
Neurocomputing 449 (2021) 207–213
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Self-play reinforcement learning with comprehensive critic in computer
games
https://doi.org/10.1016/j.neucom.2021.04.006
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: 11932025@zju.edu.cn (S. Liu).
Shanqi Liu, Junjie Cao, Yujie Wang, Wenzhou Chen, Yong Liu ⇑
Institute of Cyber Systems and Control, ZheJiang University, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 July 2020
Revised 3 December 2020
Accepted 2 April 2021
Available online 06 April 2021
Communicated by Zidong Wang

Keywords:
Reinforcement learning
Self-play
Computer game
Self-play reinforcement learning, where agents learn by playing with themselves, has been successfully
applied in many game scenarios. However, the training procedure for self-play reinforcement learning is
unstable and more sample-inefficient than (general) reinforcement learning, especially in imperfect
information games. To improve the self-play training process, we incorporate a comprehensive critic into
the policy gradient method to form a self-play actor-critic (SPAC) method for training agents to play com-
puter games. We evaluate our method in four different environments in both competitive and coopera-
tive tasks. The results show that the agent trained with our SPAC method outperforms those trained with
deep deterministic policy gradient (DDPG) and proximal policy optimization (PPO) algorithms in many
different evaluation approaches, which vindicate the effect of our comprehensive critic in the self-play
training procedure.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Reinforcement learning has achieved excellent performance in a
lot of board games and poker games such as Chess [1], Go [2],
Gomoku [3], Kuhn poker [4] and Texas holdem poker [5]. Building
computer programs with high performance in a non-trivial game
can be a stepping stone toward solving more challenging real-
world problems [6]. Recently, modern interactive computer games
such as first-person shooters (e.g. ViZDoom [7]) and real-time
strategy games (e.g. StarCraft [8]) have been the focus of AI
research progressively.

Self-play reinforcement learning, i.e. agents learn by playing
against the copy of themselves, replaces the loser with a copy of
the winner in its training paradigm which nicely provides a perfect
curriculum and offers rival opponents to agents. For example,
game agents such as checker engines [9], AlphaGo [2], AlphaGo
Zero [10] and AlphaZero [11] all benefit from the self-play rein-
forcement learning, which demonstrates that agents trained with
self-play reinforcement learning methods are capable of outstrip-
ping human players in perfect-information games.

As for imperfect-information games with hidden information
and stochasticity, they have been regarded as a beneficial domain
for current AI research due to their promising application pro-
spects. In many computer games of this kind, agents are usually
trained with reinforcement learning by playing with a predeter-
mined computer player (game bot) [7,8,12,13], and tend to overfit
to the game bot. Meanwhile, Heinrich et al. [4] apply self-play
Monte-Carlo Tree Search in Kuhn poker. A safe and nested
subgame-solving technique for imperfect-information games have
been proposed in the research of Brown et al. [5], which helps
machines to defeat top humans players in no-limit Texas holdem
poker. [14] indicates that Fictitious Self-Play (FSP) can converge
to approximate Nash equilibria in playing River poker. In Limit
Texas Holdem poker, based on significant domain expertise, Neural
Fictitious Self-Play (NFSP) can achieve the performance of state-of-
the-art according to [15]. Though those methods achieved good
performance in training agents to play games with imperfect infor-
mation, they usually rely on the extensive exploration and the
memory of long-past information, instead of taking full advantage
of the training paradigm of self-play in which the observation of
the other player can facilitate the self-play training procedure.

In this paper, we propose a new self-play reinforcement learn-
ing method: self-play actor-critic (SPAC), in which a comprehen-
sive critic speeds up the training procedure of self-play by
combing the imperfect information observed of both players.
2. Related work

Self-play reinforcement learning has been widely studied and
implemented on board games and pokers. In early time, Gelly
and Silver studied 9x9 Go and proposed Heuristic UCT-RAVE algo-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.04.006&domain=pdf
https://doi.org/10.1016/j.neucom.2021.04.006
mailto:11932025@zju.edu.cn
https://doi.org/10.1016/j.neucom.2021.04.006
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


