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Sharing network parameters between agents is an essential and typical operation to improve 
the scalability of multi-agent reinforcement learning algorithms. However, agents with different 
tasks sharing the same network parameters are not conducive to distinguishing the agents’ skills. 
In addition, the importance of communication between agents undertaking the same task is 
much higher than that with external agents. Therefore, we propose Dual Cooperation Networks 
(DCN). In order to distinguish whether agents undertake the same task, all agents are grouped 
according to their status through the graph neural network instead of the traditional proximity. 
The agent communicates within the group to achieve strong cooperation. After that, the global 
value function is decomposed by groups to facilitate cooperation between groups. Finally, we 
have verified it in simulation and physical hardware, and the algorithm has achieved excellent 
performance.

1. Introduction

Group cooperation is ubiquitous in nature. In recent years, the multi-agent deep reinforcement learning (MARL) algorithms 
have shown performance beyond human level in many cooperative environments, such as StarCraft [1,2], Multi-Agent Particle 
Environment [3][4] and Magent [5][6]. However, the MARL algorithms still have many enormous challenges, including scalability, 
the partial observability of the environment, and the credit assignment among agents.

The scalability problem is that agents have their networks, making algorithm training extremely difficult as the number of 
agents increases and the network parameters expand. A common trick to solve this problem in previous work [7] is to share network 
parameters. However, due to the coupling and similarity of network parameters, the indiscriminate application of network parameter 
sharing to all agents is not conducive to agents distinguishing self-tasks and affects the final convergence of the algorithm.

In addition, partial observability results in the agent being unable to obtain the actual state of the environment. Scholars currently 
use the information of all agents to establish an unbiased global critic network [8][9][10]; this also invisibly solves the problem of 
the agent’s credit assignment. Moreover, MADDPG [8] adopts decentralized execution for facilitating algorithm deployment. That 
is the Centralized Training and Decentralized Execution (CTDE). However, global communication in training makes it difficult for 
agents to distinguish the valuable information helpful for cooperative decision-making. Therefore, global communication may even 
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harm cooperative learning. Furthermore, the agent only makes decisions in deployment based on its observation and ignores other 
agents, leading to a sub-optimal joint action.

Agents with the same task share network parameters to help them learn similar behaviors. For example, it is difficult for football 
forwards and defenders to use the same network to fit two different modes of behavior, but the same group of agents using the same 
network to fit reduces the learning difficulty due to their similar strategies. For the agents to use the shared network discriminately, 
reduce the cost of agent communication and use valuable information to promote cooperation, we propose a novel algorithm called 
Dual Cooperation Networks (DCN). We observe that the agents’ observations with the same task are similar or satisfy a specific rule. 
Thus, we introduce Graph Auto-Encoder [11] (GAE) to group according to the observations of the agents. The agents’ actions in each 
group are output simultaneously by the Group Cooperation Networks (GCoNet). In addition, since the same reward function is still 
shared among groups, we introduce VDN [12] for value decomposition operation.

The main contributions are as follows:

• Dividing the group based on the information relationship between the agents rather than the traditional proximity. Due to agents 
with potential cooperative relations, the information they observe is internally consistent, such as consistent goals. Therefore, 
the graph autoencoder can encode this high-dimensional information and divide the agents into internal consistency cooperative 
groups based on the encoded information. We have not seen such methods used to divide agent groups in other papers.

• We propose Dual Cooperation Networks. In the same group, all agents will consider the state of other agents to make joint 
decisions, and this is the cooperation of agents within the group that significantly promotes the cooperation ability of the agents. 
In addition, the shared reward function is value-decomposed according to different groups’ value functions for cooperation 
between groups.

• Finally, DCN is verified on simulation and physical hardware, and its performance is better than the baseline algorithm.

2. Related work

Although reinforcement learning [13,14] has made outstanding achievements in the field of single agents, there are many multi-

agent systems in nature. However, the simple extension of the single-agent algorithm to the multi-agent system often has these two 
problems: the non-stationarity problem [15] of the multi-agent environment and the credit assignment problem [16].

