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Abstract

Depth completion aims to recover a dense depth map from
a sparse depth map with the corresponding color image as
input. Recent approaches mainly formulate the depth com-
pletion as a one-stage end-to-end learning task, which out-
puts dense depth maps directly. However, the feature extrac-
tion and supervision in one-stage frameworks are insufficient,
limiting the performance of these approaches. To address this
problem, we propose a novel end-to-end residual learning
framework, which formulates the depth completion as a two-
stage learning task, i.e., a sparse-to-coarse stage and a coarse-
to-fine stage. First, a coarse dense depth map is obtained by a
simple CNN framework. Then, a refined depth map is further
obtained using a residual learning strategy in the coarse-to-
fine stage with coarse depth map and color image as input.
Specially, in the coarse-to-fine stage, a channel shuffle extrac-
tion operation is utilized to extract more representative fea-
tures from color image and coarse depth map, and an energy
based fusion operation is exploited to effectively fuse these
features obtained by channel shuffle operation, thus leading
to more accurate and refined depth maps. We achieve SoTA
performance in RMSE on KITTI benchmark. Extensive ex-
periments on other datasets future demonstrate the superior-
ity of our approach over current state-of-the-art depth com-
pletion approaches.

Introduction

Depth is considered as one of the most fundamental in-
formation in many applications, including robotics (Liao
et al.[2017)(Song et al.[2019), augmented reality (Dey et al.
2012)(Song et al. [2020), virtual reality (Armbriister et al.
2008) and SLAM (Wang et al.|2016). Various depth sen-
sors such as 3D Lidar, depth cameras and stereo cameras
have been developed to obtain depth information. For au-
tonomous driving, 3D Lidar is commonly used because it
can obtain accurate depth information in centimeter-level ac-
curacy. However, due to the inherent characteristics of Lidar
devices, the captured depth information is usually sparsely
distributed, which largely limits the performances of Lidar-
based applications.

In order to obtain a dense and accurate depth map at
a low cost, the task of depth completion draws more and
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Figure 1: Comparison with SoTA approaches. (a) STD (Ma,
Cavalheiro, and Karaman|[2019), (b) DeepLidar (Qiu et al.
2019), (c) CSPN++ (Cheng et al.[2020), (d) Ours.

more attention. Depth completion aims to recover a dense
depth map from a sparse depth map obtained from Li-
dar or other depth sensors. Recently, various of effective
depth completion approaches have been proposed, includ-
ing sparse depth based approaches (Uhrig et al.[2017)(Cho-
dosh, Wang, and Lucey|2018)(Lu et al.|2020)(Eldesokey
et al.|2020) and image-guided based approaches (Ma, Cav-
alheiro, and Karaman|2019)(Qiu et al.[2019)(Yang, Wong,
and Soatto|2019)(Imran et al.[2019)(Qu, Nguyen, and Taylor
2020)(Tang et al.[|2019)(Cheng et al.|[2020)(Li et al.|2020).
However, due to lack of complementary cues of color in-
formation, the resulting depth maps of sparse depth based
approaches are inevitably blurred with unclear boundaries.
More recent image-guided based approaches explore color
images to guide depth completion and various features fu-
sion strategies have been proposed. However, image-guided
based approaches mainly take depth completion as a one-
stage task, and the feature extraction and information super-
vision are insufficient. Thus depth details are failed to be re-
covered. As illustrated in Fig. |I| (a) to (c), the obtained depth
maps either suffer from blurred edges or lose depth details.
To solve these problems, we propose an effective frame-
work, named FCFR-Net, which tackles depth completion as
a two-stage task, i.e., a sparse-to-coarse stage and a coarse-
to-fine stage. The sparse-to-coarse stage first interpolates
the sparse depth maps using simple CNN frameworks, and
coarse dense depth maps can be obtained, which guarantees
that more consecutive information can be provided in the
next stage. Note that all the commonly used sparse-to-dense
frameworks can be utilized in the sparse-to-coarse stage, and



to reduce the complexity, we use the supervised network
of STD (Ma, Cavalheiro, and Karaman|2019) in our paper.
Then the obtained coarse dense depth maps and correspond-
ing color images are fed into the coarse-to-fine stage. To suf-
ficiently fuse features extracted by color and depth informa-
tion, a channel shuffle extraction operation and an energy
based fusion operation are combined into a residual learning
framework. The channel shuffle operation first interleaves
color and depth features at multi-scale feature levels by mix-
ing and disrupting the features of color and depth informa-
tion at the channel level, and the energy based fusion oper-
ation further effectively fuses features obtained by channel
shuffle operation. Hence, more representative features can
be obtained, and more accurate depth completion results can
be expected. The residual learning framework can further
improve the performance of depth completion. As demon-
strated in Fig. |1| (d), compared with previous approaches,
depth maps with sharper boundaries and more depth details
can be obtained by our approach.

