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Abstract—Accurate and reliable sensor calibration is essential
to fuse LiDAR and inertial measurements, which are usually
available in robotic applications. In this article, we propose a
novel LiDAR-IMU calibration method within the continuous-time
batch-optimization framework, where the intrinsics of both sensors
and the spatial-temporal extrinsics between sensors are calibrated
without using calibration infrastructure, such as fiducial tags. Com-
pared to discrete-time approaches, the continuous-time formula-
tion has natural advantages for fusing high-rate measurements
from LiDAR and IMU sensors. To improve efficiency and address
degenerate motions, the following two observability-aware modules
are leveraged: first, The information-theoretic data selection policy
selects only the most informative segments for calibration during
data collection, which significantly improves the calibration effi-
ciency by processing only the selected informative segments. Sec-
ond, the observability-aware state update mechanism in nonlinear
least-squares optimization updates only the identifiable directions
in the state space with truncated singular value decomposition,
which enables accurate calibration results even under degenerate
cases where informative data segments are not available. The
proposed LiDAR-IMU calibration approach has been validated
extensively in both simulated and real-world experiments with
different robot platforms, demonstrating its high accuracy and
repeatability in commonly-seen human-made environments.

Index Terms—Continuous-time representation, information
matrix, optimization, sensor calibration, system observability.
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I. INTRODUCTION

THE LiDAR-IMU (LI) system has prevailed in recent
years [1]–[7], as an increasing number of robotic appli-

cations require accurate and robust LI-navigation solutions. Ac-
curate LI extrinsic calibration is a prerequisite of LI navigation.
Manually measuring the spatial extrinsic parameters (relative
translation and rotation) between the LiDAR and IMU might
be inaccurate or impractical, demanding an easy-to-use, auto-
matic calibration approach. Besides the extrinsic calibration,
calibrating the intrinsics of both sensors is equally important.
IMU intrinsics [8], [9] modeling scale imperfection and axis
misalignment between the gyroscope and accelerometer, are
recommended to calibrate offline [10]. Similarly, LiDAR in-
trinsics [11], [12], such as each beam’s horizontal and vertical
angles and range offset, have been shown to be better calibrated
for accurate registration and mapping rather than using factory
default. Therefore, in this article, we perform both intrinsic and
extrinsic calibration for LI systems.

Many calibration methods rely on infrastructure (e.g., fiducial
targets or turntables) to aid calibration [13]–[15], which, how-
ever, increases the technical barrier for the widespread deploy-
ment of LI systems. LI sensors used in practical applications may
not be perfectly time synchronized, necessitating the temporal
calibration to compute the time offset between the two sensors.
While discrete-time representation of states is most commonly
used in calibration, its discretization introduces approximation
when fusing asynchronous measurements and incurs a higher
computational cost when processing high-rate data. Building
upon our prior work [16], in this work, we develop a continuous-
time LI calibration method that computes both intrinsic and
extrinsic (spatial and temporal) LI sensing parameters without
using dedicated infrastructure.

It is well understood that (infrastructure-free) sensor calibra-
tion can be heavily affected by the environment and motion be-
cause of observability (e.g., see [4], [10], [17]). In order to make
the calibration tool easy-to-use for an end user, it is desirable
to enable our LI calibration method to automatically address
observability issues. To this end, we first perform observability-
aware automatic selection of informative data for offline cali-
bration; that is, we select only the most informative trajectory
segments (rather than an uninformative long-session trajectory
with weakly-excited motions). This is primarily due to the fact
that if a calibration-data-collection trajectory is not fully excited,
some calibration parameters may become unobservable and
thus, cannot be computed or result in inconsistent results [10],
[17]. However, how to collect informative data for calibration
is not trivial for nonexpert users. To alleviate this technology
barrier, the proposed observability-aware data selection will
automatically select informative trajectory segments, which in
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turn significantly reduces the computational cost as less data is
needed for accurate calibration. On the other hand, if degenerate
or weakly-excited motions inevitably occur—for example, in
the autonomous-driving case, straight-line translation without
rotation, and single-axis rotation—we also proposed to perform
observability-aware state update during optimization so that no
spurious information would influx into unobservable parame-
ters. As a result, the proposed observability-aware calibration
method, termed as OA-LICalib, is able to perform efficient and
robust LI calibration with challenging motions and scenes.

In particular, the main contributions of this work include the
following.

1) The proposed OA-LICalib is among the first to perform
full LI calibration that is able to calibrate all sensing
parameters including the spatial (i.e., rigid-body trans-
formation between the sensors) and temporal (i.e., time
offset between the sensors) extrinsics, and the intrinsics
of LiDAR and IMU.

2) We propose the information-theoretic metrics to select
informative trajectory segments for the LI calibration,
instead of naively processing all available data regardless
its observability, which significantly reduces the compu-
tational cost.

3) We develop the observability-aware state update during
optimization by updating only the identifiable directions of
state space under degenerate motions (e.g., planar motion
and constant velocity).

4) Extensive experiments in simulations and real world are
conducted to examine the feasibility and accuracy of the
proposed OA-LICalib method, whose codebase is also
open sourced to broadly benefit the robotics community.

The remainder of this article is organized as follows: After
reviewing the literature in Section II, we provide the background
materials of continuous-time batch optimization and present the
sensor models in Section III. The problem formulation is given in
Section IV, while the proposed observability-aware calibration
method is presented in Section V. Simulated and real-world
experiments are carried out in Sections VI and VII, respectively.
Finally, Section VIII concludes this article.

II. RELATED WORK

Sensor calibration has a rich literature. Instead of providing a
comprehensive literature review, in this section, we only review
the closely related work of LI calibration.

A. Spatial-Temporal LI Calibration

In order to calibrate the rigidly-connected LiDAR and IMU,
Geiger et al. [18] proposed a motion-based calibration approach
that performs the extrinsic calibration by hand-eye calibra-
tion [19]. However, their approach expects each sensor’s tra-
jectory to be estimated independently and accurately, which
is difficult for the consumer-grade IMU. Gentil et al. [20]
formulated the LI calibration as a factor graph optimization
problem. Gaussian progress (GP) regression [21] was adopted
to up-sample IMU measurements for pose interpolation at every
time instants of capturing LiDAR points. Although the IMU data
is continuously modeled based on GP, only the states at some
specific time instants are optimized in the discrete-time factor
graph, which may reduce accuracy. Recently, Mishra et al. [22]
presented an extended kalman filter (EKF)-based LI extrinsic

calibration method integrated into the visual-inertial navigation
framework OpenVINS [23].

Online extrinsic LI calibration approaches are also available.
In [4] and [24], LiDAR, IMU, and camera are tightly fused with
a lightweight EKF, where the extrinsic parameters between the
sensors are estimated online. Ye et al. [3] presented a tightly cou-
pled LI odometry with online extrinsic parameters estimation,
and adopted a linear motion model to eliminate motion distortion
during the sweep. Qiu et al. [25] developed an IMU-centric
temporal offset and extrinsic rotation calibration method for
the LI system based on the motion correlation. Recently, Xu
et al. [26] proposed FAST-LIO2, which is a tightly coupled
LiDAR-inertial odometry with online extrinsic calibration in
an iterated-EKF framework. Note that online calibration often
assumes reasonable initial values in order to guarantee conver-
gence and may have extra unobservable directions because of
including calibration parameters into the state vector [4], [27].

Continuous-time batch optimization with temporal basis
functions is also widely studied in calibration problems. Furgale
et al. [28] detailed the derivation and realization for a full SLAM
problem based on B-spline basis functions and evaluated the
proposed framework within a camera-IMU calibration problem,
which was further extended to support both temporal and spatial
calibration [29]. Rehder et al. [30] adopted a similar framework
for calibrating the extrinsics between a camera-IMU system and
a single-beam LiDAR in two steps: the camera-IMU system
is first calibrated with a chessboard, and then the single-beam
LiDAR is calibrated with respect to the camera-IMU system.

B. Intrinsic Calibration

Li et al. [8] proposed an online state estimation framework us-
ing a multistate-constraint Kalman filter, which simultaneously
estimates extrinsic parameters of a visual-inertial system, time
offset, and intrinsics of IMU and camera. Rehder et al. [13]
extended the previous work [29] to support the calibration of
extrinsics and intrinsics of multiple IMUs in the visual-inertial
system. Yang et al. [10] investigated the necessity of online IMU
intrinsic calibration in the visual-inertial system and performed
observability analysis for different IMU intrinsic models.

As the closest to our work, Liu et al. [14] proposed to calibrate
an LI system’s spatial extrinsics and intrinsics by discrete-time
bundle adjustment optimization. A specially designed target
composed of a cone and a cylinder is required to determine the
intrinsics of 3-D LiDAR and formulate the constraints involved
with the rigid transformation between LiDAR and IMU. A high-
precision 3-axis-adjustable turntable platform with accurate atti-
tude readings is also necessary to calibrate the IMU intrinsics. A
close follow-up work [15] simplifies the method [14] by remov-
ing the dedicated target requirement and providing the concept to
calibrate with the multiple geometric features naturally existing
in human-made environments. Point/sphere, line/cylinder, and
plane features are extracted and leveraged for providing valid
constraints. However, reliable and automatic geometric fea-
tures extraction from real-world scenes can be error-prone and
susceptible; the extra facility of a high-precision turntable plat-
form remains necessary for IMU intrinsic calibration.