2.1. Nonstationarity of multi-agent systems

In the multi-agent system, the agent only relies on its information to make decisions and is easily disturbed by other agents, 
resulting in non-stationarity problems. In order to solve it, some works propose to centrally train a joint value function to evaluate 
agent behavior using information from all agents. Depending on the information required for training and execution, multi-agent 
reinforcement learning algorithms can be divided into CTCE (Centralized Training and Centralized Execution) and CTDE. Comm-

Net [17] trains and executes each agent’s strategy, and the average value of the confidential information of other agents’ observations 
is used as part of the network input. Wang et al. [1] propose to give the hidden information in the form of a maximum or sum value. 
So those are the typical CTCE algorithm. They let all agents share the same network parameters to solve the problem that the CTCE 
algorithm is difficult to scale. All agent information is averaged after circulating through the network to extract features. Therefore, 
even if the number of agents changes, effective communication can be achieved without changing the algorithmic network architec-

ture. However, it is evident that this extraction method is too crude, and obtaining advanced spatial feature information between 
agents is challenging. In the CTDE algorithm, the scalability of the algorithm execution is naturally solved, because it only relies on 
the agent’s local information during the execution phase. For example, MADDPG [8] uses all agent information to train the joint 
action-value function, but only relies on the agent’s own information to make decisions. Furthermore, this also implicitly solves the 
multi-agent credit assignment problem.

However, communication among all agents would incur extremely high costs. Moreover, scholars have realized that the agent 
does not need to observe the state or behavior of all participants, but only needs to observe the state or behavior information of 
some related agents in the neighborhood. Therefore, agents only need to perform strong communication within the group after 
grouping. Some works have been done to model communication protocol to allow agents to obtain more information. LICA [16], 
MAAC [18] DGN [10] use different communication protocols for mutual communication between agents. The NCC-MARL [19] based 
on the neighborhood’s cognitive consistency [20] is proposed to conduct strong cooperation with agents in the domain and weak 
cooperation with agents outside the domain. However, these methods of building groups based on agent distance are not applicable 
in some scenarios. It is worth noting that the application scenario of these algorithms is that the agent can obtain its reward function, 
and ignores the reputation distribution problem.

In this work, we use graph autoencoders [11] to extract high-level structural information between agents, and group agents based 
on it, so that agents performing the same task can complete the collaboration between different groups. Furthermore, the problem of 
credit assignment is solved through value decomposition [21,22] operation.

2.2. Graph neural network

Inspired by the prevalent cognitive consistency theory in the field of social psychology, it was found that multi-agent cognition 
2

of the environment is a necessary condition for good collaboration. The grouping between agents should start from the states of the 
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Fig. 1. Dual cooperation networks framework diagram. DCN can be divided into Graph Auto-encoder and Group Cooperation Networks (GCoNet).

agents not just the distance. Due to the non-independence between agents, each agent is an instance in the graph network, using 
GAE to capture the spatial dimension relationship between agents easily. In order to achieve both the dimensionality reduction 
and extraction of features and the mining of structural information, the Structural Deep Clustering Network [23] (SDCN) achieves 
the capture of high-order structural information by stacking multiple layers of Graph Neural Networks [24] (GNN). At the same 
time, it benefits from the self-encoder and the self-contained GNN supervised. The multi-layer GNN here does not have the so-

called oversmooth phenomenon (as the number of layers increases, the node representations learned by GNN gradually become 
indistinguishable.). The previous deep clustering algorithm is divided into two steps: first, learn the feature representation of the data 
to represent embedding, and then cluster the data according to the feature representation. However, in this way, the learned data 
embedding is not task-oriented. On the contrary, deep attention embedding graph clustering [25] (DAEGC) learns node representation 
through graph attention networks [26] (GAN), and at the same time enhances the cohesion between nodes in the same cluster through 
self-training graph clustering and solves the clustering problem end-to-end.

In addition, graph networks are used in many reinforcement learning algorithms [27]. MAGNet [28] learns the relevant informa-

tion of instances and agents in a multi-agent environment through a correlation graph, and incorporates it into the reinforcement 
learning process. HAMA [29] uses the hierarchical graph attention mechanism to extract dynamic quantitative agent features and 
inter-group information to improve the generalization ability of the algorithm. Compared with this work, most of the above work is 
used to extract the spatial features between agents, but ignores the problem of agent grouping and still uses the distance grouping 
between agents. However, this work relies on the graph network to judge whether the agents perform the same task based on the 
spatial feature information between the agents, thereby enabling task-oriented grouping.

