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Abstract— Multi-sensor fusion-based localization technology
has achieved high accuracy in autonomous systems. How to
improve the robustness is the main challenge at present. The
most commonly used LiDAR and camera are weather-sensitive,
while the FMCW radar has strong adaptability but suffers
from noise and ghost effects. In this paper, we propose a
heterogeneous localization method of Radar on LiDAR Map
(RoLM), which can eliminate the accumulated error of radar
odometry in real-time to achieve higher localization accuracy
without dependence on loop closures. We embed the two sensor
modalities into a density map and calculate the spatial vector
similarity with offset to seek the corresponding place index
in the candidates and calculate the rotation and translation.
We use the ICP to pursue perfect matching on the LiDAR
submap based on the coarse alignment. Extensive experiments
on Mulran Radar Dataset, Oxford Radar RobotCar Dataset,
and our data verify the feasibility and effectiveness of our
approach.

I. INTRODUCTION

Localization is an indispensable part of autonomous driv-
ing. Sensors such as GPS, camera, Radar, and LiDAR are
widely used in current systems. However, there are many
limitations to the direct application of certain sensors in
specific environments. The accuracy of the visual localization
is limited when illumination changes and the GPS becomes
unreliable in urban canyons.

LiDAR is more precise than the sensors mentioned above.
It can achieve accurate mapping under different illumination
through point cloud registration. Nevertheless, its noise will
increase significantly in rainy, snowy, and foggy weather.
Accurate and stable localization in severe conditions is still
a challenge. Moreover, radar has a large-scale observing
ability, and strong robustness in extreme weather, such as
rain and snow [1, 2]. It has also become a hotspot of research
in recent years.

Therefore, radar localization on pre-build lidar maps will
complement each other [3–5]. However, there are two chal-
lenges in matching and aligning the radar data and the lidar
map: 1. FMCW Radar can only get the 2D information
of the sweep line plane, which is one dimension less than
the LiDAR; 2. Lidar point clouds can clearly outline even
tiny objects, while radar polar can only show approximate
changes in reflectivity in a scene, i.e., there is no direct
correspondence between lidar points and radar points in
space.

To align the data from different modalities, we utilize
vectors with offset, which contains the idea of projection
dimensionality reduction. For eliminating the occlusions and
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Fig. 1: Radar odometry generated using RoLM in which the colorful
box shows some details. The left side of the figure provides the
difference between lidar data and radar data in the same scene.

ghost reflections in the radar images, we extract the keypoints
[6] of each frame and fuse the feature of multiple frames.
The pose estimation of the system can be divided into four
steps. First, obtain the initial pose estimation from radar
odometry. Second, find a lidar frame similar to the radar
keyframe and calculate its external parameters. After that,
get the deviation between the current position and the map
pose. At last, an optimization method of heterogeneous pose
graph is introduced.

To verify the feasibility and effectiveness, we validate our
algorithm on the Mulran Dataset [7], Oxford Radar RobotCar
Dataset [8], and our ZJU Radar Datasets (Fig. 6).

In general, the contribution of this paper can be summa-
rized as follows:

• We propose a multimodal radar slam system that utilizes
radar-to-lidar relocalization to eliminate odometry drift.

• A new feature description and matching method of
Radar on LiDAR Map (RoLM) is offered. It can retrieve
the corresponding position index from historical lidar
observations and estimate the coarse transformation.

• We first add the association of heterogeneous sensors
to the sliding window pose graph optimization, which
effectively improves localization accuracy.

• A new mobile cart radar dataset is available1. Extensive
experiments on the Mulran Radar Dataset [7] (multiple
periods and scenarios), the Oxford Radar RobotCar
Dataset [8, 9], and our Zhejiang University (ZJU)
Dataset (Fig. 6) validate the effectiveness and feasibility
of the proposed system.

The rest of this paper is organized as follows: Section II
summarizes the related works in recent years. Our system is

1https://github.com/HR-zju/ZJU-Radar-Dataset.git
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Fig. 2: The overall framework. Given the raw range measurements, RoLM can find the corresponding location index from
a set of locations in the map and computes the pose bias to add to pose graph optimization.

introduced in Section III. Section IV includes some details
about experimental settings and results on several datasets.
Ultimately, we conclude a brief overview of our system and
a future outlook in Section V.

