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ABSTRACT With sufficient practice, humans can grab objects they have never seen before through
brain decision-making. However, the manipulators, which has a wide range of applications in industrial
production, can still only grab specific objects. Because most of the grasp algorithms rely on prior
knowledge such as hand-eye calibration results, object model features, and can only target specific types of
objects. When the task scenario and the operation target change, it cannot perform effective redeployment.
In order to solve the above problems, academia often uses reinforcement learning to train grasping
algorithms. However, the method of reinforcement learning in the field of manipulators grasping mainly
encounters these main problems: insufficient sample utilization, poor algorithm stability, and limited
exploration. This article uses LfD, BC, and DDPG to improve sample utilization. Use multiple critics
to integrate and evaluate input actions to solve the problem of algorithm instability. Finally, inspired
by Thompson’s sampling idea, the input action is evaluated from different angles, which increases the
algorithm’s exploration of the environment and reduces the number of interactions with the environment.
EDDPG and EBDDPG algorithm is designed in the article. In order to further improve the generalization
ability of the algorithm, this article does not use extra information that is difficult to obtain directly on
the physical platform, such as the real coordinates of the target object and the continuous motion space
at the end of the manipulator in the Cartesian coordinate system is used as the output of the decision.
The simulation results show that, under the same number of interactions, the manipulators’ success rate
in grabbing 1000 random objects has increased more than double and reached state-of-the-art(SOTA)
performance.

INDEX TERMS Robotic grasping, reinforcement learning, ensemble learning, Thompson sampling

I. INTRODUCTION

RObotic grasping is one of the most basic robot op-
eration tasks. Many robot interaction problems begin

with the need for robots to be able to grab objects. In the
current work related to robotic arm grasping, because the
data-driven [1] reinforcement learning (RL) method does
not require prior knowledge of the grasping object and
environment, it can quickly grasp different objects, which
meets the needs of the robot to grasp the diversity of objects.
Therefore, it has received more and more attention from
academia.

However, the neural network needs to fit complex con-
trollers that are difficult to manually design, and the inherent
reward sparseness in the field of robotic arm grasping makes

the RL algorithm extremely difficult to converge. Therefore,
the traditional algorithms require a lot of data for learning
algorithm requires a lot of data for learning, but the time
for data collection is unbearable. For example, Google [2]
used 8 robot arms in parallel and spent 2 months collecting
800k grasping attempts. Lerrel Pinto [3] used a robot for 700
hours of grasping data and collected 50k sets of data to train
a convolutional neural network to predict the grabbing pose.
Therefore, in order to improve the utilization of sample data
and reduce the number of interactions with the environment,
it is an important difficulty to promote the development of
RL in the field of robot.

This article starts from the contradiction between explo-
ration and exploitation of RL algorithms. In a typical robotic
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FIGURE 1: Robotic grasping simulation platform [4] and
image observation. One object is generated each time in the
basket, the success rate of grasping is calculated by one
grasping opportunity.

grabbing environment (reward is sparse and requires a lot
of interaction data), when the number of interactions with
the environment is greatly reduced, each time an object
is selected from 1,000 random objects of different shapes
and placed in the basket, and the success rate of the robot
grabbing this object from the basket exceeds 80%. The main
contributions are as follows:

1. The algorithm takes RGB image of only one object
instead of multiple objects compared with previous methods
each time as an input. Under the same number of interac-
tions with the environment, by grabbing one thousand dif-
ferent random objects, achieving outstanding generalization
ability.

2. A multi-evaluation network integration algorithm, En-
semble Deep Deterministic Policy Gradient (EDDPG), is
proposed. By using multiple critic network’s heads, the Q
value of the action is comprehensively evaluated, which
suppresses the overestimation of the Q value caused by the
Deep Deterministic Policy Gradient(DDPG) algorithm and
reduces the fluctuation of the action Q value and improves
the stability of the algorithm.

3. Based on the Thompson sampling idea [5] [6], multiple
heads are designed for the critic network to output multiple
Q-value functions so that the same action can be evaluated
from different angles. When the variance of the Q value
is large, the action needs to be resampled. Otherwise, the
evaluation network is deemed to have evaluated the action
correctly, and no further exploration is necessary, thereby
improving the sample utilization, reducing the number of
interactions with the environment. Therefore, in conjunction
with EDDPG, the article proposes Ensemble Bootstrapped
Deep Deterministic Policy Gradient (EBDDPG).