3. Methods

In a football game, forwards and defenders have entirely different strategies. If the same network fitting is used for these two 
strategies to improve the algorithm’s scalability, its performance will be affected due to the coupling and similarity of network 
parameters. However, since the agents’ strategies for undertaking the same task are highly consistent, using the same network 
fitting will increase the learning speed. In addition, another starting point of this work is that in a multi-agent system, each agent 
should have strong cooperation for participants in the domain and weak cooperation between teams outside the domain. Inspired 
by this, we proposed a novel algorithm: DCN, whose structure is shown in Fig. 1. In addition, it is challenging to provide a separate 
reward function for each agent in a multi-agent system. Generally, all agents share a joint reward function, which also brings about 
the agent’s credit assignment problem [30,31] —the rewards of lazy and hardworking agents are the same. According to the value 
function of each agent, Peter Sunehag proposed a VDN algorithm to decompose joint rewards, that is, value decomposition. However, 
the VDN algorithm can only be used in discrete action environments. It needs to splice the local observations of all agents as the 
algorithm input and is only suitable for the smallest amount of agent cooperation. The DCN algorithm transforms the joint value 
function based on the decomposition of the value function of a single agent into a value function based on the group. The proof will 
be given in the next section.

3.1. Group value decomposition

According to the VDN [12] algorithm, and taking the cooperation of four agents as an example:

1 ( 1 1) 4 ( 4 4)

3

𝑟 (s,a) = 𝑟 𝑜 , 𝑎 +⋯+ 𝑟 𝑜 , 𝑎 , (1)
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among them, s and a respectively represent the joint observation (𝑜1, … , 𝑜4) and joint action 
(
𝑎1,⋯ , 𝑎4

)
of all agents. 𝑜𝑖, 𝑎𝑖 respectively 

represent the local observation and action of agent 𝑖. 𝑟, 𝑟𝑖 respectively represent the joint reward of all agents and the reward of 
agent 𝑖. Decompose the joint value function according to the value function of each agent to get:

𝑄𝜋 (s,a) = 𝔼[
∞∑
𝑡=1

𝛾𝑡−1𝑟(s𝑡,a𝑡)|s1 = s,a1 = a;𝜋]

= 𝔼[
∞∑
𝑡=1

𝛾𝑡−1𝑟1(𝑜1
𝑡
, 𝑎1

𝑡
)|s1 = s,a1 = a;𝜋] +⋯

+ 𝔼[
∞∑
𝑡=1

𝛾𝑡−1𝑟4(𝑜4
𝑡
, 𝑎4

𝑡
)|s1 = s,a1 = a;𝜋]

=∶ �̄�𝜋
1 (s,a) +⋯+ �̄�𝜋

4 (s,a),

(2)

where �̄�𝜋
𝑖

represents the state-action value function of agent 𝑖.
�̄�𝜋

𝑖
(s, a) ∶= 𝔼[

∑∞
𝑡=1 𝛾𝑡−1𝑟𝑖(𝑜𝑖

𝑡
, 𝑎𝑖

𝑡
)|s1 = s, a1 = a; 𝜋], 𝑖 = 1, ⋯ , 4. Similarly:

𝑟𝑝
𝑔
(s,a) = 𝑟𝑖

(
𝑜𝑖, 𝑎𝑖

)
+ 𝑟𝑗

(
𝑜𝑗 , 𝑎𝑗

)
, (3)

where 𝑟𝑝
𝑔 (s,a) represents the joint reward of the 𝑝-th group of agents. 𝑔 means group. Agent 𝑖, 𝑗 is in group 𝑝, 𝑖, 𝑗 ∈ {1,⋯ ,4} and 𝑖 ≠ 𝑗.

The agents are divided into two groups, 𝑝 and 𝑞. It can be derived from formulas (1) and (2):

𝑟 (s,a) = 𝑟1
(
𝑜1, 𝑎1

)
+⋯+ 𝑟4

(
𝑜4, 𝑎4

)
= 𝑟𝑝

𝑔
(s,a) + 𝑟𝑞

𝑔
(s,a) .