II. RELATED WORK

A. Radar SLAM

Radar SLAM has been a hotspot in recent years. As
for its front-end, many radar algorithms are migrated from
visual, or lidar platforms [10, 11]. There are generally two
routes for radar feature extraction, traditional methods[12,
13] and neural network methods [14, 15]. We focus on the
former in this paper. Owing to the redundant keypoints and
false positives generated by the Constant False Alarm Rate
(CFAR), Cen et al. proposed a feature detection method in
2018. This method scales the radar power spectrum accord-
ing to its truth probability [12]. One year later, they proposed
an updated detector [13], which identifies the continuously
scanned region with high intensity and low gradient.

Later, based on Cen’s work on radar feature extraction,
Burnett et al. proposed Yeti Radar Odometry to eliminate
motion distortion and the Doppler effect. The Gaussian filter
is used in this algorithm instead of the binomial filter. This
method also preserves multipath reflection. After feature ex-
traction, the original data in polar coordinates are converted
into Cartesian form. The ORB descriptor used to perform
violent matching is then computed for each keypoint. After
mismatch removal, the remaining matches are eventually sent
to the MC-RANSAC-based estimator [16].

B. Localization on Pre-built Maps

The concept of localization on pre-built maps is relative
to SLAM, with high real-time requirements. A pre-built
map can avoid repeated online mapping for long-term fixed
systems, which improves efficiency. The existing pre-built
map localization algorithms include visual localization on
visual and lidar maps [17, 18] and lidar localization on lidar
maps [19]. These methods are still flawed in robustness.

Compared with LiDAR, radar has a powerful ability to
penetrate smoke and dust, with characteristics of all-weather
and anti-interference. Therefore, radar is widely used in

localization research, covering indoor and outdoor scenes
[20, 21]. In recent years, Navtech has provided radars with
higher accuracy, less motion distortion, and a 360◦ range
for corresponding research, producing rich results. Famous
datasets [7–9, 22] and various algorithms [1, 6] were estab-
lished.

Radar-on-LiDAR localization algorithm [3] proposed by
Yin uses a conditional generative adversarial network
(GAN): pix2pix [23], which is trained to transfer the radar
data to fake lidar points. Then a Monte Carlo localization
(MCL) system is built to achieve accurate localization on pre-
built lidar maps. Later, Yin proposed an end-to-end learning
system [5], achieving localization by a back-propagating
gradient from the pose supervision. This method also utilizes
the Kalman Filter to improve accuracy. The recent study [4]
of Yin introduces a heterogeneous place recognition method
via joint learning. And we further add heterogeneous prior
constraints to the factor graph for global optimization.This
method utilizes joint training to perform place recognition
by extracting radar and lidar shared embeddings. In addition,
there are also algorithms solving the problem by inputting
satellite maps [24].

III. METHODOLOGY

This section introduces the proposed system. Overall
framework of proposed RoLM of the system is shown in Fig.
2. Unlike existing methods for matching heterogeneous sen-
sor information, we use Scan Projection Descriptors (SPD) to
describe their similarity without using GPU for acceleration.

A. Motivation for RoLM

Assuming a non-transparent object in 3D space, it appears
with a clear outline and geometric structure in the lidar point
cloud while its edge appears to be blurred in the radar point
cloud. The correspondence between lidar and radar points
is vague but relatively explicit between their point cloud
clusters. The density of a point cloud can indicate an object’s
size, thickness, and hollowness. For example, the point cloud
density of a tree will be sparser than that of a wall, which
makes it more conspicuous from a top-down perspective.
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Fig. 3: Scan Projection Based Rough Estimate. Given the initial measurement set R, the feature points Fk,i in the sliding window SK are
spliced into a keyframe self-map wFk. The most similar lidar frame is selected from the candidate list using polar and Cartesian projection
descriptors, respectively, and the rotation θn and translation yn are calculated. On this basis, ICP is used to complete the alignment to
obtain the primary edge constrain edges ∗Tr→l.

B. Radar Keyframe Generation

The radar image has noise and ghost reflections due to
multipath return. The key to aligning the radar point cloud
with the lidar point cloud is to extract an accurate description
of the environment from the radar. The typical practice is to
filter out noise in a single frame. However, we cannot remove
the ghost reflections with this single-frame information, and
the peak part of the white noise will also be regarded as a
tiny object, affecting the final result. We choose to extract
the keypoints of each radar image frame directly and fuse
the feature points of multiple frames to avoid occlusion and
ghost reflections.