II. RELATED WORK
The latest developments in DRL have performed very well
in many fields, such as Atari games [7] and Go games
[8]. DRL has also had many success stories in manipulator
operation control, both model-based [9] and model-free
[10].

However, in many manipulators’ training environments,

parameters are used as input to speed up the training. For
example, [11] [12] completes the tasks of stacking blocks
and grabbing blocks in a simulation environment. The input
parameters are the specific coordinates of each building
block and the coordinates of the target point. Mahmood
et al. [13] completed the task of moving the end of the
manipulator to the target point on the physical platform
of the UR5 robot arm. Its input parameters were also the
specific coordinates of the target point. However, parameter
input is limited to the simulation environment and the
simple physical environment. In the more complex physical
grasping environment, accurate information of the object
cannot be obtained, so simple image input is a more general
reinforcement learning solution. For example, [14] [15] [16]
adopts the image observation in simulation or physical envi-
ronment as the network input. After reinforcement learning
and training, the motion of the end of the robot arm can
be decided as the output to complete the task. However, the
reinforcement learning algorithm for image input requires
a lot of data training. Kalashnikov1 [17] also uses the
improved version of the Double DQN network. After the
training is completed, it can achieve a grasping success rate
of more than 70% in the initial task of emptying the objects
in the box. It is still the most cutting-edge achievement
in the field. However, its experimental results depend on
the massive data sets collected, with a total of about 58w
grasping tracks, which occupy 4T hard disks, which shows
that there are still deficiencies in the balance of exploration
and exploitation in the learning process.

In this paper, in order to improve the exploitation of
samples, learning from Demonstration(LfD) and Behavior
Cloning(BC) and DDPG algorithm is used. Futhermore, for
improving the algorithm’s ability to explore the environ-
ment, based on Thompson’s sampling idea, several heads are
designed for the critic network to output multiple Q-value,
so that the same action can be evaluated from different
angles. That is: the distribution of the Q value corresponding
to each action in a state is more certain, which means that
the action in this state (and its subsequent effects) is certain
that no further exploration is necessary. If the distribution
of action value changes significantly, it means that the
sampling of this action may not be sufficient, and further
sampling is required, that is, deep exploration. In addition,
in order to reduce the overestimation of the action’s Q value
in the RL algorithm of AC architecture, and to reduce the
fluctuation of the Q value of the estimated action of multiple
Q functions, the average Q value estimation method is also
used.

III. BACKGROUND
In general, research on reinforcement learning problems is
based on Markov decision processes(MDP) [18]. Under the
condition of satisfying Markov property, Markov decision
process can be described by tuple M = (S, A, P, R), where:
S represents the set of all possible states in the environment;
A represents the set of all possible actions that the agent can
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perform; P represents the state transition probability, a more
general expression is S × A → S; R represents the reward
or punishment information obtained from the environment
after performing an action in state s and reaching state s′.
It is more commonly expressed as: S × A × S → R.

The dynamic MDP is as follows: the initial state of the
agent is s0 ∈ S, the selection action a0 ∈ A is executed,
and the environment enters the next state s1 according to the
state transfer function P, and at the same time, the reward r0
is fed back to the agent, and the agent enters next process of
decision. We can use τ to describe a state action interaction
trajectory:

τ = (s0, a0, s1, a1, ...) (1)

The need to introduce a discount factor of γ (Discount
Factor), its role is to assess the future cumulative return
expectations:

R(τ) =

T∑
t=0

γtrt, γ ∈ (0, 1) (2)

Given a Markov decision process M, the task of rein-
forcement learning is to find a control policy π: S → A to
maximize the expected return.

A. DEEP Q-LEARNING ALGORITHM FOR CONTINUOUS
SPACE
Deep Q-Learning(DQN) is a classic reinforcement learning
algorithm. Its deep network can fit the Q function in a high-
dimensional state very well. It has achieved outstanding re-
sults in many discrete action space environments. However,
the algorithm needs to process max

a
Q (s, a) when calcu-

lating TD-Target, as shown in Equation yi = r (si, ai) +

γmax
a
′
i

Qθ

(
s
′

i, a
′

i

)
, which makes DQN cannot be directly

used in the environment of continuous action space.
Combining the Cross-Entropy Method (CEM) [19] in the

evolutionary strategy optimization algorithm with DQN to
solve the max operation and realize the DQN algorithm’s
deployment on the robotic arm grasping platform.