(4)

Similarly, according to the value function of each group, the joint-value function is decomposed:

𝑄𝜋 (s,a) = 𝔼[
∞∑
𝑡=1

𝛾𝑡−1𝑟(s𝑡,a𝑡)|s1 = s,a1 = a;𝜋]

= 𝔼[
∞∑
𝑡=1

𝛾𝑡−1𝑟𝑝(𝑜𝑝

𝑡
, 𝑎

𝑝

𝑡
)|s1 = s,a1 = a;𝜋]

+ 𝔼[
∞∑
𝑡=1

𝛾𝑡−1𝑟𝑞(𝑜𝑞

𝑡
, 𝑎

𝑞

𝑡
)|s1 = s,a1 = a;𝜋]

=∶ �̄�𝜋
𝑝
(s,a) + �̄�𝜋

𝑞
(s,a),

(5)

where �̄�𝜋
𝑝
(s, a) represents the joint state-action value function of the 𝑝-th group of agents. �̄�𝜋

𝑝
(s, a) ∶= 𝔼[

∑∞
𝑡=1 𝛾𝑡−1𝑟𝑝

𝑔(𝑜𝑖
𝑡
, 𝑜𝑗

𝑡
, 𝑎𝑖

𝑡
, 𝑎𝑗

𝑡
)|s1 =

s, a1 = a; 𝜋], 𝑝 ∈ {1,2}.

3.2. Use graph auto-encoder and Kmeans grouping

More concretely, it is considered that a game has 𝑁 agents, which can be divided into 𝑘 groups according to the tasks they need to 
complete. As shown in Fig. 1, to divide groups based on the global state rather than the positional relationship of agents, we introduce 
a graph autoencoder to extract high-dimensional spatial features between agents, and use this as the basis for grouping. The input 
of the graph autoencoder is an undirected graph structure. In order to use the state of the agent as the input of the autoencoder, the 
k-Nearest Neighbour Graph [32,33] (KNNG) algorithm is first used to construct the structure graph of the agent. The KNNG uses the 
distance between agents as the edges in the graph, and the agents are the vertices in the graph, which is:

Definition 1. The graph is represented by  = ( , 𝜀), where  represents the set of nodes and 𝜀 represents the set of edges. 𝑁 is the number 
of nodes and also the number of agents. We introduce an adjacency matrix A of  and its degree matrix D. 𝑑: the feature dimension of the 
node, X ∈ℝ𝑁×𝑑 : the feature matrix of the node. 𝑓 : dimensions of embedding. Z ∈ℝ𝑁×𝑓 : node embedding.

GAE uses Graph Convolutional Networks [34,35] (GCN) as encoder to get the latent representations of nodes:

Z = 𝐺𝐶𝑁(X,A), (6)

among them:

𝐺𝐶𝑁(X,A) = Ã𝑅𝑒𝐿𝑈 (ÃXW0)W1, (7)

among them: Ã = D− 1
2 AD− 1

2 is the symmetrically normalized adjacency matrix. W0 and W1 are the parameters to be learned.

GAE uses inner-product as a decoder to reconstruct the original graph:
4

Ã = 𝜎(ZZ𝑇 ). (8)
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Algorithm 1 DCN for N agents.

1: Input: Randomly initialize GAE, actor and critic network 𝐺, 𝜋 and 𝑄 with weights 𝜃𝑔 , 𝜃𝜋 and 𝜃𝑞

2: for episode=1, 𝑇 do

3: for steps 𝑡=1, 𝑇 do

4: Get agents’ observations s = {𝑜1 , ⋯ , 𝑜𝑛}
5: Get grouping matrix G according to Equation (11)

6: Grouping according to Equation (12)

7: Get each agent i’s action 𝑎𝑖 = 𝜋𝑖(𝑜𝑖) +𝑡

8: Perform actions, interact with the environment to get rewards 𝑟 and next states s′
9: Store (s, 𝑟, a, s′) in replay buffer 

10: end for

11: for steps 𝑘=1, train-steps do

12: Randomly select a mini batch from the replay buffer 
13: Training graph autoencoders according to equation (9)

14: Training joint action value network according to equation (5) , 𝑦𝑡𝑜𝑡 = 𝑟 + 𝛾𝑄𝑡𝑜𝑡(𝐬′ , 𝐚′) and  = (𝑦𝑡𝑜𝑡 −𝑄𝑡𝑜𝑡(𝐬, 𝐚))2
15: Train the action network for each agent i in group p according to equation 𝑖 = −𝑄𝑝(𝑜𝑖, 𝜋𝑖(𝑜𝑖), s𝑝, a𝑝)
16: Update target network parameters

17: end for

18: end for

In the above formula, Ã is the adjacency matrix reconstructed.