C. Observability Awareness in Calibration

It is known that we can assess the information content of
trajectory segments for camera and IMU calibration [9]. As such,
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Maye et al. [31] proposed information-theoretic metrics to select
informative data and discard redundant data for calibration. A
truncated QR decomposition of the Fisher information matrix
is employed to update estimates in only observable directions.
Zhang et al. [32] analyzed the geometric structures in opti-
mized problem for point cloud registration and determined well-
conditioned directions to solve them partially. Schneider et al.
[9] developed an online self-calibration method in discrete-time
batch optimization for a visual-inertial system with the extended
capability of calibrating IMU intrinsics. Multiple types of infor-
mation metrics, including the trace, the determinant, and the
maximal eigen value of the covariance matrix, are investigated
for informative segment selection. The selected informative
segments are fully excited with general motion, making the
calibrated parameters observable and solvable. Jiao et al. [33]
designed a sliding window-based multi-LiDAR odometry sys-
tem with the capability of online extrinsic calibration between
multiple LiDARs, and the singular values of Hessian matrix
are leveraged to examine the convergence of rotational extrinsic
calibration.

D. Extension of Our Previous Conference Publication [16]

While this article is evolved from our prior work on
continuous-time extrinsic LI calibration of [16], there are signifi-
cant contributions differentiating this work from [16] and others.
To the best of authors’ knowledge, the proposed OA-LICalib
is among the first to fully calibrate all the sensing parameters
of the LI sensors, including not only the spatial extrinsics as
in [16], but the temporal extrinsics (time offset) as well as the
intrinsic parameters of the LiDAR and IMU. As it is often
required to fully excite the sensor platform during data collection
in order for calibration results to converge, which, however,
might not be possible for some commonly-seen applications,
such as self-driving cars [4], in this article, we have proposed
two observability-aware strategies to address this issue to make
the proposed OA-LICalib method more easy-to-use for nonex-
pert end users. Specifically, 1) the information-theoretic-based
data selection policy selects the most informative trajectory
segments for calibration, which eases the effort in calibration
data collection and improves the calibration efficiency. 2) The
observability-aware state update scheme only updates the states
(including calibration parameters) lying along the observable
directions while preventing an influx of spurious information in
the unobservable directions.

III. PROBLEM FORMULATION

We first present our notations used throughout this article.
We denote the 6-DoF rigid transformation by B

AT ∈ SE(3) ⊂
R4×4, which transforms the point Ap ∈ R3 in frame {A} into

frame {B}. BAT =
[
B
AR BpA

0 1

]
consists of rotational part BAR ∈

SO(3) and translational part BpA ∈ R3. For simplicity, we omit
the homogeneous conversion in the rigid transformation by
Bp = B

AT
Ap. B

A q̄ is the quaternion of rotation corresponding to
the rotation matrixB

AR. In our formulation, IMU reference frame
{I} is assumed to be rigidly connected to the LiDAR frame {L}.
The map frame {M} of LiDAR point cloud is determined by the
first LiDAR frame {L0} when the calibration starts. Similarly,
the global frame {G} is determined as the first IMU frame
{I0}. The spatial extrinsics, including the relative rotation and

Fig. 1. Illustration of different frames of reference used in this article. The
trajectory of LiDAR can be represented with the IMU trajectory, the 6-DoF
rigid transformation I

LT, and the time offset tc between LiDAR and IMU, by
M
L T(τ) = (GI T(τ0 + tc)

I
LT)�GI T(τ + tc)

I
LT.

translation from the LiDAR frame to the IMU frame, are denoted
by I

Lq̄ and IpL, respectively. The temporal extrinsic parameter
modeling the time offset between LiDAR and IMU is tc. The
LiDAR scan labeled with timestamp τL corresponds to IMU
time instant tI = τL + tc. Fig. 1 visualizes the different frames
of reference used in this article.

The extrinsic and intrinsic LI calibration considered in this
article aims to estimate the following states:

X = {Xp, Xq, XIs, XI , XL,
I
Lq̄,

IpL, tc} (1)

which includes the control points of B-splines {Xp, Xq} to
represent the continuous-time trajectory, the IMU navigation
statesXIs, the IMU intrinsicsXI , the LiDAR intrinsicsXL, and
the LI spatiotemporal extrinsic parameters {ILq̄, IpL, tc}. Based
on the LI sensor data collected during the calibration process, we
formulate the following nonlinear least-squares (NLS) problem:

X̂ = argmin
X

r, r = rI + rL (2)

where rI is the IMU measurement residual cost function, which
will be derived in detail in (12) and rL is the LiDAR measure-
ment residual cost function as derived in (22).

A. Continuous-Time Trajectory Representation

We employ B-spline to parameterize trajectory as it provides
closed-form analytic derivatives [34], enabling the effortless
fusion of high-frequency measurements for state estimation.
B-spline also has the good property of being locally controllable,
which means the update of a single control point only impacts
certain consecutive segments of the spline [28]. This trait yields
a sparse system with a limited number of control points. To
parameterize the continuous-time 6-DoF trajectory, we leverage
the split representation [35], which represents the 3-D translation
and the 3-D rotation with uniform B-splines separately. Both
the translation and the rotation splines are parameterized with
cumulative form. To be specific, the translationp(t) of d degrees
over time t ∈ [ti, ti+1) is controlled by the temporally uniformly
distributed translational control points pi, pi+1, . . . , pi+d, and
the matrix format could be expressed

p(t) = pi +

d∑
j=1

u�M̃(d+1)
(j) (pi+j − pi+j−1) (3)

where u� =
[
1 u . . . ud

]
and u = (t− ti)/(ti+1 − ti).

M̃
(4)
(j) is the jth column of the cumulative spline matrix M̃(4),
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which only depends on the corresponding degree of uniform
B-spline. In this article, cubic (d = 3) B-spline is employed,
thus, the corresponding cumulative spline matrix is

M̃(4) =
1

6

⎡
⎢⎢⎣
6 5 1 0

0 3 3 0

0 −3 3 0

0 1 −2 1

⎤
⎥⎥⎦ . (4)

Besides, we adopt the cumulative representation of B-spline to
parameterize the rotation on SO(3) like [35]–[37], and quater-
nions are served as the rotational control points of B-splines [38]

q̄(t) = q̄i ⊗
d∏

j=1

exp
(
u�M̃(4)

(j)log(q̄−1i+j−1 ⊗ q̄i+j)
)

(5)

where ⊗ denotes quaternion multiplication. q̄i denotes the ro-
tational control point. exp(·) is the operation that mapping Lie
algebra elements to S 3, and log(·) is its inverse operation [38].

In this calibration system, the continuous 6-DOF poses of
IMU G

I q̄(t),
GpI(t) are represented in the global frame {G}

by splines in the format of (3) and (5) with parameters of
control points Xp and Xq for 3D translation and rotation, re-
spectively. The derivatives of the splines with respect to time
can be easily computed [37], which lead to linear acceler-
ations Ia(t) and angular velocities Iω(t) in the local IMU
reference frame

Ia(t) = G
I R

�(t)
(
Gp̈I(t)− Gg

)
(6)

Iω(t) = G
I R

�(t)GI Ṙ(t) (7)

where Gg ∈ R3 denotes the gravity vector in global frame. Gg
has only two degrees of freedom since its norm is assumed to
be a constant ‖Gg‖ � 9.8 in the system.

B. IMU Model

IMU comprises a 3-axis gyroscope and a 3-axis accelerom-
eter. Inspired by [8], [10], [13], the IMU measurements are
modeled as

ωω = SωMω
ω
I R

Iω(t) +Aω
Ia(t) + bω + nω

= hIω (t,Xq,
G g,Sω,Mω,

ω
I R,Aω,bω) (8)

aa = SaMa
a
IR

Ia(t) + ba + na

= hIa(t,Xp, Xq,
G g,Sa,Ma,

a
IR,ba) (9)

where Xp and Xq are the translational and rotational control
points of B-splines, respectively. bω and ba are the biases of
gyroscope and accelerometer, which are assumed to be under
Gaussian random walk. nω and na are the zero-mean white
Gaussian noise with covariance matrix Σω and Σa, respectively,
which can be obtained from IMU noise model without approxi-
mation or propagation. Sω/a is a diagonal matrix modeling the
scale imperfection as

Sω =

⎡
⎣Sw1 0 0

0 Sw2 0

0 0 Sw3

⎤
⎦ , Sa =

⎡
⎣Sa1 0 0

0 Sa2 0

0 0 Sa3

⎤
⎦ . (10)

Mω/a accounting for axis misalignment is an upper-triangular
matrix with diagonal elements as identity

Mω =

⎡
⎣1 Mw1 Mw2

0 1 Mw3

0 0 1

⎤
⎦ , Ma =

⎡
⎣1 Ma1 Ma2

0 1 Ma3

0 0 1

⎤
⎦ . (11)

Aω is a full 3× 3 matrix accounting for the acceleration depen-
dence (g-sensitivity) of the measurements.

Since the gyroscope {ω} and accelerometer {a} inside the
IMU are individual sensors, there is a misalignment between
them and the base IMU frame {I}. ω/a

I R compensates for the
rotational misalignment, and the translational misalignment is
omitted for calibration since it is close to zero for single-chip
MEMS sensors [9], [10], [39]. We can only calibrate ω

I R or a
IR

since the base IMU frame {I} is aligned with either {ω} or {a},
and calibrating both makes the system unobservable [10]. In this
article, we choose to calibrate ω

I R only. In addition, we ignore
the calibration of gravity sensitivity in analogy to [10].