The following two improvements are made: The optimal
motion calculation TD-Target is selected in continuous
space in combination with the CEM optimization algorithm.
The introduction of a guiding strategy to increase the
proportion of non-zero reward samples in the experience
pool under the premise of ensuring exploratory to solve the
problem of low exploration value and slow convergence in
the initial stage of the algorithm.

B. DEEP DETERMINISTIC POLICY GRADIENT
Deep Deterministic Policy Gradient is an off-policy AC
algorithm. The output of the policy network µ (s |θµ ) is a
deterministic action. The output of the evaluation network
is an optimal state value function. The update process and
Q-learning are the same, and the policy network is updated
as follows:

5θµ J ≈ 5st∈ρβ
[
5θµQ

(
s, a|θQ

)
|s=st,a=µ(st|θµ)

]
= 5st∈ρβ

[
5aQ

(
s, a|θQ

)
s=st,a=µ(st|θµ)

5θµ µ (s|θµ) |s=st
]

(3)

DDPG refers to the practice of Deep Q-Learning(DQN)
and uses experience pool playback for offline training. The
data samples {s, a, r, s′} generated during the interaction
between the agent and the environment are put into the
experience pool, and each time Randomly select a batch
update value network and policy network from the expe-
rience pool. Like DQN, DDPG also uses a separate target
value network and target policy network to calculate TD-
error(Time Difference).

C. LEARNING FROM DEMONSTRATION AND BEHAVIOR
CLONING
Due to the sparseness of the reward function, the agent
cannot obtain positive feedback for a long time during the
initial interaction. It can only conduct very low-efficiency
exploration and rely on the positive feedback that occa-
sionally occurs to guide the agent to optimize towards the
goal slowly. In order to improve exploration efficiency,
this article introduces imitation learning, also known as
learning from teaching [20] [21], which is a very effec-
tive supervised learning method that can improve sample
utilization efficiency. It has two main advantages: one is to
improve the training efficiency by imitating expert samples;
the other is to avoid artificially designing complex reward
functions. In the imitation learning phase, the strategy can be
efficiently trained to a reasonable level without considering
the problem of the sparse reward function. At the same time,
we also insert expert samples into the experience pool as a
permanent experience. It, which is called DDPGfD, will not
ablate like the Behavior Cloning(BC) algorithm.

The expert sample pool is denoted as De =
{τ1, τ2, ..., τi, ...}, where τi is an expert teaching trajectory,
which can be decomposed into τi = {si, ai, ri, si+1}.
Because the expert sample’s data size is minimal, the
strategy of directly supervising learning and training is easy
to overfit, and its test results are not good. Therefore, it can
be performed on the data augmentation operation. Among
them, De ⊆ Daug . For any {si, ai, ri, si+1} ∈ De, in
addition to adding itself to the augmented data set, it is
necessary to randomly add noise to its actions, as follows:

aaug = a+N
(
0, σ2

)
(4)

And add {s, aaug, r, s′} into the data set Daug , where
σ is the standard deviation of the noise. For each sample
data, formula (4) is processed about ten times, which can
increase the original data set ten times, effectively enrich
the diversity of the data set, and improve the robustness of
the strategic after supervised learning.

In the BC-DDPG phase, the evaluation network is opti-
mized based on TD-error as a loss function. The training of
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the strategy network is divided into behavioral clone training
and DDPG algorithm joint training. The behavior cloning
part supervises and trains the action network in the DDPG
network. The network takes states as input and action as
output, and L2 loss function is used, which is formulated as
follows:

LBC =
1

N

ND
Σ
i=1
||π (si) , ai||2 (5)

Among them, π(si) is the output of the policy network,
<si, ai> is a set of samples in the augmented data set, and
ND is the size of a batch in the behavior cloning process.
After combining the two, the gradient of the policy network
is:

5θL = −λ1 5θπ J (θ) + λ2 5θπ LBC
+ λ3 5θπ Lreg (θπ)

