. Our models with different back-
bones achieve comparable performance on both SemanticKITTI
and nuScenes validation, demonstrating that our approach can be
applied to other backbones. And we experimentally find that GASN
performs better in our center-based framework for LPS. We explain
that deep supervision and multi-scale geometry feature enhance
the representation ability of GASN, especially on small objects,
which is vital for downstream tasks such as instance segmentation.
Prior analysis of Dynamic Convolution. Positional information
is important for distinguishing between different instances, and
the coarse shape of instances can effectively guide the dynamic
convolution network focus on the objects. Thus, we concatenate the
offsets from points to the instance centers and the generated coarse
mask with point features to inject the position and shape priors.
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Table 6: Effectiveness of priors for dynamic convolution.

PP SP| PQ RQ SQ |PQ™ RQM sQM | mioU
X X 61.0 71.1 80.0 66.4 73.4 89.4 67.9
v X 61.7 72.0 79.6 67.5 75.1 88.4 68.1
X Vv 62.0 72.0 80.6 68.3 75.2 90.8 67.9
v v 62.1 720 80.7 68.4 75.2 91.0 68.1

Table 7: Kernel shape analysis on dynamic convolution.

kernel shape | PQ  RQ  SQ | PQ™ RQ™ sQ™ | mloU
[1] 619 719 80.6 | 67.9 74.9 90.7 68.0
[16,1] 621 720 80.7 | 684 752 910 | 68.1
[16,8,1] 62.1 721 804 | 68.4 75.4 90.4 68.2
[16,16,1] | 620 721 805 | 683 753 90.5 | 68.2

We provide further analysis of the priors in dynamic convolution in
Table 6. Without both position and shape priors, the model’s perfor-
mance drops from 62.1% to 61.0% in terms of PQ. And the position
prior contributes 0.7% and 1.1% gains on PQ and PQ™, respectively
(line 2 vs. line 1). While the mask prior boosts the performance by
1.0% on PQ and 1.9% on PQ™ (line 3 vs. line 1). The results show
that both position and shape priors are beneficial, and the latter
plays a more important role in improving the segmentation quality.
We explain that the shape prior implies more abundant information,
including position and geometric cues of instances.

Kernel shape analysis. The dynamic convolution generates kernel
weights based on the enhanced center feature embedding. The
kernel weights are further used to initialize the weights of the
shallow convolution network 7, for decoding the final masks
from the mask features Fy,. To analyze the effectiveness of kernel
shape, we change the output channels and the number of layers of
convolution network 7,. The results are presented in Table 7 and
show that CenterLPS is robust to the kernel shape.

5 CONCLUSION

This paper focuses on LiDAR Panoptic Segmentation (LPS). Un-
like mainstream detection- and clustering-based methods, we pro-
pose a new clustering-free and detection-free framework, dubbed
CenterLPS, with the center-based instance encoding and decoding
paradigm. Specifically, a sparse center proposal network is devised
to generate the sparse 3D instance center and feature embedding
to encode the characteristics of instances. Then a center-aware
transformer is applied to collect the context between the center
feature embedding and around centers. Moreover, we utilize dy-
namic convolution to generate kernel weights and decode the final
instance masks. A mask fusion module is also devised to unify the
semantic and instance predictions and improve the panoptic quality.
Extensive experiments on multiple benchmarks demonstrate the
effectiveness of our CenterLPS.
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Algorithm 1: Algorithm for the process of mask fusion

Input: Mask decoding: {Mc,, ..., Mcy, } € RNeXN. Instance
categories: {s¢,, ..., SCNC} € RNe: Semantic

predictions: Mgem, € RN.