S. Liu, J. Cao, Y. Wang et al. Neurocomputing 449 (2021) 207–213
rithm which incorporates prior knowledge to the Monte-Carlo tree
search and provides a simple way to share experience between
classes of related positions [16]. In 2010, Wiering studied the prob-
lem of learning to play Backgammon through a combination of
self-play and expert knowledge methods [17], and pointed out that
the best strategy to train agents to play Backgammon is playing
against an expert which is difficult to access. [18] combines ADP
with MCTS to train a neural network to play Gomoku with self-
play, and competed for the candidate level of 5-star Gomoku. In
computer Go, Silver et al. have trained two novel neural network
agents, called AlphaGo and AlphaGo Zero, to achieve a state of
the art results in the game of Go [2,10]. AlphaGo, which uses super-
vised learning, deep reinforcement learning, and MCTS, defeated
top human Go players, through extensive use of domain knowl-
edge and games played by human champions. In AlphaGo Zero,
self-play games were generated by the best player which win by
a margin of 55% when competing with the precedent best players.
Furthermore, Silver et al. extended AlphaGo Zero to a general
game-playing strategy, called AlphaZero, achieving state of the
art in the games of Chess and Shogi [11]. In contrast to AlphaGo
Zero, AlphaZero maintains a single policy that generates self-play
games and is updated continually, without the evaluation step
for the selection of the best player. Another works like [19] pre-
sents the MuZero algorithm which, by combining a tree-based
search with a learned model, achieves superhuman performance
in a range of challenging and visually complex domains. Although
those works are successful in training agents to play board games,
they are highly relying on the perfect information observed by the
players, the rule of board games and domain knowledge of experts.

In playing Kuhn poker which is imperfect-information, [4] com-
bines self-play MCTS with fictitious play, where the convergence to
Nash equilibria is demonstrated with empirical results. Fictitious
Self-Play (FSP) combines reinforcement learning and supervised
learning in self-play training of agents to play poker games [14].
Based on FSP, Neural Fictitious Self-Play [15] is the first end-to-
end self-play deep reinforcement learning method that can
approach a Nash equilibrium of imperfect-information games.
[20] trains a population of blueprint policies to solve poker games.
Those reinforcement learning methods with self-play achieve good
performance in poker games, where the explicit game rule can pro-
vide some information about the system and facilitate the self-play
training procedure. During their self-play training procedure, both
players are updated independently without exploiting the infor-
mation from their opponent. In modern interactive computer
games, from which the system can not be modeled, reinforcement
learning can also achieve excellent performance. In ViZDoom, a
first-person shooter computer game, [7] trains an agent with aug-
mented Deep Recurrent Q-Networks by playing with the game bot.
[21] modified PPO-RND method to solve sparse reward problem in
ViZDoom. Though [8,22,23,12] have good performance in playing
the real time strategy game StarCraft, their training procedures
rely on playing with fixed computer opponents. [24] proposes a
MOBA AI learning paradigm that methodologically enables playing
full MOBA games with deep reinforcement learning.

Contrary to previous work in computer games, especially with
imperfect information, we aim to train agents with self-play and
facilitate the training procedure with a comprehensive critic to off-
set the impact of imperfect information, by exploiting the observa-
tion and action of the opponent.
3. Background

In standard Markov Decision Process (MDP), one agent sequen-
tially chooses an action at according to a policy pðajsÞ based on the
state st at time t. After taking the action at , state st transforms to
208
the next state stþ1 according to the transition probability which
satisfies Markov property and is entirely determined by the
state-action pair one-time step before, i.e. stþ1 � pðstþ1jst ; atÞ. Then
the agent receives a scalar reward signal rðst ; atÞ from the environ-
ment. Deep Reinforcement Learning is one kind of deep learning
algorithms that finds a policy p which can extract features with
deep neural network and maximizes the expected discounted
cumulative reward in one episode, i.e. JðhÞ ¼ E

P
tctrðst ; atÞ

� �
, where

c is a discount factor.
A multi-agent extension of MDP is called partially observable

Markov games [25]. A Markov game, is defined by a set of states
S describing the possible configurations of all agents, a collection
of action sets A1; . . . ;Akf g and a collection of observation sets
O1; . . . ;OKf g for kagents in the environment. State transitions
depend on the current state and one action from each agent:
T : S� A1 � � � � � Ak ! PDðSÞ, with PD(S) represents the set of prob-
ability distributions over the state space. Similar to standard MDP,
each agent iwill have an associated reward function, RiðS;AiÞ.

