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Learning Intra-group Cooperation in Multi-agent Systems

Weiwei Liu', Shangi Liu!, Jian Yang*? and Yong Liu*!3

Abstract— Reinforcement learning is one of the algorithms
used in multi-agent systems to promote agent cooperation.
However, most current multi-agent reinforcement learning
algorithms improve the communication capabilities of agents
for cooperation, but the overall communication is costly and
even harmful due to bandwidth limitations. In addition, de-
centralized execution cannot generate joint actions, which is
not conducive to cooperation. Therefore, we proposed the
Hierarchical Group Cooperation Network (HGCN). Advanced
strategy, Group Network (GroNet), learns to group all agents
based on their state rather than their location. The Low-level
strategy, Group Cooperation Network (GCoNet), is a method of
centralized training and centralized execution within a group,
which effectively promotes agent collaboration. Finally, we
validated our method in various experiments.

I. INTRODUCTION

With the rapid development of reinforcement learning [1]
in recent years, we have been able to see many algorithms
that surpass human performance. For example: in the field
of games, Alibaba proposed a Bi-directional recurrent neural
network (RNN) [2] to learn the algorithm of the communi-
cation protocol between agents, Bidirectionally-Coordinated
Net (BicNet) [3], which defeated the built-in artificial intel-
ligence in StarCraft [4], [5]; AlphaGo [6] and AlphaZero [7]
have gained worldwide attention in the field of Go; Tencent
proposed the Al [8] in the King’s Glory even defeated the top
players. However, when a multi-intelligent system is in an
environment known as a decentralized partially observable
Markov decision progress (DEC-POMDP) [9], the agent
only have access to local observations but cannot learn
information about the observations, actions, and rewards of
other agents, which can cause the algorithm to be unstable.

Scholars have proposed many methods to solve this
problem. Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [10] uses a centralized evaluation network to
evaluate the state-actions of all agents jointly, but in order
for all agents to make distributed decisions, each agent has
its action network [11]. MADDPG solves the limitation of
using experience playback technology and the convergence
of common algorithms [12], [13] caused by a non-stationary
Markov environment. In addition, MADDPG substantially
alleviates the communication difficulties between agents and
the credit assignment [14] of team rewards. However, the
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Fig. 1: Schematic diagram of the experimental car.

algorithm only takes the agent’s observation as input in the
decision-making stage, and it is easy to fall into a local opti-
mum. Foerster [15] first proposed an explicit communication
protocol between learning agents in 2016, but it assumes
that the communication channel is discrete, so continuous
information cannot be exchanged. The Reinforced Inter-
Agent Learning (RIAL) [15] algorithm can share parameters
between agents and explicitly transmit learnable information
between agents to increase the agent’s perception of the
environment, but it lacks the ability to feedback communi-
cation behavior. Moreover, this algorithm is used in discrete
environments.

In order to promote cooperation between agents, We
propose a novel algorithm for centralized training and
execution within a group. We called hierarchical group
collaboration network (HGCN). The algorithm constructs
two reinforcement learning architectures, namely hierarchical
reinforcement learning. The high-level algorithm divides all
agents into groups. The divided group is regarded as one
agent——the low-level algorithm inputs the local observa-
tions and actions of all agents in the group during training
and execution, the Group Centralized Training and Central-
ized Execution (GCTCE). Finally, we introduce the VDN
algorithm for value decomposition operation to solve the
agent reputation assignment problem. The main contributions
are as follows:

e To divide the group based on the information rela-
tionship between the agents rather than the position
relationship. We use all agents’ observations in the
upper algorithm of the two-layer reinforcement learning
to learn the agents’ confidential information and then
group them.

o We propose HGCN. It adopts centralized training and
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execution in the group, so its communication difficulty
is significantly reduced, effectively alleviating algorithm
scalability caused by the increase in the number of
agents.

« Finally, we verified the effectiveness of the algorithm
in simulation and real-world scenarios.

II. RELATED WORK

The team rewards are assigned to different agent rewards
according to the degree of contribution of each agent to
the team, and then the objective function of each agent is
optimized, that is, the credit assignment problem. Based
on this motivation, Value-Decomposition Networks (VDN)
[16] simply decomposes the team value function into the
sum of the value functions of N agents and uses it as the
evaluation standard of each action function to optimize the
action function. The QMIX [17] algorithm is the follow-
up work of the VDN algorithm. Its starting point is that
the VDN only performs simple summation when doing joint
Q-value decomposition. This approach will let the learned
local Q function expression ability be limited, and there is no
way to capture more complex relationships between agents.
Therefore, QMIX generalizes the summation constraint to a
larger family of monotonic functions. The above constraints
are necessary and insufficient conditions for this family of
monotonic functions.