Output: Unified panoptic results: {Msem, Mig}-

Calculate the confidence score {ry, ..., 7N, } for each mask:
ri = AVg(l{Mci>0.5}Mci) fori e [1,Nc]

Binarize the mask decoding by: M¢;, = M, > 0.5 for
i€[1,Nc]

Calculate the overlap score matrix H: H;j = IoU (Mc;, Mc;)
fori € [1,N;] and j € [1, N.];

Construct the connectivity matrix O: O;j = (Hjj > O;ppes)
and (s¢; == s¢;) for i € [1,Nc] and j € [1, N];

Find the Ny groups {Gy, .., GN, } by connected-component
labeling algorithm according to O; Each group contains
masks with overlap scores greater than 6;j,., and the
same semantic categories;

Obtain the merged mask {Mj, ..., M Ng} with categories
{s1, ...,sNg} by: M; = UG; for i € [1,Ng];

update the confidence scores {ry, ..., rn, } by averaging the
scores of masks in the same group;

Sort the merged mask based on confidence score
{ri...rN, b

Initialize instance IDs: M;4 = zeros(N); id = 1;

for k < 1to Ny do

if sum(My) < Nieep then
‘ continue
Msem [Mg] = si
Miq[My] = id
id+=1
end
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17 return Mgem, M;

A DATASETS AND METRICS

SemanticKITTI. SemanticKITTI [1] is derived from the KITTI
[10] odometry dataset and includes 22 LiDAR sequences (10, 1, and
10 for training, validation, and testing, respectively) captured by
a 64-beam LiDAR sensor. It provides point-wise labels for LIDAR-
based panoptic segmentation. And there are 19 annotated classes,
including 8 thing classes and 11 stuff classes.

nuScenes. nuScenes [8] is a large-scale urban driving dataset,
which includes 1000 LiDAR scenes of 20s duration captured by a 32-
beam LiDAR sensor. The dataset consists of 850 scenes for training
and validation, as well as 150 scenes for testing. For LIDAR-based
panoptic segmentation task, it involves 16 annotated point-wise
labels, including 10 thing categories and 6 stuff categories.
Metrics. The metrics [2] for LPS include Panoptic Quality (PQ),
Segmentation Quality (SQ), and Recognition Quality (RQ). We also
calculate these metrics independently for thing and stuff classes.
For thing class, the metrics are denoted by PQTh, SQTh, RQTh, and
for stuff class, they are denoted by PQSt, SQSt, RQSt. Also, we report
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PQ' defined in [29] by swapping the PQ of each stuff class to IoU
and then averaging over all classes for stuff classes. The Mean IoU

(mlIoU) evaluates the quality of semantic segmentation.

Table 8: Comparison between NMS with pasting strategy
(NMS-P) and our mask fusion module (MF).

lat
variants | PQ  PQT | PQ™ RQ™ sQ™ ‘ mloU a(::;;y
NMS 59.9 65.1 63.9 72.0 86.0 68.1 11.6
NMS-P | 60.6 658 | 654 727 887 | 679 | 156
MF 61.0 66.2 66.4 73.4 89.4 67.9 15.1

Table 9: Architecture analysis of transformer on Se-
manticKITTI validation.

PE SA LCA| PQ RQ SQ |PQ™ RQM SQ™ | mloU
x v v |67 709 798| 659 733 890 | 67.8
Vv X v 60.5 70.7 79.9 65.4 72.8 89.1 67.8
v vV x | 606 708 799 | 656 730 89.1 | 67.9
Vv v v 61.0 71.1 80.0 | 66.4 73.4 894 67.9

Table 10: Comparison of different blocks and head configu-
rations of the transformer.

block head | PQ  RQ SQ | PQ™ RQ™ SQ™ | mloU
1 8 60.9 709 80.1 66.5 73.6 89.6 67.7
2 4 61.0 71.1 80.0 66.4 73.4 89.4 67.9
2 8 60.9 709 80.1 66.3 73.4 89.6 67.7
3 4 60.8 70.9 80.1 66.2 73.4 89.5 67.9
3 8 60.7 70.7 80.0 65.9 72.9 89.4 67.6
4 4 60.9 709 80.1 66.3 73.4 89.6 67.6
B ANALYSIS

We conduct a series of experiments to provide further analysis
on mask fusion and the center-aware transformer. All variants are
equipped with vanilla dynamic convolution (without position/shape
priors) for a fair comparison. The efficiency analysis is also pro-
vided.