Policy gradient methods maximize the expected cumulative
reward by estimating the performance gradient concerning the
policy parameter vector h : rhJðphÞ, and updating the policy
parameter vector with gradient ascent. In stochastic policy gradi-
ent methods [26], stochastic policy samples from a Gaussian distri-

bution ph � NðlðsÞ;rðsÞ2IÞ with lðsÞ and rðsÞ parameterized by h.
In deterministic policy gradient methods such as deterministic pol-
icy gradient (DPG) [27] and deep deterministic policy gradient
(DDPG) [28]. DDPG is an actor-critic, model-free algorithm based
on the deterministic policy gradient that can operate over contin-
uous action spaces. The actor is the policy model phðajsÞ that
selects the action a based on the observation s at each time step.
The critic estimates the action-value function Qðs; aÞ using off-
policy data which is sampled by a noisy policy. The noisy policy
improves the exploration by adding additive action noise to deter-
ministic policy: p̂hðsÞ ¼ phðsÞ þw, where w � Nð0;r2IÞ represents
uncorrelated Gaussian noise or w � OUð0;r2IÞ represents Orn-
stein–Uhlenbeck process noise. With the noise variance r anneal-
ing during the training process, deterministic policy gradient
methods make a trade-off between exploration and exploitation.

As the original version of the policy gradient algorithm, REIN-
FORCE [29] tends to be of high variance due to the gradient estima-
tion with the Monte Carlo method:

rhJðhÞ �
XN�1

t¼0

rh logphðatjstÞRt; ð1Þ

where Rt represents the cumulative reward from time t to the end
of one episode. Actor-critic methods use the value function VðstÞ,
action-value function Qðst ; atÞ or advantage function
Aðst; atÞ ¼ Qðst; atÞ � VðstÞ to substitute for the cumulative reward
Rt , to reduce the variance of gradient estimation and improve the
performance of policy gradient methods. For deterministic policy,
according to the deterministic policy gradient theorem [27], the
gradient of the objective JðhÞ can be estimated as:

rhJðhÞ �
XN�1

t¼0

rhlhðatjstÞraQ
lðst; aÞja¼lhðstÞ: ð2Þ

Proximal policy optimization algorithms (PPO) [30] can be used
to optimize the policy p with the reward Rt . The gradient of the
policy p calculated with PPO can be derived as:

rhJðhÞ � Esi Aphold ðo; aÞrhphðajoÞ
phold ðajoÞ

� brhKL½phold ð�joÞ;phð�joÞ�
� �

; ð3Þ

where Aphold represents the advantage function of the policy before
updating, highly dependent on the reward Rt and KL stands for Kull-
back–Leibler divergence.



Fig. 1. Framework of SPAC.

S. Liu, J. Cao, Y. Wang et al. Neurocomputing 449 (2021) 207–213
4. Method

In this work, we consider a special case of Markov game for self-
play reinforcement learning, in which all agents interact with each
other in a common environment. The definition of self-play MDP is
the same as that of partially observable Markov games.

Actor-Critic methods for standard MDP can be directly applied
to self-play settings by having the agent and the copy of itself learn
two independent value functions based on their observations,
actions and rewards. However, because both agents have their par-
tial observation and are independently updating their policies
according to two independent value functions, the environment
appears non-stationary from the view of anyone agent, violating
Markov assumptions of standard MDP. Inspired by the idea that
if the actions taken by other agents are known, the environment
is stationary [31], we propose a self-play reinforcement learning
method with comprehensive critic taking into account the oppo-
nent’s observations or observations and actions as well.

4.1. Comprehensive critic with opponent’s observations

In competitive games which involve only physical interactions
between agents, the learned policies can only use local information
(i.e. competitors’ observations) at execution time. To facilitate the
training process and improve the performance of self-play, we
modified original Actor-Critic methods to fit the frameworks of
self-play, called Self-Play Actor-Critic (SPAC). In SPAC, there is
one comprehensive critic for each agent, which is related to the
opponent’s observations. Although we exploit the comprehensive
observations to train the comprehensive critic for each agent, the
behavior of the agent only depends on its observation.

More concretely, we consider a game with two players with
policies p ¼ p1;p2f g parameterized by h ¼ h1; h2f g. The critic func-
tion can be represented as: QiðS; aÞ or AiðS; aÞ, where i ¼ 1;2f g rep-
resents for each player and a is its action. The comprehensive critic
functions the comprehensive state S and its action as input, and
outputs the Q-value or advantage for each agent i. The comprehen-
sive state Scould consist of the observations of both agents, i.e.
S ¼ O1;O2f g, and additional state information if available. It is rea-
sonable, in the training procedure of one agent with self-play, that
we can obtain a comprehensive state which includes both agents’
observations and additional information as well as the action of
the other agent. The reward functions of both agents can be con-
flicting in the competitive setting.