(6)

In the above formula, the first term is the gradient of the
DDPG algorithm policy network. The second term is the
gradient of the behavior cloning loss function. The third part
is the L2 regularization term gradient of the policy network
parameter. Its primary purpose is to prevent some policy
network parameters from too large causes the network to
overfit. λ1, λ2, λ3 are the weight coefficients of the three
gradients. In order to better balance the role of the DDPG
algorithm and the behavioral cloning algorithm in different
stages of training, λ1, λ2 in this section satisfy the following
relationship:

λ1 = 1− λ2, λ2 = η0η
t
T
1 (7)

λ2 means exponential decay, η0 is its initial value, η1
is the attenuation factor, t is the number of training steps,
and T is a constant factor. In this form, behavioral cloning
plays an absolute guiding role in the early stage, helping
the network to converge and improve performance quickly.
Gradually, it decays to 0 in the later stages to maximize the
performance of the DDPG algorithm.

IV. ENSEMBLE DETERMINISTIC POLICY ALGORITHM
BASED ON IMITATION LEARNING
The BC-DDPGfD(Replace with BC-DDPG below) algo-
rithm proposed in the previous section effectively improves
the sample utilization efficiency. Due to the introduction of
behavioral cloning algorithms, the algorithm’s performance
can be quickly improved in the early stage, which signif-
icantly improves efficiency. However, there are still two
shortcomings:

1. The first issue is stability. The DDPG algorithm is
made up of two networks, the strategy network, and the
evaluation network. The training of the strategy network
depends heavily on the evaluation network’s training results,
which is very unstable during the training process. The
network’s variance during training is considerable, which
directly affects the final performance of the policy network.

2. The second is exploratory issues. Expert samples are
collected according to a specific rule strategy, and the rules
can only cover partially successful scenes. Constrained by
expert sample imitation learning, the agent’s exploratory

nature is affected to some extent, which will affect the
training efficiency of the algorithm in the middle and late
stages. Therefore, it is difficult for the algorithm to fully
explore the environment to converge to the optimal solution.

A. ENSEMBLE DEEP DETERMINISTIC POLICY
GRADIENT
To overcome the first disadvantage, this section first inte-
grates the evaluation network and designs a single actor
multi-critics network structure (Single Actor Multi Critics,
SAMC) to improve the stability of network training; Single
Actor Multi Critics Network Integration Algorithm Based on
behavioral cloning (BC-DDPG: SAMC): The starting point
of designing evaluation network integration is to perform
gradient calculation on the evaluation network after the
policy network integration, which can improve the stability
of the algorithm. Assuming that the number of evaluation
networks used is K, the K evaluation networks’ average
value can be used to estimate the state value function.
Similarly, the average value of the K target evaluation
networks corresponding to the K evaluation networks can
be used to calculate TD-error, as follows:

Qavg (s, a|θ) =
1

K

K

Σ
i=1
Qi (s, a|θi)

Qtaravg
(
s, a|θ−

)
=

1

K

K

Σ
i=1
Qtari

(
s, a|θ−i

) (8)

Among them, Qi (s, a|θi), Qtari
(
s, a|θ−i

)
are the output

values of the ith critical networks and the target critical
networks, and θ, θ− are all the critical networks and the
target critical networks parameters, respectively. The param-
eter set of the networks, θi, θ−i are the parameters of the
ith evaluation network and the target evaluation network,
respectively, θi ∈ θ, θ−i ∈ θ− ,Then their average TD
deviation and cost function are:

δ = r (s, a) + γQtaravg
(
s, a|θ−

)
−Qavg (s, a|θ) ,

Lavg (θ) =
(
r (s, a) + γQtaravg

(
s′, a′|θ−

)
−Qavg (s, a|θ)

)2
.