Because the adjacency matrix determines the structure of the graph, in order to obtain the optimal Z, the reconstructed adjacency 
matrix is as similar as possible to the original adjacency matrix. Therefore, in the training process of GAE, cross entropy is used as 
the loss function:

 = − 1
𝑁

∑
�̂� log𝑦+ (1 − 𝑦) log(1 − �̂�). (9)

In the above formula, 𝑦 represents the value (0 or 1) of an element in the adjacency matrix A, and �̂� represents the value (between 0 
and 1) of the corresponding element in the reconstructed adjacency matrix Ã.

Based on the embedding obtained by the graph auto-encoder, Kmeans [36,37] algorithm is used to cluster it. It is defined as 
follows:

Definition 2. Suppose that a given data sample 𝑋 contains 𝑁 objects

𝑋 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑛}. Each of these objects has attributes of 𝑚 dimensions. Initialize 𝑘 cluster centers {𝐶1, 𝐶2, ⋯ , 𝐶𝑘}, 1 < 𝑘 ≤ 𝑛.

Calculate the Euclidean distance from each object to each cluster center, as shown in the following formula:

𝑑𝑖𝑠(𝑋𝑖,𝐶𝑖) =

√√√√ 𝑚∑
𝑡=1

(
𝑋𝑖𝑡 −𝐶𝑗𝑡

)2
. (10)

In the above formula, 𝑋𝑖 represents the i-th object, 𝐶𝑗 represents the j-th cluster center, 1 ≤ 𝑗 ≤ 𝑘, 𝑋𝑖𝑡 represents the t-th attribute of 
the i-th object, 1 ≤ 𝑡 ≤ 𝑚. 𝐶𝑗𝑡 represents the t-th attribute of the j-th cluster center.

Compare the distance of each object to each cluster center in turn, assign the objects to the clusters of the nearest cluster center, 
and get 𝑘 clusters {𝑆1, 𝑆2, ⋯ , 𝑆𝑘}. The Kmeans algorithm uses the center to define the prototype of the cluster. The center of the 
cluster is the average value of all objects in the cluster in each dimension. The calculation formula is as follows:

𝐶𝑡 =
∑

𝑋𝑖∈𝑆𝑙
𝑋𝑖||𝑆𝑙

|| . (11)

In the formula, 𝐶𝑙 represents the center of the l-th cluster, 1 ≤ 𝑙 ≤ 𝑘, |𝑆𝑙| represents the number of objects in the l-th cluster, and 𝑋𝑖

represents the i-th object in the l-th cluster, 1 ≤ 𝑖 ≤ |𝑆𝑙|.
Then through Kmeans algorithm, obtain the grouping matrix G. The group joint observation value can be calculated:

[𝑂1
𝑔
,⋯ ,𝑂𝑘

𝑔
] = [𝑜1,⋯ , 𝑜𝑛] ∗ G (12)

In the above formula, 𝑜𝑖 are the local observation value of each agent, and 𝑂𝑖
𝑔

are the joint observation value of each group.

3.3. Network training

As shown in Fig. 1, the grouping matrix is obtained after task-oriented grouping by the graph autoencoder, where the graph 
autoencoder’s loss function is shown in Equation (9). After that, all agents are grouped according to the grouping matrix. After the 
grouping is completed, the agents in the same group are output by the same network, and the joint value function trains the action 
network within the group. The joint value function between different groups is trained by Equation (5). The training process can be 
5

seen in Algorithm 1.
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Fig. 2. Illustration of multi-agents learning to cooperate in five scenarios.

4. Experiment

The baseline algorithm for comparison uses the well-known MADDPG [8], ATOC [38] and MAAC [18]. All agents share the same 
reward function and network parameters. MADDPG implicitly solves the problem of multi-agent credit assignment; ATOC establishes 
fixed-size groups for cooperation based on the distance between agents; MAAC uses the attention mechanism to make each agent 
choose useful agent information from the global information to promote its capabilities. Finally, DCN can be divided into Graph Auto-

encoder (GAE) and Group Cooperation Networks (GCoNet), to illustrate the necessity of dividing groups between agents according 
to the spatial structure, we also compared it with the Kmeans+GCoNet algorithm. In order to distinguish, the following experiment 
uses GAE+GCoNet to represent DCN. We have conducted multiple experiments on both simulation (Fig. 2) and physical platforms 
(Fig. 4) to verify the effectiveness of the algorithm. The experimental parameters and equipment platform information are as follows: 
The replay buffer size is 1 × 𝑒6, the training batch size is 256, the soft update parameter 𝜏 = 0.01, and the network parameter learning 
rate of the actor and critic network is 1 × 𝑒−4. All experiments are performed on the same computer for simulation and calculation, 
equipped with i7-8700 CPU, 16GB RAM, and GeForce GTX 1080 Ti.