Usually, IMU measurements are given at discrete-time in-
stants. The measurements at timestamp tk are denoted as
ωkωm, akam. Since the trajectory is formulated in continuous
time, we can readily get Ia(tk),

Iω(tk) from (6) and (7) by
computing differentials of the trajectory. The IMU induces
cost functions, rI , related to estimated variables including the
control points of the trajectory {Xp, Xq}, the IMU naviga-
tion states XIs = {Gg,bω,ba}, and the IMU intrinsics XI =
{Sω,Mω,

ω
I R,Sa,Ma} are formulated as

rI = rω + ra, where (12)

rω =
∑
k

1

2
‖ωkωm−hIω (tk, Xq, XI , XIs)‖2Σω

(13)

ra =
1

2
‖akam−hIa(tk, Xp, Xq, XI , XIs)‖2Σa

(14)

‖e‖2Σ = e�Σ−1e denotes the squared energy norm weighted by
the inverse of the covariance matrix Σ, and rω, ra are residuals
of angular velocity and linear acceleration according to (8) and
(9), respectively.

C. 3-D LiDAR Model

A mechanical 3-D LiDAR with multiple laser beams [40]
measures the ranges given by individual laser heads pointing to
different elevation angles. A LiDAR scan is captured when the
rigidly connected laser heads rotate around a mechanical central
axis. A laser head iwith elevation angleφi at LiDAR time instant
τk (with azimuth angle θik) gets a range measurement ρik, then
the LiDAR point measurement transferred from the spherical
coordinate system can be denoted by

LkPik =

⎡
⎣Lkxik

Lkyik
Lkzik

⎤
⎦ =

⎡
⎣ρik cosφi cos θik
ρik cosφi sin θik

ρik sinφi

⎤
⎦ . (15)

However, the abovementioned ideal model does not hold in prac-
tical manufacture since spatial offsets exist between laser heads,
and nonnegligible errors exist in both the range measurement
and the azimuth angle θik. As shown in Fig. 2, the intrinsics of
an individual laser head i consist of the following.

1) Elevation angle correction factor δφi and azimuth angle
correction factor δθi.
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Fig. 2. Intrinsics of an individual laser comprising a multibeam 3-D LiDAR. The left figure depicts the ideal model, while the three figures on the right illustrate
the intrinsics arising from correction factors and offsets.

2) Vertical spatial offset Vi and horizontal spatial offset Hi.
3) Scale factor of range measurement si and range measure-

ment offset δρi.
Given the intrinsics, the zero-mean Gaussian measurement

noise nρ,ik over the range measurement, and defining the fol-
lowing factors: ⎧⎪⎨

⎪⎩
φ̄i = φi + δφi

θ̄ik = θik + δθi

ρ̄ik = siρik + δρi + nρ,ik

. (16)

The position of LiDAR point measurement is given by

LkPik =

⎡
⎣ρ̄ik cos φ̄i cos θ̄ik +Hi sin θ̄ik
ρ̄ik cos φ̄i sin θ̄ik +Hi cos θ̄ik

ρ̄ik sin φ̄i + Vi

⎤
⎦ . (17)

The intrinsics of a 3-D LiDAR with l beams are denoted by

XL = {δφi, δθi, Vi, Hi, si, δρi}|i=0,1,...,l−1 . (18)

For a LiDAR point measurement LkPik with an associated
3-D plane with closest point parameterization [41], Mπj =
Mdπ,j

Mnπ,j , where Mdπ,j and Mnπ,j denote the distance of
the plane to origin and unit normal vector expressed in map
frame, respectively. The point to plane distance is given by

MPik = M
Lk

R(τk)
LkPik + MpLk

(τk) (19)

zijk = Mn�π,j
MPik + Mdπ,j

= hL(τk, Xp, Xq, XL,
I
Lq̄,

IpL, tc). (20)

The distance measurement mentioned above is related to vari-
ables including the control points of trajectory {Xp, Xq},
LiDAR intrinsics XL, and spatial-temporal parameters
{ILq̄, IpL, tc}. The 3-D plane is extracted from LiDAR point
cloud map, detailed in Section IV-B, and assumed free of noise
when computing zijk. Thus,Σzijk , the covariance of the distance
measurement zijk, can be easily propagated from the Gaus-
sian noise nρ,ik by first-order approximation. The relative pose
{MLk

R(τk),
MpLk

(τk)} in (20) is involved with the following
equations from parameterized IMU continuous-time trajectory:

M
Lk

T(τk) =
(
G
I T(τ0 + tc)

I
LT
)� G

I T(τk + tc)
I
LT. (21)

It is easy to find that the time offset tc between LiDAR and IMU
is also involved in the process of fetching pose M

Lk
T(τk) from

continuous-time trajectory parameterized in the IMU time axis.
In practice, the LiDAR point measurement at timestamp τk is
denoted as zm,ijk. By minimizing the point to plane distance, we

have the following cost functions from LiDAR points associated
with 3-D planes:

rL=
1

2

∑
i

∑
j

∑
k

‖zm,ijk

− hL(τk, Xp, Xq, XL,
I
Lq̄,

IpL, tc)‖2Σzm,ijk
(22)

where i, j, k denote the indexes of LiDAR beams, 3-D planes
and points in a scanned ring by a laser beam, respectively.

IV. CONTINUOUS-TIME FULL LI CALIBRATION

In this section, we present in detail the proposed continuous-
time full LI calibration method. Before diving into details, we
first provide an overview of the overall architecture, as shown
in Fig. 3. Specifically, we first initialize the control points of
rotation B-splines with the IMU angular velocities, and the ex-
trinsic rotation I

Lq̄ by aligning the IMU rotations with the LiDAR
odometry (rotations) computed with NDT registration [42]. By
reducing the rotational distortion effect in LiDAR scans, we
recompute the LiDAR odometry to improve its accuracy. We
then initialize the LiDAR surfels by fusing LiDAR scans with
the computed LiDAR odometry and find the point-to-surfel cor-
respondences. With the LI measurements, we perform batch op-
timization to estimate the considered states including B-splines
control points and spatial-temporal extrinsics, whose optimal
estimates are used to refine the surfels map and point-to-plane
data association.

A. State Initialization

Initial guesses of the calibrated parameters are needed for the
iterative NLSs optimization. For initialization, we set IMU nav-
igation states as X̂Is0 = {‖Gg‖e3,03,03} and IMU intrinsics
as X̂I0 = {I3, I3, I3, I3, I3}, where e3 = [0, 0, 1]�, I3 and 03

represent the 3× 3 identity matrix and zero matrix, respectively.
As for the initial values of LiDAR intrinsics, X̂L0

is initialized
as {0, 0, 0, 0, 1, 0}i|i=1,...,l. The time offset tc between LiDAR
and IMU is initialized as zero, which means the timestamp tk of
IMU is equal to the timestamp τk of LiDAR at the beginning.

The initialization of control points and extrinsic parameters
are described in detail as follows. Prior to detailing the initial-
ization process, we clarify the inputs for initialization including
discrete poses at about 10 Hz from LiDAR odometry, angular
velocities, and linear accelerates at typically 400 Hz from IMU.
We adopt NDT registration to implement simple scan-to-map
LiDAR odometry, sufficient for sequences with a few seconds,
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Fig. 3. Pipeline of proposed LI calibration method, which allows leveraging all the raw measurements from IMU and LiDAR sensor in a continuous-time batch
optimization framework. Details are provided in Sections IV and V.

and build a global map consists of keyframed LiDAR scans
determined according to the pose changes.

1) Initialize Control Points of Continuous-Time Trajectory:
Before detailing the concrete initialization method, we empha-
size that the spline trajectory is employed to represent the IMU
trajectory rather than LiDAR’s. If we model the continuous-time
trajectory in LiDAR sensor, the predicted linear acceleration and
angular velocity in IMU frame need to be transformed from
LiDAR frame as

Ia(t) = I
LR(ML R(t)�

(
Ma(t)−Mg

)
+ �Lω̇(t)	IpL + �Lω(t)	2 IpL) (23)

Iω(t) = I
LR

Lω(t) (24)

where �·	 represents the skew-symmetric matrix of a 3-D vec-
tor. Note that angular accelerations Lω̇(t) are required to be
computed, which makes the system complicated. Therefore, we
choose to parameterize the trajectory in IMU frame instead of
LiDAR frame.

Given the raw angular velocity measurements from the IMU
sensor, a series of rotational control points Xq of the rotational
trajectory can be initialized by solving the following least-square
problem:

X̂q=argmin
Xq

rω

=argmin
Xq

∑
k

1

2
‖ωkωm−hIω (tk, Xq, XI , XIs)‖2Σω

(25)

where rω is defined in (13) and here we ignore the intrinsics
of IMU and the angular velocity bias of IMU. It is important
to note that G

I q̄(t0) is fixed to the identity quaternion during the
optimization. In (25), we try to initialize the rotational trajectory
by the raw IMU measurements rather than the integrated IMU
poses, since the latter are inaccurate and always affected by
drifting IMU biases and noises.