(9)

For K evaluation networks, when updating their respective
parameters, the cost function can be obtained by weighing
the average TD deviation of all the evaluation networks
and their respective TD deviations. This fully considers the
network’s average performance to reduce network training
time fluctuations while taking into account the differences
between the evaluation networks. Also, it is necessary to
consider that when the differences between the networks are
too significant, additional unstable factors will be brought
to the training of the strategic network and other evaluation
networks. Therefore, an additional penalty term needs to be
added to the cost function. The value is the mean square
error between each evaluation network’s output value and
the average output value of all evaluation networks to ensure
that the networks have relatively similar output results. In
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FIGURE 2: EBDDPG overall network structure diagram

summary, the cost function of the i-th evaluation network is
as follows:

L (θi) = αLavg (θ) + βLtdi (θi)

+ ω (Qi (s, a|θi)−Qavg (s, a|θ))2
(10)

where α, β are weight coefficients, and their size is
constrained to α + β = 1. ω is the penalty factor of the
penalty term, which can be set to a smaller value than α, β.
Ltdi is the cost function formed by the TD error of the
i-th critical network. The gradient calculation formula of
the policy network is still shown in Equation 6, but the
Q (s, a, θ) in the first part ∇θπJ (θ) needs to be replaced
by Qavg (s, a, θ), which can be changed to the following
form:

∇θπJ (θ) =Est∈ρβ [∇αQavg
(
s, a|θQ

)
|s=st,a=µ(st|θµ),

∇θµµ (s|θµ) |s=st ]. (11)

B. ENSEMBLE BOOTSTRAPPED DEEP DETERMINISTIC
POLICY GRADIENT
The ensemble critics’ network proposed in the previous
chapter improves the stability of the algorithm. However, in
the environment of extremely sparse reward, the exploratory
nature of the RL algorithm is more important. Without
changing the stability of the algorithm (still integrating
the multi-critics network structure), in order to improve
the explorability of the algorithm, similar to [5], based
on Thompson sampling, an Ensemble Bootstrapped Deep
Deterministic Policy Gradient algorithm was proposed.

According to the Bootstrapped DQN idea, an approximate
prior distribution over Q-values function in DDPG. At the
beginning of training, the algorithm will samples several
critical networks from its approximate posterior as the best
network to evaluate the action given by the actor-network,
that is, the Q value. This is the Thompson Sampling heuris-
tic’s natural adaptation to the RL, allowing for extended

FIGURE 3: Examples of training objects (30/900) and
testing objects (30/100)

(or deep) exploration. In this regard, we have established
multiple critical networks to evaluate the same action from
different angles. As shown in Figure 2, it is essential that
each critical network is independent of each other and has
its own parameters to train. This means that every critical
network in the algorithm provides a temporally extended
(and consistent) estimate of the value uncertainty via TD
estimates.

Unlike Bootstrapped DQN, all our neural networks use
the same dataset. However, several theories can explain that
even without data bootstrapping, the multi-critic network
still maintains significant diversity and can still help the
algorithm to deep exploration. First, each critical network
is independent, and its initialization parameters are random.
Even with the same data set, it can still maintain enough
diversity for deep exploration because the target network for
each critic network is not the same, together with stochastic
minibatch and flexible nonlinear representations, this means
that even small initial differences become large due to
different TD errors. As DDPG takes many frames to update
its policy, many of its data points are stored in the same
memory pool, so they have a lot of the same data. Even if
the same memory pool is used, the algorithm’s performance
will not be significantly affected.

V. EXPERIMENTS
The simulation grabbing system is built based on PyBullet’s
existing Kuka 7DOF robotic arm. Control the attitude of the
end of the robot arm relative to the base in Euclidean Space,
which can be converted to the joint space displacement
using its inverse kinematics solution function. The end of
the robot arm uses two-finger parallel grippers, which can be
closed by controlling the grippers’ angle. The algorithm uses
the standardized interface of OpenAI Gym [22] to obtain
environmental observation values, reward values, output
actions, etc. The reward is sparse, in each episode, if the
robot grabs an object, it will get a reward of 1, otherwise it
will be 0. Otherwise, it is zero. The Pybullet [23] physics
engine generates an RGB image of all visible objects in the
range by calculation. The image size set in this article is 64
* 64. In order to realize the grasping of general objects by
the robotic arm, this article takes 1,000 kinds of objects in
the Pybullet environment as the target grasping objects, of
which 900 are used as objects in the training process, and
the remaining 100 are used as objects that appear during the
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Algorithm 1 BC-EBDDPG

1: Input: Expert teaching data experience pool RD, evaluation network number K
2: Randomly initialize actor and critic network µ (st|θµ), Q