4.1. Simulations

We evaluate DCN through three standard multi-agent robotic tasks [39][40]. They are implemented through the open-source 
environment Multi-Agent Particle Environment [3]. According to the double integral dynamic model, agents can move in two-

dimensional space [41]. The agent can control the acceleration or deceleration of the unit in the X and Y directions. As shown in 
Fig. 2, we briefly describe the following five environments:

Spread Control: As shown in Fig. 2(a), there are eight agents and landmarks on the map. The agent needs to reach landmarks 
from the chaotic state. Its reward is set to negative value of the distance between the agent and the nearest landmark. Namely, the 
further away from the landmark, the lower the score of the agent. In addition, to avoid collisions between agents, every collision 
between agents will cause them to lose a point.

Formation Control and Dual Formation Control: As shown in Fig. 2(b) and (c), this map has a landmark and eight agents. 
Agents need to arrange themselves neatly in a circle or two squares, and the landmark is the center of the circle or square. The 
reward setting is similar to the first task. The negative value of the distance between the agent and the nearest desired location is 
used as a reward through the bipartite matching algorithm. Note that the reward is regularized.

Line Control and Dual Line Control: As shown in Fig. 2(d) and (e), the map has two landmarks and eight agents. Agents need 
to be arranged equidistantly on the line between two or three landmarks in one or two columns. The reward setting is the same as 
the second task, but the desired position is different.

The map of the above five tasks is the standard area of MAPE: 2 ×2 sq. In the first task, we set each agent to perceive the positions 
of the four nearest agents and landmarks respectively; In the next four tasks, we set the communication distance to 1 unit. At this 
time, this situation forms the Partially Observable Markov Decision Process. Each episode lasts 25 time-steps in total. In the Dual 
Formation Control and Dual Line Control task, the agents of different groups have cross positions, the structural information between 
agents has a more obvious impact on the algorithm at this time, and the baseline algorithm only relies on distance to group and will 
fall into a local optimum. The following experimental results also prove this point.

4.1.1. Comparison with baseline algorithms in simulation
6

We conducted five different simulation experiments in Multi-Agent Particle Environment, and the results are shown in Fig. 3.
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Fig. 3. Agent average reward comparison chart in the five control task.

Spread Control: In this task, the agent needs to move to occupy the landmark as soon as possible and need to understand the 
intentions of other agents to prevent multiple agents from using the same landmark as their target. Due to the physical dynamics of 
the agent, collisions will cause the agent to move uncontrollably, so it is necessary to try to avoid collisions during the movement. 
Fig. 3 shows the average score of the agent under each algorithm. ATOC is lower than DCN and even lower than MADDPG, which 
shows that grouping based on agents’ relative position is not conducive to cooperation between them. The DCN and MAAC are 
superior to other algorithms. It shows that in a multi-agent system, the agent does not consider the information of all agents at the 
same time but only considers the information of the critical agents, which can promote cooperation between agents. This is because 
the information of the global agent is sometimes useless or even harmful to collaboration.

Formation Control and Dual Formation Control: As shown in Fig. 3, the scoring trend is generally the same as that of the first 
task. The rising speed of the scoring curve has a small change, and this is because we canceled the measure of losing points caused 
by the collision of the agent in this task. Moreover, compared to the line control task, the collision probability of the agent is smaller, 
so there is generally no uncontrolled movement. Different from task one, the multi-agent system needs closer cooperation within 
the group at this time. Especially in the dual formation control task, the multi-agent system obviously needs to be divided into two 
groups for cooperation. Since all agents share the same reward function, weak cooperation is still needed between groups to avoid 
local optimality. As shown in Fig. 3 (b) and (c), algorithms such as MAAC and ATOC that simply divide groups based on the relative 
positions of agents have significantly reduced performance. This is because although some agents in these two tasks are relatively 
close, due to their different mission objectives, they still cannot be grouped into the same group for collaboration.