1) Keypoint extraction: The image is divided into high
gradient regions of interest (ROI) and low gradient regions
(using the Prewitt operator) according to the gradient of
the image, and the areas mask rM is generated to remove
redundant points.For each serial region rmi, the range bin
r with the highest value is taken as the keypoint rfi after
motion correction and Doppler removal [6] :

∆rcorr = β (vx cos(ϕ) + vy sin(ϕ)) , (1)

where the velocity vx, vy comes from their motion estimator.
Doppler removal can remove radial distortion in millimeter-
wave radar rays.

2) Keyframe Submap: The radar keypoints in a single
frame suffering ghost reflections are sparse. To construct a
keymap as the environmental representation of the keyframe,
we consider converting the multi-frame features to the sensor
coordinates of the intermediate position. A sliding window
is a collection of n radar frames, including the feature point
cloud rFi of each frame and the odometry estimate wOi.
The middle position is the base coordinate of the submap.
The critical point clouds of all frames in the window are
registered to this coordinate system to form the radar local
feature point cloud map under the sliding window, denoted
as wFk:

wF k = rF k
k−i . . .

rF k
k−1 ∪ rFk ∪ rF k

k+1 . . .
rF k

k+i, (i ∈ NA).
(2)

where NA is a set whose size is equal to radar frame numbers
in the window, and rF k

j means the register of rFj at wOk.

Radar Odometry

Slide Window

Lidar Trajectory

Fig. 4: A diagram illustrating the heterogeneous pose graph opti-
mization procedure.

C. Scan Projection Descriptor for RoLM

Inspired by [25], we replace the value of each bin with
the normalized value of the point density of each patch. We
first rasterize the space on the XY plane for a single point
cloud frame, then count the number of points in all grids.
Finally, we normalize the number of points in all grids to
get the point cloud descriptor of this frame.


dRrec

i,j =
Drec

i,j

maxDrec
, (i, j = 1, 2, . . . , n)

dRarc
i,j =

Darc
i,j

maxDarc
, (i = 1, 2, . . . ,m, j = 1, 2, . . . , n)

(3)

where Drec, Darc represent the density of point cloud
blocks distinguished by rectangles and arcs, i, j are the
indices of the grid (e.g. 60 × 20 sectors of 6◦ × 2m are
used in IV). We denote the point cloud descriptor obtained
by projection as S.

The resolution of the descriptor depends on the size and
number of rasters with a single-degree-of-freedom (DOF) in
the row vector direction between them. Descriptors can be
divided into two categories according to the DOF:

• Polar Projection (PP): The PP leverages polar coordi-
nates, with the angle as the horizontal axis and the
radius r as the vertical axis. Count the number of points
that fall into each arc to fill the descriptor. It stores 1
DOF in the heading direction.
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(a) Trajectories on DCC03 (b) Trajectories on Kaist03 (c) Trajectories on Riverside02

(d) Relative translation errors on DCC03 (e) Relative translation errors on Kaist03 (f) Relative translation errors on Riverside02

(g) Relative heading errors on DCC03 (h) Relative heading errors on Kaist03 (i) Relative heading errors on Riverside02

Fig. 5: Evaluation of three different methods on the MulRan Dataset. Trajectories (a)(b)(c), percentage of relative translation errors (d)(e)(f),
and relative heading errors (g)(h)(i). Each column represents a different sequence of results.

• Cart Projection (CP): Take the x axis of the sensor
coordinates as the vertical axis and the y axis as the
horizontal axis. Count the number of points that fall
into the rectangular box. It contains 1 DOF in the y-
direction.

The above two descriptors lack the x-axis for radar odom-
etry. However, in a large-scale scene such as an urban road,
the lane-level translation has little effect on the calculation
results of PP. We can complete the alignment of the two
frames of point clouds on the x axis by evaluating the score
of PP.