For the initialization of translational control points Xp, we
first utilize the LiDAR odometry to get descrete-time LiDAR

poses. Then, we formulate and solve the following linear prob-
lem:

X̂p=argmin
Xp

∑
k

‖GMTM p̂Lk
−G

I R̂(tk, X̂q)
IpL

−GpI(tk, Xp)‖ (26)

where M p̂Lk
is the estimated position of scan at timestamp τk

from the LiDAR odometry; G
I R̂(tk, X̂q) controlled by X̂q has

been initialized in (25) and GpI(tk, Xp) controlled by Xp is the
translational trajectory to be initialized. Considering map frame
and global frame are determined as the first measurements from
LiDAR and IMU, respectively, GMT is equivalent to I0

L0
T, that is

I
LT. The initial values of ILT computed in Section IV-A2 are used
here. This initialization method of control points is relatively
coarse, but it can effectively improve the convergence speed of
the optimization problem, compared to leave Xp uninitialized
as zeros.

2) Extrinsic Initialization: Inspired by Yang and Shen [43],
we initialize the extrinsic rotation by aligning two rotation
sequences from LiDAR and IMU. With discrete LiDAR poses
from LiDAR odometry, it is easy to get the relative rotation
between two consecutive LiDAR scans, Lk

Lk+1
q̄. Besides, the rel-

ative rotation between time interval [tk, tk+1] in the IMU frame
can also be obtained from the initialized rotational trajectory as
Ik
Ik+1

q̄ = G
I q̄
−1(tk)⊗ G

I q̄(tk+1). The relative rotations at any k
from two sensors should satisfy the following equation:

Ik
Ik+1

q̄ ⊗ I
Lq̄ = I

Lq̄ ⊗ Lk

Lk+1
q̄. (27)

The abovementioned equation can be transferred into another
equivalent representation [44]:

L(IkIk+1
q̄)ILq̄ = R(Lk

Lk+1
q̄)ILq̄

⇒
(
L(IkIk+1

q̄)−R(Lk

Lk+1
q̄)
)

I
Lq̄ = 0. (28)

For a unit quaternion q̄ =
[
qv qw

]�
with imaginary part qv and

real part qw, L(q̄) andR(q̄) are multiplication matrices defined
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as follows:

L(q̄) =
[
qwI3 − �qv	 qv

−qT
v qw

]

R(q̄) =
[
qwI3 + �qv	 qv

−qT
v qw

]
.

Equation (28) is in a form of k
k+1A

I
Lq̄ = 0. By stacking a series

of relative rotation measurements k
k+1A row by row into a big

matrix A, we have AI
Lq̄ = 0, then I

L
ˆ̄q can be computed as the

right unit singular vector corresponding to the smallest singular
value of A.

For the initialization of extrinsic translation IpL, the initial
values of IpL are simply set to zeros, and the proposed method
is able to converge to reasonable values in practical experiments
when enough motion excitation exists.

B. Data Association of LiDAR Measurements

With the estimated rotational extrinsics I
L
ˆ̄q, we can trans-

fer the rotational continuous-time curve in IMU frame into
LiDAR frame and remove the rotational motion distortion in
LiDAR scans. Subsequently, we perform the NDT-based LiDAR
odometry again with the initial rotational guess retrieved from
the rotational continuous-time curve transformed. Since LiDAR
scans are partially undistorted and better initial guesses are pro-
vided, NDT-based LiDAR odometry can generate more accurate
estimated poses. With the odometry results, a LiDAR point
cloud map can be constructed by assembling multiple LiDAR
scans into an identical frame. We further uniformly discretize
the LiDAR point cloud map into 3-D cells and compute the
point distribution in every 3-D cell to identify surfels based on
a plane-likeness coefficient [45]:

P = 2
λ1 − λ0

λ0 + λ1 + λ2
. (29)

In the abovementioned equation, λ0 ≤ λ1 ≤ λ2 are the point
distribution eigen values in a 3-D cell. For the cell with planar
point distribution, P will be close to 1. The cell with plane-
likeness coefficient P larger than a threshold is determined as
a surfel cell, and the points inside this cell are used to fitting
a plane. The estimated plane is parameterized by the closest
point as mentioned in Section III-C. Some LiDAR points are
associated with surfels if the point-to-plane distance is less than
a threshold, whereas the others are discarded. As mentioned in
Section III-C, the plane parameters are assumed to be perfect and
keep constant when we perform least-squares optimization, so
are the surfels map and the data associations. This is in a fashion
of Expectation–maximization algorithm. After the optimization,
the surfels map, the data associations, and the plane parameters
will be updated with updated estimated states, which will be
detailed in Section IV-C. In addition, two practical tricks are
engaged to repress the effect of outlier data associations on
optimization: first, only the point and plane correspondence
with a distance below 5 centimeters will be taken into the
continuous-time batch optimization; second, we rely on the
M-estimation [46] idea and apply the Huber robust kernel to
deal with outliers.

Fig. 4. Typical surfels map in an indoor scenario. The initial surfels map
suffers from motion distortion with the initialized LiDAR poses. With the
estimated states after just one iteration of batch optimization, the quality of
refined surfels map becomes significantly better. Points in different surfels are
colorized differently. (a) Surfels map in the first iteration. (b) Surfels map in the
second iteration.

C. Refinement

After the continuous-time batch optimization, the estimated
states including the extrinsics become more accurate. Thus,
we leverage the current best estimates to remove the motion
distortion in the raw LiDAR scans, rebuild the LiDAR surfels
map, and update the point-to-surfel data associations. Note that
results from NDT-based LiDAR odometry are only utilized at
the very beginning for initializing the LiDAR poses and LiDAR
map. The refinement step with iterative batch-optimization will
generate more accurate estimations and reliable data association.
The typical LiDAR surfels maps in the first and second iterations
of the batch optimization are shown in Fig. 4. The quality of the
map can be improved in a significant margin after one iteration
in the batch optimization.

As for the intrinsic calibration, a 16-beam LiDAR contains
96 parameters (6 parameters per beam), and some parameters
of the first laser are fixed as a reference during the calibration
process. Only the distance offset and distance scale are estimated
for the first laser. In addition, there are 15 parameters of IMU
intrinsic parameters. Considering the large number of intrinsic
parameters to be estimated, to prevent the system from falling
into local optimum and reduce the complexity of the problem,
we optimize the spatial-temporal parameters only and fix the
intrinsics at the initial values first, and allow optimizing the
intrinsic parameters a few iterations later when the estimates of
the trajectory and extrinsic parameters converge. Furthermore,
we correct the raw measurements of IMU and LiDAR based
on the estimated intrinsic parameters after they have gradually
converged, instead of using the poor intrinsic estimates to correct
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the measurements at the beginning, which may hurt the calibra-
tion results. Throughout the experiments, we start to calibrate
the intrinsic parameters after 2 iterations of batch optimization
and correct raw measurements based on the estimated intrinsic
parameters after 11 iterations.

V. OBSERVABILITY-AWARE LI CALIBRATION

In this section, we describe in detail the observability-aware
strategies used in the proposed LI calibration in order to improve
its robustness to degenerate motions and thus make it more easy-
to-use for practitioners.

A. Information-Theoretic Data Selection

Note that some data segments collected without sufficient
motion excitation or scene constraints may degrade the cali-
bration [47], and blindly processing all the available data may
result in unnecessarily high computational cost. As such, the
proposed method seeks to automatically select the most infor-
mative data segments for calibration. In particular, to facilitate
the ensuing derivations, assuming the white Gaussian noise and
independent measurements, the NLS problem (2) is equivalent
to the maximum likelihood estimation (MLE) problem and can
be reformulated as follows (see [48], [49]):

X̂ = argmin
X

∑
i

1

2
‖ei(X)‖2Σi

(30)

where ei denotes the residual induced from the ith measurement
with covariance Σi. An iterative method such as Gaussian–
Newton and Levenberg–Marquard is often used to solve this
problem. That is, at each iteration, by linearizing the above-
mentioned nonlinear system at the current estimate X̂ , ei(X) =

ei(X̂) + JiδX , with the Jacobian matrix Ji, we have the fol-
lowing linear least-squares problem with respect to the update
increment (or error state estimate) δX̂:

δX̂ = argmin
δX

∑
i

1

2
‖ei(X̂) + JiδX‖2Σi

. (31)

The optimal solution is given by the following normal equation:(∑
i

J�i Σ
−1
i Ji

)
︸ ︷︷ ︸

A

δX = −
∑
i

J�i Σ
−1
i ei(X̂)

︸ ︷︷ ︸
b

. (32)

Once δX̂ is computed, we update the estimate as X̂ ← X̂ � δX ,
where � denotes the addition operation on manifold.

Note that Ak×k in (32) is the Fisher information matrix of the
MLE (or NLS) problem (30) and encapsulates all the information
contained in the measurements. It is also important to note thatA
might be rank deficient, for example, due to the lack of motion
excitation and/or environmental constraints (see [4]). It, thus,
is critical to collect informative data ensuring full-rank A (or
observability [50]). To this end, we first partition the entire
collected data into multiple segments with constant-time length.
We then perform singular value decomposition (SVD) of A for
each segment

A = USU� (33)

where S = diag(σ1, σ2, . . . , σk) is the diagonal matrix of sin-
gular values in decreasing order, and U =

[
u1, u2, . . . , uk

]
is

an orthogonal matrix. As in [50], we employ the information
metric (or observability index) of an individual segment based
on the minimum singular value—that is, a larger one implies
a more informative segment. With that, for a specific sequence
of collected data, we first evaluate the information metric of
each segment and then select the most informative ones for LI
calibration.