Line Control and Dual Line Control: As shown in Fig. 3 (d) and (e), although the overall score trend remains unchanged, 
compared with other baseline algorithms, DCN scores the highest. Furthermore, the scoring curve rises faster at the beginning, and 
this is because all agents need to be arranged in a straight line within two points within a limited distance. Due to space constraints, 
agents are very prone to collisions, leading to uncontrolled movements and further away from the target location, resulting in loss of 
points. On the contrary, once the agent learns the knowledge of avoiding each other, although the task is not completed, the score 
increases faster.

4.1.2. Ablation experiments

In order to further observe the performance of DCN and to test the effect of general algorithm grouping according to the proximity 
of agents, we use the Kmeans algorithm to group agents and verify the necessity of multi-agent system grouping based on data that 
retains high-dimensional structural information. Comparing Kmeans+GCoNet with DCN is shown in Fig. 4. It can be seen from the 
figure that the performance of Kmeans+GCoNet is significantly lower than that of DCN, indicating that grouping according to the 
relative position of agents is not conducive to cooperation between them.

In addition, we observed that the cooperation between agents takes a certain amount of time to manifest, so we set the grouping 
7

frequency as 5, 10 and 15. As shown in Fig. 5, an appropriate grouping frequency is conducive to improving the algorithm’s 
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Fig. 4. Comparison of average rewards between DCN and Kmeans + GCoNet in the five control task.

Fig. 5. The influence of grouping frequency on DCN, 5 in the figure means that the agent performs grouping at intervals of 5 steps, and other numbers have similar 
meanings.

Table 1

Experiment site and trolley parameter table, MLS: Maximum linear speed, MA: Maximum 
acceleration, MAA: Maximum angular acceleration, MLSP: Minimum line speed, MTR: Min-

imum turning radius.

Field length MLS MA MAA Wheelbase

4 m 0.6 m/s 0.5 m/s2 0.5 rad/s2 0.145 m

Field width MLSP MTR Car length Car width

2.3 m −0.2 m/s 0.375 m 0.22 m 0.185 m

performance, while a too low grouping frequency is not conducive to algorithm convergence because it cannot only follow the 
8

development of the situation.
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Fig. 6. Experimental vehicles and vehicle kinematics model.

4.2. Physical experiments

We use the Ackermann trolley for experiments, it is shown in Fig. 6(a). The main components include battery, motor, encoder, 
steering servo, inertial measurement unit (IMU), control board, raspberry pie, CMOS sensor interface (CSI) camera, lidar, etc. The 
cars communicate through the Robot Operating System (ROS). The parameters of the experiment site and trolley are shown in 
Table 1. We use the simultaneous localization and mapping (SLAM) [42] algorithm to give the location of each car, and through the 
local masking algorithm, each car can only know the location of the ten closest obstacles to it, and the fence is also calculated as a 
stack of obstacles of the same size. That is, to achieve partially observable Markov decisions. The algorithm outputs the acceleration 
and front-wheel deflection angle of each car, and obtains the next time position of the vehicle through the integration of the dynamic 
model of the Ackermann car, sends it to the vehicle, and navigates through the time elastic band (TEB) [43] local planner algorithm. 
Since the cost of training algorithms in real objects is too high, we pre-trained in simulation and fine-tuned in real objects.

4.2.1. Vehicle kinematics model

The vehicle steering model is shown in Fig. 6(b). In the inertial coordinate system 𝑋𝑂𝑌 , (𝑋𝑓 , 𝑌𝑓 ) and (𝑋𝑟, 𝑌𝑟) represent the 
coordinates of the center of the rear and front axles of the vehicle. 𝜑 indicates the heading angle of the vehicle, 𝛿𝑓 indicates the front 
wheel’s deflection angle, and 𝑣𝑟 indicates the speed of the center of the rear axle of the vehicle along the direction of the vehicle axis. 
𝑣𝑓 represents the speed of the center of the vehicle’s front axle along the direction of the front wheel deflection, and 𝑙 represents the 
distance between the front and rear axles of the vehicle.