D. Scan Projection Estimate

Although III-A clarifies that there is an apparent corre-
spondence between the dense part of the lidar point cloud
and the bright spot of the radar point cloud, they do not have
an accurate numerical relationship. The similarity between
the descriptor column vectors is first compared. Adding the
distances of each column vector gives an equal representation
between the two full descriptors. We have known radar
descriptor SR and lidar descriptor SL from Eq. 3, and the
distance between them can be expressed as:

di(SR,i, SL) =
1

NA

∑
j

=
1

NA

(
1−

sjR,i · s
j
L

∥sjR,i∥ · ∥s
j
L∥

)
. (4)

The lidar keyframes used in IV for comparison are ob-
tained by taking one frame every 0.5m in all scans. All of
them are used to constitute the complete lidar map.

As described in III-C, d(SR, SL) also has 1 DOF along the
horizontal axis. SR,i is an SPD whose columns are shifted

from the original one by an amount i. Traverse the similarity
of all frames with different offsets, and obtain the similar
lidar with the miniature score. The alignment result is nalign.

D (SR, SL) = min
i∈[NA]

di (SR,i, SL)

nalign = arg min
i∈[NA]

di (SR,i, SL) .
(5)

Thus, we can obtain the rotation θnalign
= nalign × 360◦

NA

and translation ynalign
= (nalign − NA) × 2∗Ry

NA
, (Ry =

100m is the farthest distance of the point used to calculate
SR in IV) of any key measurement wFk relative to similar
lidar frames based on their PP and CP scores. Moreover, the
translation on the x axis can also be roughly estimated. We
use the transformation matrix SPTr→l to express it:

SPTr→l =


cos θnalign

− sin θnalign
0 0

sin θnalign
− cos θnalign

0 ynalign

0 0 1 0
0 0 0 1

 . (6)

1) Precise alignment using ICP: The accuracy of the
initial rotation matrix depends on the choice of parameters
n,m in the Eq. 3, which may bring a significant mistake to
the final estimate. Based on the above alignment results in
Eq. 5, we use ICP with the RANSAC to adjust it in a small
range. Record the result as:

∗Tr→l =
SPTr→l · icpTr→l, (7)

where ∗Tr→l indicates the corresponding between radar and
lidar poses, the entire initial alignment process can refer to
the Fig. 3.
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E. Heterogeneous Pose Graph Optimization

The optimized estimation (Fig. 4) of the whole system
can be divided into two parts. 1. radar odometry: provide
initial pose estimation and the radar point cloud keyframe.
2. radar on lidar localization: find a lidar frame similar to
the radar keyframe, and calculate the external parameters of
the two to get the deviation between the current position and
groundtruth.

1) Radar Odometry Edge: Given a new radar scan, we
first perform a coordinate transformation. Key connected
regions are divided according to gradient transformation, and
intensity peaks in a small range are extracted as feature
points. All radar frames rFi in the sliding window are
registered at keyframe coordinates according to the estimated
pose Oi, forming a local keymap Fk. Using each frame
as a keyframe will be computationally expensive, affecting
the algorithm’s real-time performance. The interval between
keyframes and the size of the sliding window is adjustable.
we define the residual of edge between radar odometery
frame i and j minimally as

ri,j(o
w
i ,

y ϕi,o
w
j ,

y ϕj) (8)

=

[
R(0, 0,y ϕi)

−1(ow
j − ow

i )− ôi
ij

yϕj − yϕi − yϕ̂ij

]
,

where ôi
ij is relative position, and yϕ̂i is the fixed estimate

of yaw angle value of rotation we estimated.
2) Isomerous Edge: Isomerous Factor is like a high-

frequency loop closure factor. It is different from the odom-
etry factor because it provides a prior constraints on the SE3
6 DOF.

ek,k(o
w
k , g

w
k ) = Tr→l,k

∗T⊤
r→l,k, (9)

where ∗T⊤
r→l,k is the relative estimates of transformation,

which is obtained from 7, and Tr→l,k is the actual transfor-
mation between the current radar and lidar frame.

The whole graph is optimized by minimizing sequential
edges and isomerous edges:

min
o,Φ

=

 ∑
(i,j)∈S

∥r2i,j∥+
∑
k∈H

ρkbk∥e2k,k∥

 , (10)

where S is the set of all sequential edges, and H is the
set of all isomerous edges. The scale coefficient ρ is used to
adjust the weight of heterogeneous prior constraints. Usually,
we use ρ > 1. The flag variable bk ∈ {0, 1} comes from
the judgment of some driving experience (see IV-B for
details) and indicates that the edge is valid or ignored. Their
assignment strategy will be detailed in the experiments. By
contrast, we do not add any constraints on sequential edges
because these edges are extracted from RO, where some
outliers have been removed.