The main contributions of this paper can be summarized
as:

* We formulate the problem of depth completion as a two-
stage task, and a coarse-to-fine residual learning based
framework is proposed, which contains a sparse-to-dense
stage and a coarse-to-fine stage. The sparse-to-coarse
stage interpolates coarse dense depth map, and the coarse-
to-fine stage further refines the depth maps.

* A channel shuffle extraction operation is proposed, which
can effectively fuse the features of color and depth infor-
mation at the multi-scale feature levels, and greatly im-
prove the depth completion performance.

* A energy based fusion operation is utilized to further suf-
ficiently fuse the features obtained by channel shuffle ex-
traction, thus achieves better performance.

We achieve SoTA performance in RMSE on KITTI
benchmark, and results on NYUv2 dataset also demonstrates
the superiority of our approach.

Related Work

Sparse depth based approaches Sparse depth can be used
as input to get dense ones without image guidance (Uhrig
et al.|2017)(Chodosh, Wang, and Lucey|2018), and most
recent approaches (Van Gansbeke et al. 2019)(Li et al.
2020)(Qiu et al.|2019)(Tang et al.|2019)(Park et al.[2020)
usually get dense depth map with sparse depth and image
data as input. All of them encode the invalid values of sparse
input with zeros. However, discontinuous values limit the
performance of these approaches. Meanwhile, the sparse
depth can also be interpolated along with the gravity (Liao
et al.|[2017)(Chen et al|2018)), the invalid values are popu-
lated with non-zero values. Through these operations can ef-
fectively avoid the limitation in convolution learning, depth
details and semantic information are lost.

Signal level fusion (Ma, Cavalheiro, and Karaman|[2019))
use a ResNet (He et al.[2016)) based autoencoder network to
predict a dense depth map. The sparse depth map and image
are directly connected as an input to the network at the sig-
nal level. To get a more accurate depth map, (Cheng, Wang,

and Yang||2018)(Cheng et al|2020) propose a novel con-
volutional spatial propagation network (CSPN) to learn the
affinity matrix for depth prediction. This work adopts a gen-
eral CNN structure and adds post-processing to get a sharp
result. All the above methods directly merge the image and
sparse depth at the signal level, and then obtain more accu-
rate results through post-processing.

Feature level fusion Approaches (Yan, Liu, and Belyaev
2020)(Lee et al.|[2020) for depth completion usually inte-
grate depth and image information at the feature level. The
image and depth features are extracted using two encoders,
and a skip connection exists between the encoder and de-
coder part. (Lee et al.[2020)) proposes a cross-guidance mod-
ule, and the image and depth features are fused through cross
attention. Meanwhile, (Yan, Liu, and Belyaev|[2020) uses
a Spatial Pyramid fusion (SPF) as a global attention block
to merge the final outputs from two encoders. (Van Gans-
beke et al.|2019)(Li et al.[2020)(Tang et al.|2019)(Tang et al.
2019) use image information to guide depth feature extrac-
tion for depth completion. Besides, (Van Gansbeke et al.
2019) uses global and local branches for depth completion,
and the output of the image branch and the depth are con-
nected as an input to the local branch. (L1 et al.|2020) uses
the cascade hourglass network to extract the multi-resolution
depth map features for better depth completion. (Xu et al.
2019)(Q1u et al.|2019) use surface normal to assist depth
completion and (Chen et al.|2019) fuse the information be-
tween 2D and 3D spaces. However, all of the above meth-
ods ignore the integration of the color and depth information
at the micro-level. Thus, the feature fusion is not sufficient,
which limits the performance of these approaches.