B. Observability-Aware Update

While we have tried to collect the most informative data
for calibration, it still might be the case that the selected data
cannot guarantee observability, and thus, some states cannot
be estimated. For example, when a ground vehicle moves on
planar surfaces in an urban environment, the lack of pitch and
roll rotation and translation on the vertical direction often leads
to part of states unobservable. As shown in [4], one-axis rotation
is a so-called degenerate motion causing the translation of ex-
trinsics IPL partially unobservable. If this unobservability issue
is not properly addressed, the calibration performance would be
largely degraded.

To make the proposed LI calibration robust to (weak) un-
observability, we explicitly enforce observability constraints
during each iteration; that is, only updating the states lying on
the observable directions. To this end, we employ the truncated
SVD (TSVD) [51], [52] to perform low-rank approximation
of the information matrix, i.e., selecting the singular values
(σ1, σ2, . . . , σl) over an information threshold ε that is a design
choice. With this observability-assurance information matrix
and SVD-based matrix pseudoinverse, we have the following
solution [see (32)]:

δX̂ =

l∑
i=1

u�i bui

σi
. (34)

As a result, as compared to solving for δX̂ by using all the
singular values of the full information matrix—which may
erroneously introduce observable directions due to numerical
issues—we here explicitly avoid updating the unobservable (or
weakly observable) parameters, thus, conservatively ensuring
observability.

VI. SIMULATION RESULTS

To validate the performance of the proposed continuous-time
batch optimization-based LI calibration method, we conduct a
series of simulations with ground truth of all estimated parame-
ters to examine the accuracy of intrinsic and extrinsic calibration
results, and also numerically study the sensitivity of the system
to the time offset in simulations.

For the results presented in the following, we simulate an
Xsens-100 IMU1 and a 16-beam 3-D LiDAR VLP-162. The
synthetic noises in measurement are consistent with the real-
world sensors. IMU measurements are reported at 400 Hz.
LiDAR scans are received at 10 Hz and the laser rays cover 360◦
horizontally and±15◦ vertically. The motion distortion effect is
also simulated to match reality. The intrinsic parameters of IMU
and LiDAR are randomly generated from normal distributions
with standard deviations provided in Table I. The extrinsic pa-
rameters from LiDAR to IMU are set as [0.3, 0.15, 0.05]� meter

1[Online]. Available: https://www.xsens.com/products/mti-100-series/
2[Online]. Available: https://velodyneLiDAR.com/vlp-16.html
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TABLE I
STANDARD DEVIATIONS FOR GENERATING RANDOM LIDAR AND IMU

INTRINSICS IN SIMULATION EXPERIMENTS

Fig. 5. Simulated environmental setup filled with planes in different colors.
The colored points indicate a simulated 3-D LiDAR scan. Left: The sinusoidal
trajectory for testing calibration in full excitation motion. Right: Figure-8-shape
trajectory for testing calibration in degenerate motion.

in translation and [1, 2, 5]� degree in rotation in all simulation
experiments. Note that the extrinsic translation has a minimum
component of 0.05 meters and a maximum component of 0.3
meters to verify the calibration accuracy of the proposed method
for different magnitudes of the translation.

For the simulated trajectories, a sinusoidal trajectory and a
figure-8-shape trajectory are introduced. The sinusoidal trajec-
tory is formulated as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

px(t) = 2.0 · cos(π5 · t) + 5
py(t) = 1.5 · sin(π5 · t) + 5
pz(t) = 0.8 · cos( 4π5 · t) + 5
rx(t) = 0.4 · cos(t)
ry(t) = 0.6 · sin(t)
rz(t) = 0.7 · t

(35)

and the trajectory of figure-8-shape is as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

px(t) = 2.0 · cos(π5 · t)
py(t) = 1.5 · sin(π5 · t) · cos(π5 · t) + 5
pz(t) = 2
rx(t) = ry(t) = 0
rz(t) = 0.4 · sin(t)

(36)

where t ∈ [0, 10], P (t) = [px(t) py(t) pz(t)]
� is the transla-

tional trajectory in meter and reuler(t) = [rz(t) ry(t) rz(t)]
�

represents the euler angles in rad. The sinusoidal trajectory is
with fully excited motions, while the figure-8-shape trajectory
is a simulation of planar motion, where the robot moves on
the xy plane, and orientations change along z-axis only. For
both simulated trajectories, it is straightforward to derive the
linear acceleration and angular velocity at any time in order to
generate synthetic IMU readings. Note that in each experiment,
we perform 10 Monte Carlo experiments with the same time
span of 10 s.

The simulated environment is a room constructed with many
planes and a volume of 12× 10× 10 m3, as shown in Fig. 5,

TABLE II
RESULTS OF TEN MONTE CARLO SIMULATIONS WITH THE SINUSOIDAL

TRAJECTORY: MEAN AND STANDARD DEVIATION OF THE EXTRINSIC

CALIBRATION RESULTS WITH AND WITHOUT CALIBRATING THE INTRINSICS OF

LIDAR AND IMU

Note that the best results are marked in bold.

where the two types of trajectories are also plotted. The sinu-
soidal trajectory evaluates the intrinsic and extrinsic calibration
in full motion excitation while the figure-8-shape trajectory for
analyzing the extrinsic calibration performance in degenerate
motion.

To evaluate the impact of LiDAR intrinsic calibration on the
accuracy of map reconstruction, we introduce the mean map
entropy (MME) metric [53], which evaluates the sharpness of a
map. The entropy h for a map point pk is calculated by

h(pk) =
1

2
ln |2πeΣ(pk)| (37)

where Σ(pk) is the sample covariance of map points within
a local radius r around pk. Local radius r is 0.3 m in our
experimental evaluations. The MME H(Q) is averaged over
all map points Q

H(Q) =
1

n

n∑
k=1

h(pk). (38)

The smaller the MME value the sharper the map is (i.e., the
better map reconstruction).

A. Calibration With Full Motion Excitation

1) Spatial-Temporal Calibration: The extrinsic calibration
results with and without calibrating the intrinsic parameters
of LiDAR and IMU in ten simulated sequences are shown in
Table II. We can find that with the awareness of intrinsic param-
eters, the proposed method OA-LICalib achieves an accuracy
of 0.40cm in translation and 0.18◦ in rotation, and the calibra-
tion errors extremely increase without intrinsic calibrations of
LiDAR and IMU. It also confirms OA-LICalib’s capability of
calibrating extrinsic parameters with components at different
magnitudes, e.g., translation varies from 5 to 30 cm, and rotation
varies from 1◦ to 5◦ in this experiment. It is also interesting
to note that the magnitudes of the rotational and translational
trajectories in (35) affect the accuracy of the extrinsic calibration
results. In the x-axis translation and z-axis rotation, OA-LICalib
gives calibrated parameters with much lower relative error. This
phenomenon agrees with the observability analysis in [54] that
calibration trajectory with strong motion excitation, i.e., large
accelerations and angular velocities, can lead to more accurate
calibrations of extrinsic parameters than weal excitation.

Furthermore, the temporal calibration results in 7 trails are
shown in Table III. Note that time offsets vary from 1 to 21 ms,
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Fig. 6. Results of 10 Monte Carlo simulations with the sinusoidal trajectory: the IMU intrinsic parameters change with the increased number of iterations.
The ground truth is denoted with the red dashed line. Each row from top to bottom represents scale and misalignment parameters of gyroscope, and scale and
misalignment parameters of accelerometer, and euler angles of ω

I R in (8), respectively.

TABLE III
RESULTS OF SIMULATIONS WITH THE SINUSOIDAL TRAJECTORY: TIME OFFSET

CALIBRATIONS

are manually added to one of the simulated sequences and cal-
ibrated. For the precision of temporal calibration, the proposed
method can achieve millisecond-level accuracy.

2) Intrinsic Calibration: Fig. 6 illustrates the convergence
process of IMU intrinsic parameters along with iterations and
visualizes the distribution of calibration results for 10 simulated
trials. Note that I.roll, I.pitch, and I.yaw are the corresponding
Euler angles of ω

I R in (8). The intrinsic parameters remain
unchanged during the first iteration and start to be optimized
in the second iteration, and the results gradually stabilize after
about eight iterations. Since the 11th iteration, the raw measure-
ments are corrected based on the estimated intrinsic parameters
(as mentioned in Section IV-C). We can see that the estimated
intrinsic parameters finally converge to near the true value, and
the final estimated intrinsic results are summarized in Table IV.

TABLE IV
RESULTS OF TEN MONTE CARLO SIMULATIONS WITH THE SINUSOIDAL

TRAJECTORY: MEAN AND ERROR OF IMU INTRINSIC PARAMETERS AFTER 14
ITERATIONS

The experiment indicates that the proposed method has high
accuracy and repeatability in intrinsic calibration.
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Fig. 7. Results of 10 Monte Carlo simulations with the sinusoidal trajectory: the intrinsic calibration results of a simulated 16-beam 3-D LiDAR. For the first
laser, only the distance offset and distance scale are estimated while the other parameters are fixed as a reference during the calibration process. The blue dots are
the ground truth and red lines are the mean of each parameter.