(
s, a|θQ

)
with weights θµ, θQ, and Q

(
s, a|θQ

)
has N heads

{Qn}Nn=1. Masking distribution M
3: Initialize target network µ−, Q− with weigths θµ

− ← θµ, θQ
− ← θQ

4: Initialize replay buffer R, batch size N , ND, weight parameters
5: for episode=1, E do
6: Initialize environment and initial state s0, initialize noise function N
7: Pick K value function to act using K ∼ Uniform{1, . . . , N}
8: for steps t=1, T do
9: Output action at = µ (st|θµ) +Nt according to the current policy and exploration noise

10: Execute the action at, interact with the environment to get the next observation st+1 and reward rt
11: Sample bootstrap mask mt ∼M
12: Interactive samples <st, at, rt, st+1,mt> are stored in the experience pool R
13: end for
14: for steps t=1, train-steps do
15: Collect N samples from the experience pool R, and ND samples from the teaching experience pool RD
16: Calculate the ensemble evaluation network according to (9), and update K critic head according to (10)
17: Calculate the gradient of the policy network according to (6) and (11), and update its parameters
18: Update target policy network parameters and K target evaluation network parameters
19: end for
20: end for

test. Some training and testing objects are shown in Figure
3.

The training and testing of the algorithm are performed
simultaneously. The evaluation criterion of the grabbing per-
formance is the success rate of grabbing random objects in
the test set (such as N

M , M grabs, and N successes). Because
the interaction between the robot arm and the environment is
time-consuming each episode in the simulation environment,
it is not realistic to perform a success rate test at each step
in the training process. In the actual test, select the grab
success rate test every 5k steps, take M = 50 in each test
and use the success rate of 50 grabs to approximately replace
the current policy’s grab success rate. Randomly select 100
objects from the test set, and the initial pose of the objects
is also randomly generated.

A. COMPARISON OF DQN AND DDPG ALGORITHM
PERFORMANCE UNDER DIFFERENT INITIAL DATA SETS
The purpose of the experiments in this section are as
follows:

1. Test the impact of the number of initial empirical
samples of different sizes on the training efficiency and final
training results of the DQN algorithm;

2. Test DDPG and modified DQN algorithm performance.
Figure 4 shows that in the DQN algorithm with the

increase of the data volume of the initial data set, the
success rate of the robot arm capture increased. However,
the increase is not significant, the data set from 10K to
100K, and the average grasp success rate only increased
from 28% to 40%. Compared with the DDPG algorithm,
in the case of 10K initial data set, the DDPG algorithm’s
performance is better than DQN algorithm under the 100K
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FIGURE 4: Improved DQN algorithm capture success rate
under different initial data sets, and comparison with the
DDPG algorithm. random nK means that the amount of data
randomly obtained in the initial experience database is n ∗
1000 interaction data with the environment.

data set. Although the DQN algorithm has been modified
so that it can be applied to continuous actions, the modified
DQN algorithm only selects the action with the highest Q
value among 10 actions at a time, which is the continuous
actions are discretized. Not all continuous actions can be
evaluated, which leads to the algorithm easily falling into
a local optimum. However, the initial success rate of the
DDPG algorithm is low, and it takes a long time to interact
with the environment and collect data to improve the success
rate of grasping.
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FIGURE 5: Impact of BC and different initial experience
pools on the DDPG algorithm. mixed 10K means 2K expert
samples and 8K random samples in the data set.

B. PERFORMANCE COMPARISON BETWEEN BC-DDPG
AND DDPG ALGORITHMS WITH DIFFERENT INITIAL
EXPERIENCE POOLS
The purpose of the experiments in this section is to test
performance between BC-DDPG and DDPG algorithms
with different initial experience pools. The DDPG algorithm
and DQN algorithm experience pool samples are stored
in the form {si, ai, ri, si+1}, so 100w interactive samples
collected using the strategy πE are directly reused, and from
which 1K, 5K, 10K, 50K, 100K interaction trajectories are
selected as the initialized experience samples. The average
return during the training process is shown in Figure 5.