Image fusion Image fusion is the technique of integrat-
ing information on different types of images obtained from
different sensors. (Liu et al.[2017)(Du and Gao|2017) pro-
pose a multi-focus image fusion method based on image seg-
mentation through a multi-scale CNN. In (Prabhakar, Srikar,
and Babul[2017), the feature pairs of input images extracted
from the last layer of the network are fused into a single fea-
ture by an addition operation. Instead of simply adding two
features, (Li and Wul[2018) apply a novel strategy based on
{1-norm and soft-max operation into the network, and get a
better fusion result. (Liu, Song, and Wang|[2020) proposes
a multi-scene image fusion architecture based on the com-
bination of the multi-scale discrete wavelet transform. The
useful information of feature maps can be fully utilized, and
a region-based fusion strategy is adopted to capture more
detailed information.

However, the combination and fusion of color and depth
information of the above approaches are insufficient, and to
solve this, we propose a novel framework for better depth
completion.

Our Approach

In this paper, we formulate the depth completion as a two-
stage task, including: a sparse-to-coarse stage and a coarse-
to-fine stage. The pipeline of our approach is demonstrated
in Fig. [2 First, a simple framework is utilized in the sparse-
to-coarse stage to obtain coarse dense depth maps; Second,
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Figure 2: Overview of network architecture. The whole network architecture includes two parts: Sparse-to-Coarse stage (blue
area) and Coarse-to-Fine stage (orange area). A simple CNN framework is used for the Sparse-to-Coarse stage. In the Coarse-to-
Fine stage, color image and coarse depth are extracted by two encoder branches. Channel shuffle is utilized to mix two features
sufficiently. Then energy based fusion is adopted to fuse features. The obtained features are concatenated with deconvolution.
The final depth output is the sum of the learned residual depth and the coarse depth map.

a coarse-to-fine stage is exploited, which contains a chan-
nel shuffle operation, an energy based fusion operation and a
residual learning strategy. The channel shuffle extraction op-
eration, which effectively extracts more representative fea-
tures from color and depth information; The energy based
fusion operation, which sufficiently fuses features obtained
by channel shuffle extraction operation, thus better depth
completion results can be expected; The residual learning
strategy can further improve the quality of depth comple-
tion.

Sparse-to-Coarse

A dense depth map can be interpolated in handcrafted
ways in the sparse-to-coarse stage, such as nearest-neighbor
interpolation or other simple sparse-to-dense approaches.
For the sparse-to-coarse stage, commonly used sparse-
to-dense structures, such as (Ma, Cavalheiro, and Kara-
man| 2019)(Cheng, Wang, and Yang 2018)(Cheng et al.
2020)(Park et al.|[2020), can be utilized, and to reduce the
computational limitations, we use STD (Ma, Cavalheiro, and
Karaman|2019) in our approach. The process of the sparse-
to-coarse stage can be formulated as:

dse = SC(ds, I) 1)

where ds and I mean the sparse depth and corresponding
color image, SC' means the process of the sparse-to-coarse
stage, and d. means the obtained coarse dense depth map.

Coarse-to-Fine

The coarse-to-fine stage uses the color image and the corre-
sponding coarse dense depth map as input, where the depth

map is obtained after interpolation in the sparse-to-coarse
stage. Thus consecutive information can be provided to the
convolution. Meanwhile, to effectively and sufficiently ex-
tract and fuse features from color and depth information,
a channel shuffle operation (C'S) and an energy based fu-
sion operation (E'F’) are utilized. Besides, a residual learn-
ing framework is exploited in the coarse-to-fine stage to im-
prove the performance of depth completion further. In this
section, we provide more details about these operations.

Channel shuffle Strategies (Ma, Cavalheiro, and Kara-
man|2019)(Cheng, Wang, and Yang|2018), have been pro-
posed to extracted features from color and depth informa-
tion with commonly used backbones, such as ResNet18 and
ResNet34. These strategies usually stack color and depth di-
rectly and extract features using a single feature extractor,
which performs the same feature extraction on information
from different sources. Although information exchange ex-
ists in the process, some source-independent features can-
not be extracted to a certain extent. Various strategies, such
as (Qmu et al.|2019)(Lee et al.|[2020), extract features from
color and depth information separately using two feature ex-
tractors, then fuse them with the same size using concate-
nate or add operation. However, the consistency of color
and depth information is not utilized in the feature extrac-
tion process. Thus more representative features can not be
obtained, which limits the performance of these approaches.