For deterministic policy li of agent iin self-play, the policy gra-
dient for our SPAC can be derived according to the deterministic
policy gradient theorem [27], similar to Eq. (2):

rhJðhÞ � 1
m

Xm
i¼1

XN�1

t¼0

rhli
hðaitjoitÞraiQ iðSt ; aitÞjai¼liðoiÞ: ð4Þ

The comprehensive action-value function Qi can be updated
according to the minimization of the mean square TD error. The
replay experience of self-play St ; o1t ; o

2
t ; a

i
t ; r

i
t; Stþ1

� �
can be stored

in the replay buffer for off-policy updating of Qi. With random
sampling from the replay buffer and accessing the policies of both
agents, the comprehensive action-value Qi can be updated by
minimizing:

1
m

Xm
i¼1

XN�1

t¼0

½rit þ cQ 0
iðStþ1;l0

iðoitÞÞÞ � QiðSt ; aitÞ�
2
; ð5Þ

where Q 0
i is the delayed copy of Qi and l0

i is the set of target policies
which are delayed copies of li

h and are easy to get in self-play. Using
deterministic policy, our SPAC can take advantage of off-policy
updating of DDPG [28], and can be seen as an extension of MADDPG
209
[31] which optimizes separate policies in a multi-agent system.
However, different from that of MADDPG, our SPAC with the deter-
ministic policy is actually optimizing one single policy in a self-play
setting.

4.2. Comprehensive critic with opponent’s observations and actions

The main difference between these two ways of using global
information is that if agents can access the opponents actions,
the agent may learn a policy that can predict its opponents action,
which will be useful in a competition setting.

The other influence of combining global information without
action is that the environment is non-stationary now, the agent
has to train in a non-stationary environment. This can cause unsta-
ble and agents will likely struggle to learn the above ground level
policies because RL methods need the distribution of states to
which those actions lead are stable to effectively value actions.

Similarly, we consider a game with two players with policies
p ¼ p1;p2f g parameterized by h ¼ h1; h2f g. The critic function can
be represented as: QiðS; a1; a2Þ or AiðS; a1; a2Þ, where i ¼ 1;2f g rep-
resents for each player. The comprehensive critic function takes
the actions of both agents a1; a2f g and the comprehensive state
Sas input, and outputs the Q-value or advantage for each agent i.
The comprehensive state Scould consist of the observations of both
agents, i.e. S ¼ O1;O2f g.

For deterministic policy li of agent iin self-play, the policy gra-
dient similar to Eq. (4) but with opponent’s actions:

rhJðhÞ � 1
m

Xm
i¼1

XN�1

t¼0

rhli
hðaitjoitÞraiQ iðSt; a1t ; a2t Þjai¼liðoiÞ: ð6Þ

The experience of self-play St ; o1
t ; o

2
t ; a

1
t ; a

2
t ; r

1
t ; r

2
t ; Stþ1

� �
can be

stored in the replay buffer for off-policy updating of Qi. The com-
prehensive action-value Qi can be updated by minimizing:

1
m

Xm
i¼1

XN�1

t¼0

½rit þ cQ 0
iðStþ1;l0

1ðo1t Þ;l0
2ðo2t ÞÞ � QiðSt; a1

t ; a
2
t Þ�

2
; ð7Þ

As for stochastic policy li of agent iin self-play, the policy gra-
dient similar to Eq. (3) but with opponent’s actions:

rhJðhÞ � 1
m

Xm
i¼1

XN�1

t¼0

rh A
pi
hold ðSt ; a1

t ; a
2
t Þ

pi
hðai

t joi
tÞ

pi
hold

ðait joitÞ
� bKL½pi

hold
ð�joi

tÞ;pi
hð�joi

tÞ�
" #

;

ð8Þ

where pi
hold

represents the policy before optimization and

KL½pi
hold

ð�joitÞ;pi
hð�joitÞ� represents the KL divergence between stochas-

tic policies before and after updating.
The overall framework of our SPAC is illustrated in Fig. 1.



S. Liu, J. Cao, Y. Wang et al. Neurocomputing 449 (2021) 207–213
5. Experiments

5.1. Simulated tasks

To evaluate the effect of the comprehensive critic in our SPAC,
we select four suitable self-play reinforcement learning
environments.

First of all, we build a simple competitive environment
‘‘Adversarial-Push” modified from the environments proposed in
[32]. In ‘‘Adversarial-Push”, there are two adversarial agents and
one landmark inhabiting a two-dimensional world with continu-
ous space and discrete-time interval. Both agents are punished
for their distance to the landmark, and rewarded for preventing
their opponents from approaching the landmark. So the reward
functions of both agents can be formulated as:
R1 ¼ d2 � 2 � d1;R2 ¼ d1 � 2 � d2, with di representing the dis-
tance of agent ito the landmark. Each agent should accomplish this
by ‘‘physically pushing” another agent away from the landmark,
temporarily occupying it. Here ‘‘physically pushing” means a colli-
sion with force. The force will motivate the agent with an acceler-
ation a ¼ F

m, with F;m represent the force executed on the agent
and the mass of the agent. The observation of each agent comprises
its velocity and the relative coordinate of the landmark, and the
action is the force acting on their own. The environment
‘‘Adversarial-Push” is illustrated in Fig. 2, where blue and red cir-
cles represent the adversarial agents and the small green circle
point represents the landmark (the goal of both agents).