TABLE V
RESULTS OF TEN MONTE CARLO SIMULATIONS WITH THE SINUSOIDAL

TRAJECTORY: THE AVERAGED ABSOLUTE ERRORS OF THE ESTIMATED LIDAR
INTRINSIC PARAMETERS AFTER 14 ITERATIONS

Fig. 8. MME evaluation of the LiDAR map quality along with the number
of iterations in a typical simulated experiment. The evaluated point cloud map
is initially assembled with the poses from NDT-based LiDAR odometry, then
assembled with iteratively refined poses and intrinsics from the continuous-time
batch optimization.

The final calibration results of the simulated 16-beam LiDAR
intrinsic parameters in 10 trails are shown in Fig. 7. Besides,
the averaged absolute errors of the estimated LiDAR intrin-
sic parameters in six types are summarized in Table V. The
proposed method can identify six types of intrinsic parameters
of multibeam LiDAR and estimate accurate results. We further
evaluate the quality of LiDAR point cloud map, which is affected
by both the estimated trajectory and the calibrated parameters.
Fig. 8 shows the MME metric in a typical simulated experiment.
The evaluated point clouds consisting of around 215k points are
assembled by the poses from NDT-based LiDAR odometry first,
and refined poses from the continuous-time batch optimization.
The map becomes more accurate with increased iterations due
to the batch optimization over the continuous-time trajectory
and calibrated parameters. Notably, a significant improvement

Fig. 9. Simulation to examine observability awareness: three mounting setups
with different relative orientations between the robot and the LI sensor rig are
tested (LiDAR and IMU are rigidly connected, while LiDAR is not shown in
this figure). From left to right: case A, case B, case C. Among these three
cases, the robots move in a shared trajectory of figure-8 shape as (36), while the
unobservable extrinsic directions in local IMU frames are different.

in map accuracy after the 11th iteration due to the correction
of the raw LiDAR points based on the current best estimation
of LiDAR intrinsics. It is obvious that intrinsic parameters
calibration significantly affects both the LiDAR map quality
and the extrinsic calibration. Therefore, we advocate calibrat-
ing the intrinsic parameters to enable highly accurate LIDAR
localization and mapping.

B. Calibration Under Degenerate Motion

In the same simulation environment with figure-8-shape tra-
jectory, shown in the right picture of Fig. 5, we investigate the
extrinsic calibration accuracy of OA-LICalib in the degenerate
case. With the trajectory in (36), where rotation happens along
the z-axis only, the LI extrinsic translation along the rotation
axis is unobservable according to the analysis in [4]. In order to
examine whether the proposed OA-LICalib is able to automati-
cally identify the unobservable directions, we also simulate three
different mounting cases (A, B, C), as shown in Fig. 9, where
the LI sensor rig is rigidly attached to the robot platform at three
different relative orientations. Among the three cases, the robots
move in the same trajectory [see (36)], thus, the unobservable
directions of the extrinsic translation are the identical vertical
axis in the robot coordinate frame. However, due to the different
relative rotations between robot platform and the LI sensor rigs,
the unobservable directions of the extrinsic translation, IpL, are
different when represented in local IMU frame.
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TABLE VI
RESULTS OF SIMULATION WITH THE FIGURE-8 TRAJECTORY: THE GROUND

TRUTH AND THE AUTOMATICALLY DETECTED UNOBSERVABLE EXTRINSIC

DIRECTIONS UNDER THREE MOUNTING CASES ARE SHOWN IN FIG. 9

The head part corresponds to extrinsic rotation and the tail part corresponds to extrinsic
translation.

TABLE VII
RESULTS OF TEN MONTE CARLO SIMULATIONS WITH THE FIGURE-8

TRAJECTORY: MEAN OF THE ESTIMATED EXTRINSIC PARAMETERS IN THREE

MOUNTING CASES WITH OR WITHOUT OBSERVABILITY-AWARE CALIBRATION

The best results are marked in bold.

Table VI summarizes the unobservable direction of the three
mounting cases in Fig. 9. For case A where the IMU z-
axis is aligned with the vertical axis, the unobservable di-
rection is purely in the z-axis of extrinsic translation, IpL.
For a typical trial, OA-LICalib identifies the singular value
of the information matrix corresponding to extrinsics as
[41760, 22193, 3525, 491, 295, 0.000]�, and it is obvious
that there exists one unobservable direction. The eigen vectors
corresponding to the minimum singular value (deemed as the
detected unobservable direction) in the three cases are also
summarized in Table VI. We can see that the detected un-
observable directions are consistent with the truths. To verify
the effectiveness of the observability scheme in Section V-B,
we conduct the ablation experiments on extrinsic calibration
by starting from perturbed initial extrinsic parameters (with
perturbations of around 3 degrees and 3 centimeters on rotations
and translations, respectively). Table VII shows the extrinsic
calibration results ({ILq̄, IPL}) of 10 Monte-Carlo trials, and
the root mean square error (RMSE) is calculated by comparing
the mean calibration results to the ground truths. OA-LICalib
with observability awareness keeps the unobservable directions
of extrinsic translation around the initial values, and outperforms
the method without observability awareness.

VII. REAL-WORLD EXPERIMENTS

In the real-world experiments, we validate the proposed
method on multiple our own datasets as well as two public
datasets. Table VIII summarizes the sequences in terms of
collection configuration, duration, environment, motion type,
etc. For the motion type, as follows.

1) Random Shaking: We hold the sensor by hand and shake
the sensor suite aggressively both in rotations and trans-
lations;

2) Casual Waking: We hold the sensor and walk around;

Fig. 10. Left: The self-assembled sensor rig used in real-world experiments.
Right: The ground wheeled robot for collecting SKG-01 sequence.

3) Planar Motion: The sensor rig is mounted on moving
wheeled robots, see Fig. 10 (right).

The self-collected datasets are collected in both indoor and
outdoor scenarios by the self-assembled sensor rig shown in the
left of Fig. 10, which consists of 3 Xsens-100 IMUs sampled at
400 Hz and a Velodyne VLP-16 LiDAR sampled at 10 Hz. The
Casual-walk sequence3 is from LIO-SAM [5] and is collected
by a Microstrain 3DM-GX5-25 IMU sampled at 500 Hz and a
Velodyne VLP-16 LiDAR sampled at 10 Hz. The Hilti SLAM
challenge dataset [55] is intended for assessing the accuracy of
state estimation in challenging environments and it contains a
number of visual, LiDAR, and inertial sensors. In the experi-
ments, the data from Bosch BMI085 IMU sampled at 200 Hz
and the Ouster OS0-64 LiDAR sampled at 10 Hz are utilized for
evaluation.

The proposed method is extensively tested on the Stairs and
Lab sequences to examine the accuracy and repeatability of cali-
brated results. Due to the absence of ground-truth extrinsic trans-
formation between LiDAR and IMU in real-world experiments,
the relative poses of three components IMU inferred from CAD
assembly drawings are introduced as references. In addition, the
proposed observability-aware calibration method incorporating
the informative data selection and observability-aware state
update mechanism is thoroughly evaluated. On the one hand,
we examine the feasibility of the proposed method in degenerate
motion cases over the SKG-01 sequence and Basement sequence,
which are collected on the vehicles under planar motion. On the
other hand, we also analyze the proposed informative segment
selection algorithm in the YQ-01, Casual-walk, IC_Office, Of-
fice_Mitte sequences, among which the former two sequences
are outdoors while the latter two are indoors. Note that only one
of the three IMUs (see Fig. 10), IMU1, is utilized to evaluate the
SKG-01 and YQ-01 sequences.

We also compare the proposed method with the open-source
LI calibration toolkit Imu_Lidar_Calibration [22] (abbreviated
as ILC) and our previous method LI-Calib [16]. Notably, LI-
Calib [16] does not have the observability-aware scheme de-
scribed in Section V or the explicit initialization of control points
(see Section IV-A1), compared to the proposed OA-LICalib.
In addition, two online calibration methods, LIO-Mapping [3]
(abbreviated as LIOM) and FAST-LIO2 [26], are also included
for the comparisons. LIOM and FAST-LIO2 are LI odometry
and simultaneously calibrate the extrinsic parameters between

3[Online]. Available: http://www.udel.edu/009352
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TABLE VIII
DETAILS OF SEQUENCES USED IN REAL-WORLD EXPERIMENTS

LiDAR and IMU. In practice, online calibration methods es-
timate the whole trajectory of the entire calibration sequence,
and the final converged values of the extrinsic parameters are
deemed the calibration results, as are the ILC method. Since
the ILC method particularly requires the sensor to keep static
for seconds to initialize the system, we skip some data seg-
ments at the beginning in order to satisfy the static initializa-
tion requirements in some sequences. Notably, under general
motion scenarios, the proposed OA-LICalib and our previous
method LI-Calib are initialized from the identity extrinsic ro-
tation matrix and zero extrinsic translations without bells and
whistles. However, for the initial values of the extrinsics for these
compared methods, including ILC, LIOM, and FAST-LIO2,
the extrinsic rotation parameters are initialized by the refer-
ence parameters provided by the dataset, while the translation
extrinsic parameters are initialized as zero. These compared
methods fail to converge when starting from the identity extrinsic
rotation matrix due to the lack of an extrinsic initialization
module.