𝜐𝑟 = �̇�𝑟 ∗ cos(𝜑) + �̇�𝑟 ∗ sin(𝜑). (13)

Kinematic constraints of the front and rear axles (the vehicle has no lateral sideslip):{
�̇�𝑟 ∗ sin

(
𝜑+ 𝛿𝑓

)
− �̇�𝑟 ∗ cos

(
𝜑+ 𝛿𝑓

)
= 0

�̇�𝑟 ∗ sin (𝜑) − �̇�𝑟 ∗ cos (𝜑) = 0 (14)

According to formula (16) and formula (17), we can get:{
�̇�𝑟 = 𝜐𝑟 cos(𝜑)
�̇�𝑟 = 𝜐𝑟 sin(𝜑)

(15)

According to the position relationship of the front and rear wheels:{
𝑋𝑓 = 𝑋𝑟 + 𝑙 ∗ cos(𝜑)
𝑌𝑓 = 𝑌𝑟 + 𝑙 ∗ sin(𝜑) (16)

From the above formula, the angular velocity 𝜔 can be obtained as:

�̇� = 𝜔 =
𝜐𝑟

𝑙
∗ tan(𝛿𝑓 ) (17)

Under the condition of different front-wheel steering angles, the corresponding different steering radius:{
𝑅 = 𝑣𝑟 ∗ 𝜔

𝛿𝑓 = arctan
(

𝑙

𝑅

) (18)

The vehicle kinematics model can be drawn:

⎡⎢⎢ �̇�𝑟

�̇�𝑟

⎤⎥⎥ =
⎡⎢⎢ cos𝜑

sin𝜑( )
⎤⎥⎥ ∗ 𝜐𝑟 (19)
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⎣ �̇� ⎦ ⎢⎣ tan 𝛿𝑓

𝑙

⎥⎦
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Fig. 7. Agent average reward comparison chart in the five control task.

Fig. 8. Each step and the final average reward of the two tasks.

4.2.2. Experimental setup and result analysis

Based on the above experimental platform, we designed two physical experiments-cooperative navigation and cooperative park-

ing.

The process of the cooperative navigation task is that the three agents start from the starting point, traverse the obstacle zone, 
and reach the endpoints. In this process, the agent needs to avoid collisions and reach their respective endpoints. The task of 
cooperative parking is that the vehicle needs to park safely in the parking space, and the body and the lane line are consistent 
to avoid the collision. The two tasks reward function is the same as the Formation Control. In addition, the agent’s collision will 
reduce the reward by five and stop the episode, with a maximum of 60 steps per episode. Since the number of steps in each round 
is inconsistent, for a fair comparison, we choose 𝑟𝑒

𝑛𝑒
as the comparison object of different algorithms, where 𝑟𝑒 represents the total 

reward of an episode, and 𝑛𝑒 represents the number of steps in this episode.

Fig. 7(a) and (b) show the entire process of cooperative navigation and cooperative parking tasks. The agent learns the commu-

nication protocol during the training process and obtains the knowledge of avoiding each other, queuing in a narrow area, or even 
waiting in place in these two tasks to allow other agents to pass. Fig. 8(a) and (b) show that even in an environment where structural 
information is not apparent, the average score per step of DCN is still higher than other baseline algorithms. The final average score 
in Fig. 8(c) also verifies this point. Moreover, the performance of the MADDPG algorithm is similar to Kmeans+GCoNet, indicating 
that it is feasible to treat the agent in the group as multiple parts of an agent. In addition, the suspension of the game caused by the 
collision makes the average score fluctuate considerably. Finally, in the cooperative navigation task in Fig. 8(c), the score variance 
of each comparison algorithm is significant, and the score variance of the cooperative navigation parking task is slight and similar. 
This is because there are many obstacles in the first task, and the route of an agent is restricted by other agents and obstacles 
10

simultaneously, which makes it easy to collide and the process is easy to stop. At this time, the algorithm falls into a local optimum.
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5. Conclusions

In the current multi-agent reinforcement learning work, to improve the algorithm’s scalability, all agents perform network param-

eter sharing operations indiscriminately, and almost no one has paid attention to selectively sharing network parameters for different 
types of agents. Therefore, this paper proposes DCN, which is a selective network parameter sharing scheme for agents with common 
tasks or similar abilities. To more effectively utilize agents’ spatial structure and high-dimensional information, we introduce graph 
autoencoders to group agents. DCN has two kinds of cooperation capabilities of agents inside and outside the group, which maintains 
the scalability of the algorithm and significantly improves the algorithm’s performance.

It is applied to homogeneous agents and performs fully cooperative tasks to demonstrate that DCN can group agents with task 
orientation. However, because there are more significant differences in heterogeneous or competing task agents, and the same class 
of agents should perform the same task. In the future, we may extend the algorithm to heterogeneous agents or perform competing 
tasks.
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