Then, we choose a more complex game ‘‘Pong” in roboschool
[33], which take into account the dynamics of the balls and is much
more complex than the original pong game in Atari [34]. The obser-
vation of each agent comprises the positions and velocities of the
paddles and balls, and the agents can control the velocity of the
paddles as their actions.

We also use ‘‘Tennis” and ‘‘Soccer” in Unity mlagents [35], ‘‘Ten-
nis” is two-player game where agents control rackets to hit a ball
over the net. The agents must hit the ball so that the opponent can-
not hit a valid return. And ‘‘Soccer” is an environment where four
agents compete in a 2 vs 2 toy soccer game, which means agents
must get the ball into the opponent’s goal while preventing the ball
from entering their own goal. All environments are illustrated in
Fig. 2.

5.2. Effect of the comprehensive critic for self-play reinforcement
learning

In this part, we evaluate the effect our SPAC in four self-play
reinforcement learning environments. To prove the effectiveness
of our SPAC, we firstly test training with the opponents observa-
tions and actions, we will discuss training without the opponents
actions in Section 5.4.

Firstly, we implement DDPG [28] in the framework of self-play
without a comprehensive critic, where both agents are trained sep-
Fig. 2. Enviro

210
arately without accessing the opponents’ information and the loser
will be replaced with a copy of the winner as that in our SPAC. In
the implementation of DDPG and our SPAC with deterministic pol-
icy, the policies are all parameterized by a two-layer full connected
network with 64 units per layer and ‘‘relu” active function, and are
initialized randomly. In the experiments of game ‘‘Pong” we imple-
ment SPAC with stochastic policy and compare it with PPO as the
baseline. Both policies are all parameterized by a two-layer full
connected network with 64 units and 32 units, which are all initial-
ized randomly. We use the c equals to 0.99, the batch size is 32, the
b is 0.95 and the learning rate is 10�4. The choice between stochas-
tic policy and deterministic policy can be decided by validation or
estimation of the environments’ randomness. According to our
experience, in environments with deterministic state transition,
the deterministic policy may be better. And stochastic policy
may do better in environments with more randomness. In our
experiments, we implement SPAC with the deterministic policy
in ‘‘Adversarial-Push”, ‘‘Tennis” and ‘‘Soccer” and stochastic policy
in ‘‘Pong” as both games have different randomness.

During the self-play training process, if one agent beats another
by a certain score, its opponent will be replaced with the winner.
Otherwise, both agents will be updated separately according to
Eq. (3) or Eq. (4), provided with the observations or observations
and actions of their opponents.

For fairly comparison, we evaluate the result policies trained
with DDPG or PPO and our SPAC by competing in the environments
presented above. This PK results will show exactly which player is
doing better, for each algorithm maybe plays well during the self-
play training process, but when it plays with another agent, it may
not be so. The evaluation of both algorithms is based on the aver-
age episode reward in 50 competitions received by both agents.
And for further comparison, we evaluate agents compete against
the random and well-trained policy in ‘‘Tennis” and ‘‘Soccer” envi-
ronments, as complementary experiments. These will mainly show
that the baselines have learned decent policies rather than remain
as ground level. A random policy is a policy which chooses a ran-
dom action at each time step. And the well-trained policy is the
policy using the final policy model, e.g. the final policy model
trained by DDPG.

The ‘‘PK” evaluation results of all four environments are shown
in Fig. 3. Because our experiments are based on a play against other
agents, each image will contain only one set of experiments results.

Fig. 3 depicts the performance of the agents trained with DDPG
or PPO and SPAC, plotted over the episodes required for self-play
training. The ‘‘PK” result shows that our SPAC has a better perfor-
mance comparing with DDPG or PPO that has no comprehensive
critic, though with accidents when both training processes are
not converged.

Fig. 4 depicts the results of complementary experiments, plot-
ted over the episodes required for self-play training. The result
shows that both the comparing algorithm such as DDPG and our
SPAC have accepted a decent policy rather than remain as ground
nments.