Other scholars believe that the way to promote agent
cooperation is to strengthen the communication between
agents. Attentional Communication (ATOC) [18] has the
option to communicate with other agents, which solves the
communication problem of agents with collaborative value.
ATOC proposes to use the attention mechanism to select
agent communication, which alleviates the long delay and
high computational complexity caused by a large amount of
bandwidth required to receive a large amount of information.
This is the first time that attention communication has
been successfully applied to MARL. The difference between
Multi-Actor-Attention-Critic (MAAC) [19] and ATOC is that
it selectively accepts other processed information directly
in the evaluation network, which is an end-to-end commu-
nication bandwidth reduction solution. Unlike MADDPG,
MAAC'’s action is sampled from the current strategy func-
tion, not from the replay buffer, because sampling from
the replay buffer will lead to overgeneralization, making
it impossible for agents to coordinate the current strategy
effectively.

Multi-Agent Proximal Policy Optimization (MAPPO) [20]
uses a central value function method to consider global
information, and complete communication between agents
is a method within the scope of the Centralized Training
and Decentralized Execution (CTDE) framework. A global
value function is used to make each individual Proximal
Policy Optimization (PPO) [21] agent cooperate with each
other. It has a predecessor Independent Proximal Policy
Optimization (IPPO) [22], which is an entirely decentralized
PPO algorithm, similar to the Independent Q-learning (IQL)
[23] algorithm.

III. METHODS

This work’s starting point, in large-scale multi-agent sys-
tems, is challenging to give each agent a separate reward
function. Generally, all agents share a joint reward func-
tion, which also brings about the agent’s credit distribution
problem- the lazy and hardworking agent’s rewards are the
same. Peter Sunehag proposed the VDN algorithm, which
can only be used in a small number of agents in a cooperative
and discrete environment. On this basis, we propose a novel
algorithm: HGCN, and its structure is shown in Figure 2.

A. Hierarchical group collaboration network

Suppose we have N agents, which can be divided into
K groups. As shown in Figure 2, the high-level grouping
algorithm divides groups based on all agents’ observations.
As the lower layer group collaboration algorithm’s strategy
is constantly changing, the grouping algorithm adopts the
actor-critic [24]. Set the actor and critic network (u4, Q)
parameters in the grouping algorithm as ¢ and 9%, the

target network (7i,,(Q,) parameters are 5‘; and éQq. The

g
training tuple is (O, A, R,0"). Where O = (01, ,0,)
o0 = (o/17 e ,o;L), they respectively represent the joint state
of all agents at the current and next moments. The action A
dimension is consistent with the number of agents. At this
time, each agent has a score, which is sorted and grouped
by score. The reward function R—the global reward—is
the same as the underlying group collaboration algorithm.

Updating the state-action value function @, as:

L(0F) =E0.ar0 [(Qq(0,4) —y)?],

P (1
y = ’I“—|—’)/Qg(0 7A )|A,:ﬁg(0/)7§§

The group policy gradient can be written as:

V%J (95) =E©0,4) [Veg‘lig (A]10)VaQy |A:ug(o)} .
(2

Because it takes some time for agent cooperation to show
effect, the grouping network’s updated range cannot be too
extensive. In this way, in a relatively short period, each
group’s members change very little. We add a penalty item
to the grouping algorithm’s policy update, which is the
KL divergence between the current and the previous policy
distribution.

VouJ (0y) =Eo,4) {Wgug (A]0)VaQ, |A:ug(0)}
— aDics [mgn, () | 7oz, (1 9)]
3)

where « is the penalty coefficient.

Use VDN for value decomposition. The DDPG algorithm
is used for training.

The training state-action value function is:

L=FE (Og,Ag,R,O;)V‘]R [(Q tot (Otota Atot) - y) 2} )

_ , , €]
Y =17+ 7Qot(O4or, Ator )
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Fig. 2: Hierarchical group collaboration network framework diagram. HGCN can be divided into two networks according
to the upper and lower structure (GroNet and GCoNet), GroNet represents the grouping network whose input is the state of
all agents, and GCoNet represents the group cooperation network.