IV. EXPERIMENTS

A. Implementation Strategy

We tested our RoLM system on the Mulran [7] and
the Oxford [8, 9] Datasets. We provide a dataset that

Fig. 6: (a) Our test vehicle with Radar, LiDAR, IMU, and RTK
sensors. (b)(c)(d) Three paths contained in our dataset, collected in
Zijingang Campus of ZJU.

was collected using Navtech Radar CIR sensor and 32-
rings LiDAR at the Zijingang campus of ZJU (Fig. 6). We
also conducted experiments on the same route sequences
collected at different times in the Oxford Radar Dataset.
It is distinct from the multiple sequential Mulran datasets
that collected different routes within the same area. Besides,
Sejong-02 tests the performance of our Rolm over 23km.

In order to further verify the effectiveness of the algorithm
in different types of sensors and onboard platforms, we
built a test vehicle, as shown in Fig. 6a. It is equipped
with Radar, LiDAR, IMU, and RTK sensors. We collected
three representative short, medium, and long sequences in
the Zijingang Campus of ZJU on January 15, 2022. Each
sequence had at least one closed loop. Lane changes and
different directions of the same road also existed in ZJU-
02 and ZJU-03. There are also a large number of dynamic
objects in the dataset. The collection route can refer to the
right side of Fig. 6.

It is worth mentioning that the sensors types and locations
on vehicles are different in each dataset, and all experiments
are done on the same system with an Intel® Core™ i7-9700
CPU @ 3.00GHz × 8.

B. Experiment Setup and Hypotheses

In all experiments, we set the size of the sliding window
to 10 and perform window acquisition every ten frames of
radar. The heterogeneous prior constraint weight ρ = 1. In
general, we consider each heterogeneous constraint to be
credible unless any of the following situations occurs:

• If the SPD similarity D(·, ·) is lower than the threshold
τ , what we get is thought to be a false match.

• During daily driving, U-turns rarely occur. In order to
eliminate the resulting mismatch, we stipulate that if
the difference between the current constraint gwk and
the current body position owk heading angle is more
significant than 120◦, then ignore it.

• As a rule of thumb, when the car is driving normally
on the road, it will not swerve suddenly at high speeds.
Therefore, when the PP alignment result is nalign ∈
(5, 25) ∪ (35, 55), we set bk = 0.

The current strategy does not include an initial positioning
of the first frame. Therefore, it is required that the starting
point of the radar odometry is not too far from the map
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TABLE I: RMSE OF GLOBAL TRAJECTORIES

Sequence Yeti Odom [6] Scan Context [26] RaLL [5] Our Rolm(SPD) [5] Our RoLM(SPD+ICP)
Trans.(m) Rot.(◦) Trans.(m) Rot.(◦) Trans.(m) Rot.(◦) Trans.(m) Rot.(◦) Trans.(m) Rot.(◦)

Oxford-01 95.45 13.13 28.29 5.74 train train 1.07 1.19 1.11 1.17
Oxford-02 34.25 5.46 14.14 3.66 0.98 1.45 0.84 0.93 0.92 1.01
Oxford-03 118.38 16.06 99.39 14.68 1.14 1.62 1.12 1.08 1.07 1.04
Oxford-04 201.01 26.30 185.53 23.95 1.71 1.93 1.22 1.29 1.41 1.33
Oxford-05 95.92 8.55 53.73 5.33 1.11 1.48 1.22 1.30 1.06 1.15
Oxford-06 148.29 22.37 120.02 19.45 1.14 1.52 1.24 1.14 1.29 1.23
DCC-01 30.60 2.61 17.76 2.96 2.11 1.97 0.97 1.23 0.78 1.27
DCC-02 26.56 4.49 20.14 4.16 4.71 2.01 1.06 1.16 0.80 0.91
DCC-03 19.94 4.02 12.63 2.53 5.14 2.55 0.73 1.10 0.60 1.06
Kaist-01 34.78 5.86 19.86 4.86 1.30 1.71 0.75 1.61 0.81 1.60
Kaist-02 31.99 6.61 5.55 2.5 1.30 1.71 0.77 1.24 1.39 1.59
Kaist-03 30.55 3.50 4.94 2.41 1.27 1.50 0.82 1.25 0.81 1.47
Riverside-01 40.36 5.96 8.10 2.99 4.12 2.84 3.59 1.70 3.32 1.57
Riverside-02 37.56 3.40 11.47 3.29 2.52 1.93 6.10 2.40 2.72 1.76
Sejong-02 2893.17 38.14 2847.81 37.40 - - 8.90 3.02 5.20 1.43
ZJU-01 51.26 48.02 50.32 47.59 85.61 88.64 8.87 6.98 1.10 6.94
ZJU-02 171.60 157.14 - - 6.82 41.55 1.17 9.11 2.38 8.50
ZJU-03 137.25 178.48 - - 253.52 96.99 2.46 6.55 2.36 6.53