Fig. 3. Competitions between Trained Agents in four environments. From left to right are ‘‘PK” experiments tested in ‘‘push”, ‘‘pong”, ‘‘tennis” and ‘‘soccer”. The ‘‘PK” results in
the adversarial situation are measured by the return of the environments.

Fig. 4. Complementary experiments in tennis and soccer environments. From left to right are DDPG compete against the random policy in tennis and soccer, SPAC against the
well-trained DDPG policy in tennis and soccer. The random policy is acting with total random actions and the best DDPG is a well-trained policy using DDPG.

Table 1
Rewarding scheme for competitive situation.

Left player misses the
ball

Right player misses the
ball

Left player rewards �1 +1
Right player

rewards
+1 �1

Table 2
Rewarding scheme for a collaborative situation

Left player misses the
ball

Right player misses the
ball

Left player rewards �1 �1
Right player

rewards
�1 �1

S. Liu, J. Cao, Y. Wang et al. Neurocomputing 449 (2021) 207–213
level, this is essential to prove that all policy is well-trained, and
our SPAC can actually learn a better policy rather than just beat
the ground level agents. And from these results, we can find SPAC
learn faster than the comparing algorithm, as SPAC can beat the
best DDPG in an early stage.

These results show that our SPAC has a better performance
compared with DDPG or PPO that has no comprehensive critic. This
can be shown easily in the previous four sets of experiments,
whether in a simple game like ‘‘Adversarial-Push” or a more com-
plex game like ‘‘Pong”, ‘‘Tennis” and ‘‘Soccer” which using stochas-
tic policy or using deterministic policy separately. All experiment
results show that SPAC performs better than their counterparts
without comprehensive critic. In our SPAC, the policy is updated
with Eq. (4) or Eq. (8) which is similar to that of DDPG Eq. (2) or
PPO Eq. (3) with only the critic Qbe different. So it is the compre-
hensive critic that improves the performance of self-play reinforce-
ment learning.
5.3. Adversarial and cooperation settings

In the game ‘‘Pong” of roboschool, there are two agents play
pong game with continuous observation space and continuous
action space. We test our SPAC in the adversarial and cooperative
situation of the pong game. In the adversarial game, each agent
obtains an immediate reward when the ball gets past the other
agent and an immediate punishment when it misses the ball. In
the cooperative game, to encourage both players to keep the ball
bouncing between each other, each agent obtains an immediate
punishment whenever either agent misses the ball. The rewards
in competitive and cooperative games are set as Tables 1 and 2.
To accelerate the training process, we add rewards as well. Both
211
agents get rewards when they catch the ball, which helps both
agents learn the basic skill at the beginning of training.

We evaluate both algorithms in the paddle-bounces, the times
of the ball bounces against the paddles in self-play, which can rep-
resent how well the agent plays pong game in self-play training
directly. In the training session, the episode length is set as 200
frames, and the paddle-bounces are evaluated in 5 independent
experiments with different random seeds, with the mean and con-
fidence interval depicted in Fig. 5.

These results show that our SPAC can over-perform PPO in both
adversarial and cooperative situations. We believe that SPAC per-
form better in cooperative situations because cooperative situa-
tions rely on using the opponent’s observation more than
adversarial situations.



Fig. 5. The performance of the agents trained with PPO and SPAC, measured with
paddle-bounces in self-play training. From left to right are tested in adversarial
games and cooperative games.

Fig. 6. The performance of the agents trained without the opponent’s actions.
Measured in the same ways as beyond. From left to right are SPAC trained without
the opponent’s actions competed with full SPAC and competed with random policy.

S. Liu, J. Cao, Y. Wang et al. Neurocomputing 449 (2021) 207–213
5.4. Training without the opponent’s actions

In this setting, we use ‘‘soccer” to evaluate the policy training
without the opponent’s actions, for it is the most complex environ-
ment and that makes the results more convinced. We test our SPAC
in both pieces of training with the opponents actions and without
the opponents actions. Then we evaluate it by ‘‘pk” against SPAC
trained with actions and random policy. The results are illustrated
in Fig. 6.

These results show that our SPAC has a better performance
compared with SPAC without the opponent’s actions. This is clearly
shown in ‘‘pk” result which means training with more global infor-
mation can benefit training progress. This can also prove that it is a
comprehensive critic that improves the performance of self-play
reinforcement learning. In a word, using more global information,
a better policy we can have.