A. Trajectory Representation Capability

In the Vicon sequences, ground truth poses are provided by
the Vicon system at 100 Hz, with a duration of about 15 s to
evaluate the accuracy of estimated trajectories and the represen-
tation capability of the splines. Comparing the estimated tra-
jectories with the motion-capture system’s reported trajectories,
the average absolute trajectory error (ATE) [56] overall ten
sequences are 0.0183 m. Fig. 11 shows two typical estimated
trajectories aligned with the ground truth and also illustrates
fitting results. The estimated B-Spline trajectory fits well with
the ground-truth trajectory and the acceleration measurements
and angular velocity measurements, indicating the B-Spline’s
high representation capability.

B. Calibration With Full Motion Excitation

We gathered four sequences of a 60-s duration with full
excitation in structured environments, Stairs-01 and Stairs-02
collected at the stairway, Lab-01 and Lab-02 in the laboratory,
verifying the calibration accuracy of the full motion excitation
data. Each sequence is split into four segments of 15 s and

Fig. 11. Top: Estimated continuous-time trajectories aligned with the ground-
truth. The color of the trajectory indicates ATE. Bottom: The corresponding
fitting results of the top-left trajectory. Only the x-axis is plotted. The fitting
errors almost have the same order of magnitude as the IMU measurement noises.

calibrated independently for calibration test. The extrinsic cal-
ibration results of three IMUs with respect to the LiDAR by
the proposed OA-LICalib are shown in Figs. 12 and 13, where
the black rectangles indicate the CAD sketch of three IMUs.
We can intuitively find that the translational calibration results
are distributed within rectangles, with the distribution range in
translation at around 2 cm. The distribution range of rotation
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Fig. 12. Extrinisc translation calibration results from OA-LICalib over Stairs
and Lab sequences. Top: Top view of the calibration results. The three black
rectangular boxes represent the actual mounting positions of three IMUs, re-
spectively. Bottom: Front view of the calibration results.

Fig. 13. Extrinsic rotation calibration results from OA-LICalib over Stairs and
Lab sequences.

concentrates within 0.2◦ for each IMU. These results demon-
strate the proposed method’s high repeatability and reliability in
practical deployments.

In addition, the quantitative comparison results are summa-
rized in Table IX, where RMSE is calculated by comparing it
to the CAD reference. Note that LIOM fails to converge on
the Stairs sequences and ILC does not converge on the Lab
sequences in our experiments. Failing to convergence means
rotational RMSE is greater than 30◦. The nonconverged re-
sults are excluded from the statistics in Table IX. Although
the discrete-time methods, ILC, LIOM, and FAST-LIO are
initialized from the reference extrinsic rotation, the continuous-
time-based methods LI-Calib and OA-LICalib show apparent
advantages over all of them, while starting from the identity

extrinsic rotation matrix. In addition, compared to LI-Calib,
OA-LICalib takes more effort on the initialization of control
points (see Section IV-A1), which benefits the convergence
and improves the accuracy of calibrations. It is worthwhile to
mention that the calibration results of OA-LICalib are with high
calibration accuracy yet low standard deviations, which demon-
strate its great reliability. To give an impression of the efficiency,
the proposed OA-LICalib’s time consumption of main stages
in two typical 15 s segment over the sequence Lab-01 (under
fully excited motion) and sequence SKG-01 (under degenerate
motion) are summarized in Table X. Basically, the proposed
method takes about only one minute to generate the highly-
accurate calibration results automatically on a 15 s calibration
segment.

C. Calibration With Informative Segments

There is a relatively common situation in practice where some
datasets provide a large number of various data sequences yet
without accurate extrinsic parameters. There’s no possibility of
collecting new sequences with the sensors used in the existing
datasets. Hence, if users want to get more accurate extrinsic
parameters, they need to complete the calibration based on the
existing data sequences. Special care should be taken when
identifying informative sequences for accurate calibration.

Regarding the implementation details about multisegment
calibration, we first perform single segment calibration and
identify informative segments; afterward, with all the measure-
ments from selected informative segments, we conduct a total
continuous-time batch optimization to simultaneously estimate
each segment’s individual states (including the continuous-time
trajectory, time offset tc, IMU navigation states XIs), and the
shared spatial extrinsic parameters {ILq̄, IPL}. We evaluate the
proposed informativeness-aware segment selection algorithm
in the self-collected sequence YQ-01 and public-available se-
quence Casual-walk and Office_Mitte, IC_Office from the Hilti
dataset. Like the Casual-walk sequence collection process, we
walk in a circle profile with the occasional shake of the sen-
sor to collect YQ-01 sequence. Again, we split sequences into
segments with a duration of 15-s for each segment.

1) YQ-01 Sequence: Fig. 14 details the shape of the trajec-
tory and the corresponding angular velocity curves of the YQ-01
sequence. The top figure in Fig. 14 illustrates each segment’s
information metrics and angular velocities. The segments with
minimal singular value (see Section V-A) above 100 (black dash
line) are selected as the informative segments and the relative
location of these segments are shown in bright colors at the
bottom of Fig. 14. It is interesting to see the amplitudes of
angular velocity can indistinctly reflect the information met-
rics. The extrinsic calibration results with data of one segment
(Segment-n) and multisegment (n Segments) are summarized
in Table XI. Note that “n Segments” means we take the first n
informative segments, e.g., “3 Segments” represents Segment-1,
Segment-2, and Segment-3 are jointly utilized for calibration.
The evaluation results show that the selected single-segment
calibration is able to generate reasonable calibration results,
which demonstrate the effectiveness of the informative segment
selection. Besides, multisegment calibration is generally stable
compared to single-segment calibration, and four informative
segments are enough to get a reliable estimation of the extrinsics.

2) Hilti Sequences: Furthermore, we test the multisegment
calibration on two handheld sequences of the Hilti dataset, the
comparison results are reported in Table XII. Fig. 15 reports
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TABLE IX
MEAN AND STANDARD DEVIATION OF THE CALIBRATION RESULTS FROM DIFFERENT METHODS ON STAIRS AND LAB SEQUENCES

The units for translation and rotation are in “cm” and “degree,” respectively. The nonconverged results of ILC and LIOM are excluded from the statistics.
The best results are marked in bold.

TABLE X
OA-LICALIB’S TIME CONSUMPTION OF MAIN STAGES

Two segments from Lab-01 and SKG-01 sequence are evaluated, respectively. The former
segment is under fully excited motion, while the latter is under degeneration motion.

TABLE XI
ESTIMATED SPATIAL PARAMETERS {ILq̄, IPL} AND TIME OFFSET tc USING

ONE SEGMENT (SEGMENT-n) OR MULTISEGMENT (n SEGMENTS) OVER YQ-01
SEQUENCE

The best results are marked in bold.

the information metrics of every individual segment, linear
acceleration curves, and angular velocity curves in the IC_Office
sequence, and we pick out the four most informative segments
for multisegment calibration. The results in Table XII suggest
multisegment calibration is more stable and more accurate than

TABLE XII
COMPARISON RESULTS OF DIFFERENT METHODS ON HILTI DATASET

LIOM fails to give reasonable results, thus, not listed in the table.
The best results are marked in bold.

single-segment calibration. The proposed OA-LICalib with mul-
tisegment calibration also significantly outperforms ILC and
FAST-LIO2.

Note that using minimal singular value to measure the in-
formativeness of each individual segment within a single se-
quence is feasible, however, it is not meaningful to compare
the minimal singular values of different sequences under sig-
nificantly different scenarios. Minimal singular value is not a
general information metric [9], and it is affected by the sensory
observations, trajectory profile, surrounding environment, etc.
This is reflected by the different amplitudes of minimal singular
values over different sequences, as shown in Figs. 14 and 15. On
the positive side, a minimal-singular-value-based information
metric is sufficient for informative segments selection from a
given sequence and leads to reasonable calibration results.

We further investigate the performance of noninformative
segments and their effect on multisegment calibration results.
Table XIII shows the calibration results using multiple segments
in IC-Office sequences. The segments [60, 75] and [105, 120]
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Fig. 14. Evaluation in YQ-01 sequence. Top: The informativeness of every
individual segment of YQ-01 sequence, which has a total trajectory length of
363 meters; the corresponding three-axis angular velocity curves. Bottom: The
whole trajectory is plotted in dashed line and the selected segments in bright
colors. The trajectory direction is counterclockwise.

Fig. 15. Top: The informativeness of every individual segment of IC-Office
sequence. Bottom: the corresponding linear acceleration curves and angular
velocity curves.

are identified as informative segments, while the segment [15,
30] is a noninformative segment automatically by OA-LICalib,
as shown in Fig. 15. The results in Table XIII suggest that the
noninformative segment generates a much bigger calibration
error. When the noninformative segments are included for mul-
tisegment calibration, the calibration results may be degraded
compared to calibration using only informative segments. The

TABLE XIII
MULTIPLE-SEGMENT CALIBRATION USING NONINFORMATIVE SEGMENT IN

IC-OFFICE SEQUENCES

The segments [60,75] and [105,120] are identified as informative segments and segment
[15,30] is identified as noninformative segment, as shown in Fig. 15.
The best results are marked in bold.

TABLE XIV
EVALUATION OF CALIBRATION RESULTS USING SINGLE OR

MULTI-INFORMATIVE SEGMENTS OVER THE CASUAL-WALK SEQUENCE

multisegment calibration result is more like a weighted aver-
age of the calibration results from their component segments,
thus, the calibration result is more stable than single-segment
calibration.