origin; otherwise, the initial offset needs to be given manu-
ally. We leveraged the k-d tree to propose all the map poses,
and c candidates were selected for retrieval. The selection
of candidate lidar maps will be adjusted according to the
vehicle’s speed and pavement information. For instance, in
Riverside and Sejong, we take c = 100 for bridges and
mountain roads where road information is not abundant and
c = 50 for structured urban scenarios.

As for the lidar groundtruth of the public dataset ref-
erenced in the experiment, we transform the groundtruth
and laser point cloud provided by the dataset into the radar
coordinate system with the provided extrinsics. Moreover, we
used a loosely-coupled scheme based on LIO-SAM[27] and
GPS for the self-built dataset to obtain the lidar groundtruth.

C. Experiments Results Evaluation

We compared the proposed system with the four methods
on two public datasets [7, 9] and data from ZJU. These
competitive methods include RO [6], RO with loop detection
[26] and Rall [5]. We also verified the effectiveness of
the proposed descriptor through ablation experiments. The
results are presented in Tab. I. We use the open-source tool
[28] for error calculation. An overview of the trajectory
estimation results on some sequences is shown in Fig. 5.
The Scan Context method is significantly better than Yeti
Odom in repeated road sections because of including closed-
loop detection. Our RoLM has the slightest trajectory error.
In addition, the second and third rows of Fig. 5 show the
translational and rotational relative errors of our trajectory.
Specifically, the relative errors equal the mean translation and
rotation errors from 500m to 2500m with the incremental
distance traveled.

Our method stands out in evaluating the absolute error of
trajectories in all sequences, which has the minor root mean
squared error (rmse) of experimental results in most of the
sequences (Tab. I). Our system performs better in structured
urban scenes (i.e. Oxford, DDC, Kasit) when it has a more
significant error in degraded scenes (i.e. Riverside, Sejong).
Among them, there are many bridge scenes in the Riverside
sequence, which is an excellent challenge for relocation.

Therefore, when the number of point clouds in wFk is tiny,
set bk = 0. Additionally, each radar ray in ZJU datasets has
no exact timestamp, which results in the Doppler effect and
motion distortion elimination challenges. The uncertain ray
timestamp results in a significant error in the heading angle
estimate. The yeti odometry even provides a non-smooth
trajectory, which also causes the Scan algorithm to crash.

Finally, we also designed a set of ablation experiments.
We tested RoLM (SPD) and RoLM (SPD+ICP), respectively,
which shows that SPD has significantly improved the system,
and adding ICP can make it more stable. In a nutshell, our
RoLM has succeeded on a wide range of radar and lidar
models and is highly inclusive of vehicle speeds and lane
changes.

V. CONCLUSIONS AND FUTURE WORK

A heterogeneous localization system RoLM is proposed in
this paper, which can correct the cumulative error of radar
odometry in real-time without closed loops:

• Point clouds are transformed into density maps of polar
and Cartesian coordinates.

• We use the SPDs to get their rough external parameter
estimates. After that, we perform a small-scale accurate
alignment of the ICP based on the initial rough align-
ment.

• The obtained primary constraints are added to the
overall pose graph optimization.

We demonstrate the reliability of the proposed localization
system and its advantages over other methods in multi-
session multi-scenario and our collected datasets.

On the other hand, there are promising breakthroughs in
the system to improve the practicability of radar. First, only
prior constraints are added to the middle frame of the sliding
window during the system’s operation. In contrast, the latest
frame in the sliding window cannot be verified, and the
algorithm has a certain lag. Second, we intend to implement
radar scene recognition on lidar based on the existing radar
[25] and cross-sensor [4] global relocalization method in the
future.
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