6. Conclusion

In this paper, we introduce a new self-play reinforcement learn-
ing method, self-play actor-critic (SPAC), incorporating a compre-
hensive critic into the policy gradient method for self-play agents
in playing computer games with imperfect information. The com-
prehensive critic evaluates the value function of one agent based
on the comprehensive information of both agents in self-play,
which offset the impact of imperfect information, thus can facili-
tate the training procedure of self-play. We evaluate the algorithm
with extensive experiments based on four different environments,
including both competitive and cooperative tasks. The result shows
that the SPAC improves the training procedure of self-play and it
outperforms DDPG and PPO in both adversarial and cooperative
games. Furthermore, we test our methods in settings with and
212
without the opponents actions. As a result, we figure out that more
comprehensive information about both agents is useful and bene-
ficial to the training process.

For further research, the application prospect of SPAC is promis-
ing, and it is easy to extend our SPAC to other self-play mecha-
nisms such as fictitious self-play or games with more than two
players.

CRediT authorship contribution statement

Shanqi Liu: Validation, Writing - original draft. Junjie Cao: Val-
idation, Writing - original draft. Yujie Wang: Validation,Writing -
review & editing. Wenzhou Chen: Validation, Writing - review &
editing. Yong Liu: Supervision, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

We would like to thank all people who offer help during this
work.

References

[1] E.A. Heinz, New self-play results in computer chess, in: International
Conference on Computers and Games, Springer, 2000, pp. 262–276..

[2] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of go with deep neural networks and tree search, nature 529 (7587)
(2016) 484..

[3] D. Zhao, Z. Zhang, Y. Dai, Self-teaching adaptive dynamic programming for
gomoku, Neurocomputing 78 (1) (2012) 23–29.

[4] J. Heinrich, D. Silver, Self-play monte-carlo tree search in computer poker, in:
Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014, pp. 19–25..

[5] N. Brown, T. Sandholm, Safe and nested subgame solving for imperfect-
information games, in: Advances in Neural Information Processing Systems,
2017, pp. 689–699..

[6] J. Schaeffer, A gamut of games, AI Magazine 22 (3) (2001) 29.
[7] G. Lample, D.S. Chaplot, Playing fps games with deep reinforcement learning,

AAAI (2017) 2140–2146.
[8] K. Shao, Y. Zhu, D. Zhao, Cooperative reinforcement learning for multiple units

combat in starcraft, in: Computational Intelligence (SSCI), 2017 IEEE
Symposium Series on, IEEE, 2017, pp. 1–6..

[9] A.L. Samuel, Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development 44 (1.2) (2000) 206–226.

[10] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go without
human knowledge, Nature 550 (7676) (2017) 354.

[11] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., Mastering chess and shogi by self-play
with a general reinforcement learning algorithm, arXiv preprint
arXiv:1712.01815..

[12] Z. Tang, D. Zhao, Y. Zhu, P. Guo, Reinforcement learning for build-order
production in starcraft ii, in: 2018 Eighth International Conference on
Information Science and Technology (ICIST), IEEE, 2018, pp. 153–158.

[13] T. Rashid, G. Farquhar, B. Peng, S. Whiteson, Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement
learning, Advances in Neural Information Processing Systems 33..

[14] J. Heinrich, M. Lanctot, D. Silver, Fictitious self-play in extensive-form games,
in: International Conference on Machine Learning, 2015, pp. 805–813..

[15] J. Heinrich, D. Silver, Deep reinforcement learning from self-play in imperfect-
information games, arXiv preprint arXiv:1603.01121..

[16] S. Gelly, D. Silver, Achieving master level play in 9 x 9 computer go., in: AAAI,
vol. 8, 2008, pp. 1537–1540..

[17] M.A. Wiering, Self-play and using an expert to learn to play backgammon with
temporal difference learning, JILSA 2 (2) (2010) 57–68.

[18] Z. Tang, D. Zhao, K. Shao, L. Lv, Adp with mcts algorithm for gomoku, in:
Computational Intelligence (SSCI), 2016 IEEE Symposium Series on, IEEE, 2016,
pp. 1–7..

[19] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A.
Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., Mastering atari, go, chess and
shogi by planning with a learned model, arXiv preprint arXiv:1911.08265..

http://refhub.elsevier.com/S0925-2312(21)00524-5/h0015
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0015
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0030
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0035
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0035
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0045
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0045
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0050
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0050
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0050
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0085
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0085


S. Liu, J. Cao, Y. Wang et al. Neurocomputing 449 (2021) 207–213
[20] N. Brown, T. Sandholm, Superhuman ai for multiplayer poker, Science 365
(6456) (2019) 885–890.

[21] J.-C. Chen, T.-H. Chang, Modified ppo-rnd method for solving sparse reward
problem in vizdoom, in: 2019 IEEE Conference on Games (CoG), IEEE, 2019, pp.
1–4..