As can be seen from Figure 5, first, similar to the training
of the DQN algorithm, the final performance of the model
is positively related to the size of the initial sample in
the experience pool. With the increase of the amount of
data in the initial experience pool, from 1K to 10K, the
success rate of the algorithm has increased from 25% to
40%. However, the amount of data in the initial experience
pool has subsequently increased (such as 50K and 100K
data) ), which has little effect on the effectiveness of the
algorithm; Secondly, although a large amount of data in the
initial experience pool is reduced to 10K. Since it contains
2K expert data, the BC-DDPG algorithm can still enhance
the validity of the data and improve the final effect of the
DDPG algorithm with a faster speed. Note that using mixed
data here is that purely using expert data is very easy to
cause the algorithm to overfit. The initial data sets of all
algorithms below are the same mixed data sets as here.

C. THE INFLUENCE OF THE NUMBER OF ENSEMBLE
CRITICS ON THE EDDPG ALGORITHM
The purpose of the experiments in this section is:

1. Verify whether the integration of the evaluation net-
work can improve network training stability under a single
strategy?

2. How does the number of different evaluation networks
affect the training speed and final performance of the
network?
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FIGURE 6: The impact of integrating different critics on the
algorithm, SAMC7 represents an algorithm ensemble by a
single actor and 7 critics, other representations are similar.

During the experiment, the evaluation network quantity K
was set to 1, 2, 7 for testing. When the quantity is 1, BC-
DDPG: SAMC degenerates into the BC-DDPG algorithm.
During the training process, the same initialization parame-
ters are selected between different evaluation networks, and
only the number of networks of the critic is changed. The
success rate curve of the algorithm is shown in Figure 6.

As can be seen from Figure 6, the BC-DDPG algorithm’s
performance has been further improved by the integration of
multiple evaluation networks. It maintains the advantage of
behavior cloning training at the beginning of training, and its
training efficiency is very high. In the middle and late stages
of training, the integration of the multi-evaluation network
makes the update of the policy network more stable. Fewer
or more network integrations will reduce the effectiveness
of the algorithm. The reason is that when the number of
evaluation heads in the integrated network is small, the
performance of a single network will directly affect the
overall performance when it is weak. when the number
of evaluation heads is large, what it learns is the average
performance of each evaluation network, which may fall
into a local optimum.

D. EBDDPG ALGORITHM PERFORMANCE
Although the EDDPG algorithm proposed in the previous
section has enhanced the stability of the algorithm, the
search performance of the algorithm has not improved.
In order to improve this situation, this paper designs the
EBDDPG algorithm.

1. Does EBDDPG improve the explorability of the algo-
rithm without changing the algorithm’s stability and improve
the success rate of grasping?

2. Is the more choice possible, the better the exploration
performance of the algorithm?

3. Is there a relationship between the number of criticals
and the number of criticals chosen to evaluate the actor?

From Figure 7, it can be seen that, firstly, the algo-
rithms SAMC7-C1 are more exploratory than the algorithms
SAMC7-C7. However the former has only one critical actu-
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FIGURE 7: Impact of the change in the number of selected
critics on the performance of the algorithm with the same
number of designed critics, SAMC7-C5 represents an algo-
rithm ensemble by a single actor and 7 critics, but only 5 of
them are ensemble to evaluate the action in each iteration,
other representations are similar.

0 50 100 150 200 250 300 350 400
Training step(K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

SAMC10-C4
SAMC8-C4
SAMC5-C4
SAMC7-C4
SAMC20-C4

FIGURE 8: Impact of the change in the number of designed
critics on the performance of the algorithm with the same
number of selected critics

ally to evaluate the Q value of the actor, it is easy to make
the Q value oscillate, and then affect the overall stability of
the algorithm. Secondly, the algorithm SAMC7-C2 is more
exploratory and stable than the algorithm SAMC7-C1, so the
former has a higher success rate than the latter. Although
the algorithm SAMC7-C2 is less stable than SAMC7-
C7, explorability is better than the latter. If the algorithm
only needs to maintain specific stability, improving the
explorability of the algorithm will improve the performance
of the algorithm. Thirdly, although the algorithm SAMC7-
C2 is less exploratory than SAMC7-C4 or the same as
SAMC7-C5, its performance is better than the latter two,
because the more the number of critics selected, the more
it learns for the average performance of each evaluation
network, will fall into local optimal.