B.1 Analysis of Mask Fusion Module

The detailed procedure of our mask fusion is presented in Algo-
rithm 1. The merging process is performed through the connected-
component labeling algorithm, which can be implemented by the
efficient depth-first algorithm. The merged masks are pasted on the
semantic predictions by order of confidence score. And masks that
contain points less than Ny, are dropped. We also provide a fur-
ther comparison between NMS incorporating our pasting strategy
(NMS-P) and our mask fusion (MF) in Table 8. The results demon-
strate the effectiveness of our mask fusion module, including the
merging and pasting strategies.



CenterLPS: Segment Instances by Centers for LIDAR Panoptic Segmentation
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Figure 5: Visualizations on the SemanticKITTI test set. Our CenterLPS handles close instances and large objects better.

Table 11: Ablation on k in k-nearest neighbors.

k | PQ RQ sQ | PQ™ RQM

32 60.6 70.8 79.8 65.6 73.1 88.9 67.6
64 61.0 71.1 80.0 66.4 73.4 89.4 67.9
96 60.9 71.1 79.8 66.2 73.8 88.9 67.8
128 60.9 71.0 80.0 66.3 73.7 89.2 67.9

SQ™ | mloU

B.2 Ablation on Center-aware Transformer

Effect of different components. Position embedding, self-attention,
and local cross-attention are important components of the trans-
former. Position embedding provides the spatial relationships be-
tween different attentive points. Self-attention models the inter-
instance dependencies, and local cross-attention collects the context
around the centers. We explore the effect of these components. The
results are presented in Table 9 and show that all these components
contribute to the performance of the center-aware transformer. And
self-attention plays a more important role, meaning inter-instance
relationships help distinguish different instances better.

Ablation on encoder blocks and attention heads. Table 10
presents the detailed results of using a different number of encoder
blocks and attention heads for the center-aware transformer. The
results show that more transformer encoder blocks and attention
heads do not assure better performance. The transformer model
with 2 blocks and 4 heads performs best.
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Effect of different k in k-nearest neighbors. In the local cross-
attention layer of the center-aware transformer, k-nearest neigh-
bors are used to collect context around centers for an intra-instance
relationship. On the other way, using k-nearest neighbors also re-
duces computation consumption. We change the k to investigate
the effect. As shown in Table 11, it performs best with k = 64.

B.3 Efficiency Analysis

We perform runtime experiments on a single NVIDIA 1080 TI GPU.
The mean value over the SemanticKITTI validation set is reported.
The backbone has a runtime of 84.2 ms, and the center-based in-
stance segmentation and mask fusion add 70.1 ms and 14.2 ms, re-
spectively. Specifically, the sparse center proposal network, center-
aware transformer, and dynamic convolution require 30.2 ms, 6.2
ms, and 33.7 ms, respectively. Compared to the two representative
methods, i.e., clustering-based DSNet [14] and detection-based Effi-
cientLPS [31], which runs 474.5 ms and 212.8 ms in the inference
stage, our CenterLPS has lower latency. We test DSNet with the
same backbone as our CenterLPS on the same platform.

C QUALITATIVE RESULTS

We show visual comparisons of our CenterLPS with DSNet [14] and
Panoptic-PolarNet [46] on the SemanticKITTI test set. These exam-
ples show that our approach performs well not only for crowded
scenes but also for big objects. Specifically, the adjacent objects
(such as people) in the upper part of Fig.5 are accurately distin-
guished. And the large objects (such as buses) in the bottom part of
Fig.5 are correctly segmented without the over-segment problem.



	Abstract
	1 Introduction
	2 Related works
	2.1 LiDAR Panoptic Segmentation
	2.2 Kernel-based Segmentation
	2.3 Center Representation

	3 Method
	3.1 Overview
	3.2 Point-wise Semantic Prediction
	3.3 Sparse Center Proposal Network
	3.4 Center-aware Transformer
	3.5 Dynamic Convolution Network

	4 Experiments
	4.1 Implementation details
	4.2 Comparison with the State-of-the-art
	4.3 Ablation Study

	5 Conclusion
	6 Acknowledgments
	References
	A Datasets and Metrics
	B Analysis
	B.1 Analysis of Mask Fusion Module
	B.2 Ablation on Center-aware Transformer
	B.3 Efficiency Analysis

	C Qualitative Results