[22] S. Xu, H. Kuang, Z. Zhi, R. Hu, Y. Liu, H. Sun, Macro action selection with deep
reinforcement learning in starcraft, in: Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, vol. 15, 2019, pp.
94–99..

[23] X. Xu, T. Huang, P. Wei, A. Narayan, T.-Y. Leong, Hierarchial reinforcement
learning in starcraft ii with human expertise in subgoals selection, arXiv
preprint arXiv:2008.03444..

[24] D. Ye, G. Chen, W. Zhang, B. Yuan, B. Liu, J. Chen, Z. Liu, F. Qiu, H. Yu, Y. Yin,
et al., Towards playing full moba games with deep reinforcement learning,
Advances in Neural Information Processing Systems 33..

[25] M. L. Littman, Markov games as a framework for multi-agent reinforcement
learning, in: Machine Learning Proceedings 1994, Elsevier, 1994, pp. 157–163..

[26] R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods for
reinforcement learning with function approximation, in: Advances in Neural
Information Processing Systems, Advances in Neural Information Processing
Systems, 2000, pp. 1057–1063..

[27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic
policy gradient algorithms, in: ICML, ICML, 2014..

[28] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971..

[29] R.J. Williams, Simple statistical gradient-following algorithms for
connectionist reinforcement learning, Machine Learning 8 (3–4) (1992) 229–
256.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, arXiv preprint arXiv:1707.06347..

[31] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, I. Mordatch, Multi-agent actor-
critic for mixed cooperative-competitive environments, in: Advances in Neural
Information Processing Systems, 2017, pp. 6379–6390..

[32] I. Mordatch, P. Abbeel, Emergence of grounded compositional language in
multi-agent populations, arXiv preprint arXiv:1703.04908..

[33] O. Klimov, J. Schulman, Roboschool (2017)..
[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.

Zaremba, Openai gym, arXiv preprint arXiv:1606.01540..
[35] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange, Unity: A

general platform for intelligent agents, arXiv preprint arXiv:1809.02627..

Shanqi Liu received his B.S. degree in control science
and engineering from Zhejiang University in 2019. He is
currently a Ph.D. Candidate of the institute of Cyber
Systems and Control, Department of Control Science
and Engineering, Zhejiang University. His research area
is reinforcement learning and robotics.
Junjie Cao received the B.S. degree in Mechanical
Engineering and Automation from Nanjing Tech
University, Nanjing, China, in 2014 and the M.S. degree
in Mechanical Engineering (Mechatronics) from Zhe-
jiang University, Zhejiang, China, in 2017. He is cur-
rently working toward the Ph.D. degree at the College of
Control Science and Engineering, Zhejiang University.
His current research interests include machine learning,
sequential decision making and robotics.
213
Yujie Wang, Ph.D. candidate of the Interdisciplinary
Center of the Academy of Humanities and Social Sci-
ences, Zhejiang University. Her main research areas are
MIDAS data mining, thick-tail heterogeneous economic
research. She also committed to applying advanced
deep learning techniques in financial prediction, rein-
forcement learning methods in Forex scenario, and the
expansion of the above theories in the fields of dynamic
trade games and industrial organization.
Wenzhou Chen received the B.S. degree in automation
from Zhejiang University of Technology in 2017. He is
currently a Ph.D. Candidate of the institute of Cyber
Systems and Control, Department of Control Science
and Engineering, Zhejiang Uni- versity. His latest
research interests include robot navigation and deep
reinforcement learning.
Yong Liu received his B.S. degree in computer science
and engineering from Zhejiang University in 2001, and
the Ph.D. degree in computer science from Zhejiang
University in 2007. He is currently a professor in the
institute of Cyber Systems and Control, Department of
Control Science and En- gineering, Zhejiang University.
He has published more than 30 research papers in
machine learning, computer vision, information fusion,
robotics. His latest research interests include machine
learning, robotics vision, information processing and
granular computing. He is the corresponding author of
this paper.

http://refhub.elsevier.com/S0925-2312(21)00524-5/h0100
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0100
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0145
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0145
http://refhub.elsevier.com/S0925-2312(21)00524-5/h0145

	Self-play reinforcement learning with comprehensive critic in computer games
	1 Introduction
	2 Related work
	3 Background
	4 Method
	4.1 Comprehensive critic with opponent’s observations
	4.2 Comprehensive critic with opponent’s observations and actions

	5 Experiments
	5.1 Simulated tasks
	5.2 Effect of the comprehensive critic for self-play reinforcement learning
	5.3 Adversarial and cooperation settings
	5.4 Training without the opponent’s actions

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