Algorithm 1 HGCN+KL

Randomly initialize separately GroNet and GCoNet’s ac-
tor and critic network 14 (O]6%), Q4 (O, A| 9;2) and
ug? (Og] 61), Qc (Og, Ag| 65) with weights g4, OgQ and §~,
07
Initialize separately GroNet and GCoNet’s target actor and
critic network 7z,, Q, and 7i,., Q.. with weights ?’; — GH,
5? 09 and 0, « o7, 77« 69.
Initialize replay buffer R.
for episode=1, M do
Initialize a random process N for action exploration.
Receive initial Observation state O.
for t=1, T do
Select action ay = pg (O| 95), Sort grouping and
get (OF,...,0%); Select action Ay = p1c (Og| 6%) + N;.
Execute action A; and observe reward r; and
observe new state O.
Store transition (O, Ag, ¢, Oy)
Update critic networks by formula (1) and (4).
Update actor networks by formula (3) and (6).
Update the target networks:

Oy 10+ (14 17)8,
0.+ 10+ (1+7)0,

end for
end for

Quot(Ortots Aror) = Qe(Og, Ag) + -+ + QE(O}, AY),

— ’ ’ —1 ’ ’ —k ’ ’
Qtot(0t0t7 Atot) = Qc(0917 Agl) +oeeet Qc (ngv Agk)a
&)

The network gradient is:

Voud (0) =Eo,,a,) [Vorte (Ac | Oc) Va.Qc la,=p.00)] -

(6)
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Fig. 3: Illustration of multi-agents learning to cooperate in
three scenarios.

Soft update: § = 76 + (1 — 7)6.
IV. EXPERIMENT

Lowe et al. proposed an open source multi-agent
environment-Multi-Agent Particle Environment [25]. We use
three standard tasks [26] [27] to evaluate HGCN. These tasks
are shown in Figure 3. The baseline algorithm for comparison
uses the well-known MADDPG and DDPG. All agents share
the same reward function.

A. Experimental results and analysis

As shown in Figure 3, due to the time continuity of the
cooperation between agents, we added the penalty of KL
divergence to the loss function of GroNet’s action network
update so that the grouping algorithm is limited to update,
which we use HGCN+KL to express. Pure HGCN is an
ablation experiment. In order to test the effect of general
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Fig. 4: Nlustration of multi-agents learning to cooperate in three scenarios.

TABLE I: Experiment site and trolley parameter table.

Field length ~ Maximum linear speed Maximum acceleration Maximum angular acceleration ~ Wheelbase
4m 0.6m/s 0.5m/s2 0.5rad/s? 0.145m

Field width Minimum line speed Minimum turning radius Car length Car width
2.3m —0.2m/s 0.375m 0.22m 0.185m

algorithm grouping according to agents’ location, we use
the K-means algorithm to group agents and combine it with
GCoNet to verify the necessity of our proposed GroNet.

Spread Control: In this task, the agents choose their re-
spective landmarks as their destinations after communicating
with each other to avoid conflicts. Since agents collide with
each other, they will lose points, so try to avoid collisions
during the movement. Figure 4(a) shows the average score
of the agent under each algorithm. HGCN+KL achieved
the best score and performed better than HGCN, which
indicates that it takes a certain amount of time for the results
of cooperation between agents to appear. The continuous
grouping of agents is not conducive to their cooperation.
kmeans+GCoNet is lower than HGCN and even lower than
MADDPG, which shows that grouping based on agents’
relative position is not conducive to cooperation between
them. The worst effect of DDPG shows that in a multi-agent
system with a strong coupling and dynamic environment, the
agent does not consider other agents but only relies on its
state to make decisions, and it is not easy to form practical
cooperation with other agents.

Formation Control: As shown in Figure 4(b), since
we canceled the measure of losing points due to collision
between agents, the rate of increase in the reward curve
for each round changes little. Moreover, the location of the
landmarks in this task is more regular than the first task, and
the algorithm fluctuations are negligible.

Line Control: As shown in Figure 5, although the overall
score trend remains unchanged, the kmeans+GCoNet algo-
rithm score in this task is higher than that of MADDPG.
Compared with the other two tasks, since the agent needs
to line up in a straight line and the space between the two
points is limited, the agent is prone to the collision at the
beginning, but once the agent learns to avoid collisions, the
rate of increase of the reward curve in Figure 4(c) will be
extremely fast, even if the task is not completed.

Fig. 5: Hardware experiment diagram, Lower left corner: the
real car position; others: the radar positioning position of the
agent in rviz.

B. Hardware experiment

We conducted experiments on the hardware platform. The
experimental car is shown in Figure 1. The parameters of
the trolley are shown in Table 1. The experimental process is
shown in Figure 7. Due to the limitation of the experimental
site, we chose three cars to conduct the formation experi-
ment. This experimental result proves the transferability of
our method from simulation to experiment.

V. CONCLUSIONS

In order to solve the problem that the reinforcement learn-
ing algorithm of global centralized training is challenging
to extend to large-scale multi-agent systems and the decen-
tralized execution is not conducive to cooperation between
agents, this article proposes a method of group centralized
training and centralized execution: HGCN. To group more
effectively, rather than according to the relative position of
the agent, we propose the grouping network GroNet, which
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forms hierarchical reinforcement learning with GCoNet. Fi-
nally, we conducted experiments on three standard multi-
agent robot tasks and achieved excellent performance.
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