From Figure 8, all algorithms only select 4 critics, that is,
when the stability of the algorithm is relatively consistent,
as the number of designed critics increases, the number of
combinations is C4

5 , C4
7 , and C4

8 , the number of choices
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FIGURE 9: Impact of the change in the number of designed
critics on the performance of the algorithm with the same
number of selected critics, AHCH-50 indicates that the actor
and critic network undergo a hard update every 50 steps.
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FIGURE 10: Performance comparison of different algo-
rithms

increases from 5, 35 to 70. At this time, the algorithm’s
exploration performance is continuously increasing, and its
improvement effect is also getting larger; however, after the
number of critics is increased to 10, 20, the algorithm’s
improvement effect is reduced, which is no longer apparent.
It shows that the exploration ability of the algorithm has a
limit.

As can be seen from Figure 9, when the number of critics
designed is sufficient, other variables of the algorithm (such
as updating parameter steps or increasing the number of
critics selected) have little effect on the algorithm, i.e., the
algorithm has better robustness and improves the stability
of the algorithm.

E. COMPARISON OF DIFFERENT ALGORITHMS
The result of Table I is that the algorithm uses different
random seed experiments to obtain the average value after
five experiments. Where Ieds represents the initial empirical
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TABLE 1: Final performance comparison of each algorithm

Algorithm Ieds Ts Srogtrs Srogtes
1W 30W 30.2% 26.2%

DQN 5W 30W 34.3% 31.3%
10W 30W 39.5% 40.5%
1K 30W 26.5% 28.1%
5K 30W 35.5% 30.6%

DDPG 1W 30W 34.2% 35.3%
5W 30W 39% 41%

10W 30W 43.7% 39.4%
BC 1W 30W 40.1% 38%
BC-DDPG 1W 30W 52.2% 50%
EDDPG(SAMC7) 1W 30W 67.8% 62%
IEDDPG(SAMC20-C7) 1W 30W 87.5% 81.1%

data scale, Ts represents the training step, Srogtrs represents
the training set object success rate, and Srogtes represents
the test set object success rate. In general, the SAMC20-C7
algorithm has the best effect. As can be seen from Figure 10
and Table I, compared with the original DDPG algorithm,
under the same number of interactions between the robot
and the environment, the average grasping success rate has
increased from about 35% to 81%, which has more than
doubled. This shows that the EBDDPG algorithm can still
greatly reduce the interactive samples when achieving SOTA
effects.

VI. CONCLUSIONS
In this paper, the end-to-end decision-making process of
universal object grasp is studied using the method of deep
reinforcement learning. Under the above constraints, the
method of intensive learning will mainly encounter four
problems: insufficient sample utilization, significant fluctu-
ation of grasp success rate, and limited exploration. The
research of this paper focuses on these three problems.

For the first problems, this paper designs a pilot strategy
with a success rate of about 20% to replace completely ran-
dom exploration improves sampling efficiency, combine BC
and LfD algorithm, BC-DDPG can achieve about 45% grasp
success rate; Given the last two problems, the BC-DDPG:
SAMC(EDDPG algorithm) network structure is designed,
through the integration of the critics’ network, inhibits the
problem of overestimation of Q value inherent in the AC
architecture algorithm, and thus improves the stability of the
algorithm, and the article design BC-EBDDPG algorithm,
based on Thompson sampling thought, evaluates its Q value
from different angles for the same action, and realizes the
function of exploration.

In this paper, some improvement algorithms are proposed
for the end-to-end decision-making process of universal
object grasping in the basic intensive learning algorithm.
Although the final grasp success rate has been improved,
and the amount of interactive data and interaction time have
been reduced, when the model is tested, the majority of
the grasp process follows the correct grasp trend, because
the monolith camera is missing depth information, it is
difficult to judge the relative attitude relationship between
an unknown size object and the end of the robotic arm from

the image.
In the future, a depth camera can be used to replace a

monocular camera for experiments, or the observation of
a multi-view camera can be used as input. Furthermore,
the texture information of the grabbing object used in the
simulation environment is not rich enough, and it needs
more color and shape information. The data set of the
object can be operated subsequently to enhance its texture
information. In addition, we will set up sim-to-real grasp
interaction platform and do more elaborate real grasping
experiments. Meanwhile, we will refine our method to
reduce the interaction steps while still to keep the best
performance in the simulation scenario when to expand our
method to real scenario.
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