3) Casual-Walk Sequence: The Casual-walk sequence is one
of the common cases where the dataset is publicly available
but without providing carefully calibrated extrinsic parameters.
The rough extrinsic parameters are [0, 0, 0]� in translation and
identity matrix in rotation. We try to conduct multisegment
calibration on this sequence. This sequence was collected by
randomly walking around the campus and occasionally shaking
the sensor vigorously, meaning that the sequence is coupled
with a number of segments suitable for calibration. We perform
multisegment data calibration using only half of the sequence
which is divided into 20-s segments, and the results are shown
in Table XIV. Since there are no reliable reference values for
the dataset’s extrinsics or ground truth trajectory, we can only
evaluate the quality of the LiDAR point cloud map, which im-
plicitly reflects the calibration accuracy. The MMEs of the maps
are −2.141, −2.163, and −2.185 for the rough extrinsics, the
calibrated spatial extrinsics, and the calibrated spatial-temporal
extrinsics, respectively. The map quality obtained from the cal-
ibrated spatial-temporal extrinsics is the best, which verifies the
effectiveness and accuracy of the multisegment calibration.

D. Calibration in Degenerate Case

In practical applications, the on-vehicle situation is a common
case with motion degeneration and there are high demands for
accurate calibrations in this scenario. In this section, we also test
the extrinsic calibration in on-vehicle conditions over the self-
collected SKG-01 sequence and the publicly-available Basement
sequence. Regarding the initialization under degenerate cases,
since the compared methods ILC, LIOM, and FAST-LIO2 fail
to be initialized with the identity extrinsic rotation matrix, all
the methods are initialized with the perturbed extrinsics, with
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Fig. 16. Details about the SKG-01 sequence. Top: The environment for
collecting SKG-01 sequence and the actual figure-8-shape trajectory. Middle:
Concrete trajectories for each 15-s segment, the red stars indicate the start and
end position of the trajectory, respectively. Bottom: Corresponding three-axis
angular velocity curves.

rotational perturbations of 2 degrees per axis and translational
perturbations of 2 cm per axis. In general, all the methods start
from the same initial extrinsic parameters for fair comparisons.

1) SKG-01 Sequence: To ensure the LiDAR sensor has
sufficiently large visibility of the ground for localization, we
mount the sensor suite at a slight incline downwards, as shown
in Fig. 10. We collect the SKG-01 sequence with a duration
of 120 s, while the ground robot moves on a planar ground
surface. This sequence is split into six 15-s segments, which
are individually used for calibration. Fig. 16 illustrates the
details of SKG-01 sequence and Fig. 17 displays translation
calibration results of OA-LICalib with and without observability
awareness (see Section V-B). Table XV reports the singular
value of each segment in SKG-01 sequence identified by OA-
LICalib. For the first 6 segments, the eigen vector correspond-
ing to the minimum singular value is almost the same that is
[0.000, 0.000, 0.000, 0.007, −0.187, 0.982]. Note that the
head part of the eigen vector corresponds to extrinsic rotation
and the tail part corresponds to extrinsic translation, which is
determined by the stack order of parameters δX in (32). The
identified degradation direction by the eigen vector is close to
the z-axis, which is reasonable and coincides with the fact that
a certain angular offset exists between the sensor frame and
the ground plane. As shown in Fig. 17, translation results in
the z-axis of OA-LICalib without observability awareness has a

Fig. 17. Comparison of the estimated IPL under degenerate case over SKG-01
sequence: using OA-LICalib with and without observability-aware calibration.
References are from the CAD sketch.

TABLE XV
SINGULAR VALUE OF EACH SEGMENT IN SKG-01 SEQUENCE IDENTIFIED BY

OA-LICALIB

The secondary minimum singular value of the segments [90, 105] and [105,
120] are relatively small.

large deviation from the reference value. With the awareness of
observability, OA-LICalib is able to keep the main degenerate
axis, z-axis, as a prior and eliminate the coupled errors in the x-
axis, resulting in more accurate calibrated extrinsic parameters.
However, for segments at time intervals [90, 105] and [105,120],
OA-LICalib estimates poor results which is most likely due to
insufficient excitation. From the angular velocities curves of
the SKG-01 sequence shown in Fig. 16, we can find that the
magnitudes of angular velocity are relatively small for these two
segments, leading to a deterioration of the observability, which
is also reflected by the singular values shown in Table XV.

2) Basement Sequence: We further test in the on-vehicle
Basement sequence of the Hilti dataset. The beginning of the
Basement is skipped due to less motion. Fig. 18 reports the
calibration results. OA-LICalib with observability awareness
automatically identifies the principal nonobservable direction
as the z-axis of extrinsic translation and succeeds in keeping
it to the initial value. Besides, we notice that the errors of final
calibration results in the observable x-axis and y-axis of transla-
tions are larger than those on the SKG-01 sequence. Because the
Hilti dataset is not specifically collected for calibration, and the
motion excitation in this sequence is insufficient, which is also
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Fig. 18. Comparison of the estimated IPL under degenerate case over Base-
ment sequence: using OA-LICalib with and without observability awareness.
The beginning of the sequence is skipped due to less motion.

TABLE XVI
COMPARISON OF THE CALIBRATION RESULTS UNDER DEGENERATE CASE OVER

SKG-01 AND BASEMENT SEQUENCES

The best results are marked in bold.

reflected by the small magnitude of averaged angular velocity,
as shown in Table VIII.

Table XVI reports the calibration results for the different
methods. Again, LIOM fails to give reasonable results thus are
excluded from the table. The main degenerate direction of SKG-
01 and Basement sequences is the extrinsic translation along the
z-axis. Without the observability-aware module, our method,
FAST-LIO2, and ILC fail to give good calibrations along the
z-axis of extrinsic translation. With observability awareness,
OA-LICalib is able to generate accurate calibration results in
on-vehicle conditions.

E. Remarks

It is clear from the previous simulation and experimental re-
sults that fully excited motions, whenever possible, are generally
recommended for accurate LI calibration, which agrees with the
calibration literature [10], [28], [54]. For example, the proposed
OA-LICalib is able to provide accurate calibration results from

any segment with fully excited motion in sequence Lab and
Stairs, as shown in Figs. 12 and 13 and Table IX. Among the
sequences with occasional fully excited motion, e.g., YQ-01,
IC_Office, and Office_Mitte sequences, the automatically se-
lected informative segments can also generate reasonable cal-
ibration results as summarized in Tables XI and XII. In contrast,
the OA-LICalib has larger errors on segments under degener-
ate planar motions, such as [90,105] of the SKG-01 sequence
(see Fig. 17) and [115,130] of the Basement sequence (see
Fig. 18), which are the segments with small angular velocities
(see Fig. 16).

While the fully exited motions are recommended, they might
not be feasible in practice and it, thus, becomes necessary to ad-
dress degeneracy. The proposed OA-LICalib with observability-
awareness is able to select informative segments based on the
singular values of the information matrix and tackle the degener-
acy via TSVD. Notably, the information metric of singular val-
ues is affected by the sensory observations, motion profiles and
environments. Some other information metrics, for example, the
trace, determinant, and maximal eigenvalue of the information
matrix can also be used [9].

It should be noted that the proposed OA-LICalib relies on the
point-to-surfel constraints, which well constrain the LI calibra-
tion problem in structured environments. This implies that planar
patches (surfels) exist in the environments and can be identified.
From our experience, no matter it is indoors or outdoors, the OA-
LICalib usually works well when there are enough man-made
structures (e.g., walls, buildings, staircases) within 50 m and
the calibration data collection with fully excited motion lasts for
10–20 s. However, in some cluttered environments without clear
planar regions or some scenarios with fairly sparse structures,
the proposed approach would have degraded performance. For
example, it may fail to provide reasonable results on some
outdoor sequences of the Hilti dataset [55], in which the sce-
narios are nearly empty without clear human-made structures.
To address this issue, resulting from insufficient point-to-surfel
constraints from LiDAR data, some ideas from advanced point
cloud registration methods [57] could be leveraged, such as
Sdrsac [58], Teaser++ [59], [60], OPRANSAC [61], CVO [62],
and deep-learning-based methods [63].

VIII. CONCLUSION

In this article, we have developed an observability-aware
targetless LI calibration method, termed OA-LICalib, within the
continuous-time batch optimization framework. The proposed
OA-LICalib calibrates not only the spatial-temporal extrinsic
parameters but also the intrinsic parameters of both IMU and
LiDAR sensors, while enforcing observability constraints during
update to address possible degeneracy. Specifically, the follow-
ing two observability-aware strategies are employed: 1) the in-
formative data segment selection, and 2) the observability-aware
update in back-end optimization. The former selects the most
informative data segments automatically for calibration among
the long-session data sequence, which lowers the computational
consumption for calibration as well as helps nonexpert end users.
The latter addresses the degenerate motions via TSVD that is
used to update only the observable directions of the sensing pa-
rameters. The proposed method has been extensively validated
on both Monte Carlo simulations and real-world experiments,
showing that the proposed OA-LICalib is able to provide accu-
rate spatial-temporal extrinsic and intrinsic calibration with high
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repeatability, even under certain degenerate cases. For future
work, the active calibration guiding users to collect informative
data deserves to be investigated.
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