Inspired by (Zhang et al.|2018), to well utilize the con-
sistency of color and depth information, we propose to
use channel shuffle extraction strategy in the coarse-to-fine
stage, which extracts features from the color image and
coarse dense depth map first, and then fully integrates the



two different features at multi-scale channel levels.

Specifically, we use the commonly used backbones R,
such as Resnet34 (He et al.|2016)), to obtain the features with
different sizes from color images and coarse depth maps, re-
spectively. Given the input coarse depth map d. and color
image I, we define f; and f. as the extracted features, re-
spectively. A convolution operation C'onv is first utilized to
obtain features fy, = Conv(dsc) and f., = Conv(I). We
define the backbones used in color and depth feature extrac-
tion as R. = {R¢,, ..., Ren }» Ra = {Ray, -, Ray }, where
N is the number of convolution blocks in the backbones.
The features extracted by the first convolution block is de-
fined as:

fa, = Ra,(fa,)s
jkl = }%cl(jko)

The process of feature extraction by other convolution
blocks can be formulated as:

@

’

(f(,ii,la c,i,l) = CS(fdi—lafCif1)7
fa, = Ra,(fa,_,), 3)
feo=Re,(fo_)),

where i € [2, N], and C'S means the channel shuffle op-
eration, /N is the number of convolution blocks in the back-
bones.

The process of channel shuffle is shown in Fig. [3] given
depth and color features of the i-th convolution block

fdz = {fdiIV"‘7fdiAl}’ fCi = {fci17"'7fCiM}’ where M

is the number of channels, the output of channel shuf-
fle are fy, = {fan:fens v fa o Fepy } and fo. =
{ fdigﬂ’ f%%ﬂ s eos Jdings Jesar |- TESPECtively, which guar-
antees that features extracted by depth and color images are
exchanged and mixed in channel level. Note that we assume

M 1is even number because the channel number is always
even number in current DCNN based approaches. After mix-

ing, two new feature maps f;,i and f;i are generated, and
returned to the (i 4+ 1)-th convolution block of backbones
for next step. For each scale feature level, the different chan-
nels of the characteristics are fully mixed, which we call the
channel shuffle operation. This operation can effectively ex-
tract new fusion features after shuffle and mixed. Experi-
ments show that the result of this operation is significantly
improved compared to the previous fusion methods.

Energy based fusion Inspired by (Liu, Song, and Wang
2020), features from large regional energy (pixel value) al-
ways contain more effective information. The residual learn-
ing strategy can be regarded as recovering high-frequency
(HF) information of the depth map in the coarse-to-fine
stage. Max pooling operation (Boureau, Ponce, and LeCun
2010)(Springenberg et al.2014)) chooses large pixels and can
well preserve texture information during the down-sampling
process. Inspired by max pooling, to well recover HF and
texture information, we propose a simple and effective en-
ergy based fusion operation to further sufficiently fuse the
features fy and f. obtained by feature extraction.

mlmlmJ~¢mwﬁﬂk+

o Jor | Jea |- Sony o 5 e

B PP PP PP PP PP PP PPPPPIRPPPPPT IS . Shuffle

Input

Figure 3: The proposed Channel shuffle operation. The pur-
ple fq, and yellow f., denote depth and color image fea-
tures, respectively. The channel shuffle(CS) obtains new fea-
tures f; and f by feature mixing in channel level, and re-
turn to their respective convolutions for the next step.

Suppose that H, W are the height and width of a feature
map f;;, where ¢ € [0, N],j € [1, M], and N is the num-
ber of convolution blocks in backbone, M is the number of
channels, fi, (m,n) is the feature value at (m,n), where
m € [1,H],n € [1, W1, and fj, represents color and depth
features, respectively. We define Fy(m,n) to represent the
energy in region L x L centered at (m,n), and k € [1,2]
mean color and depth information, respectively. FE(m,n)
can be computed as:

-3 T

a=—m' b=—n'

where m’ = [ £],n’ = | £|, wis a coefficient. The fusion

feature map of color and depth can be represented as f,, and
fo,;(m,n) (i € [0,N], j € [1, M]) can be calculated as:

wW(fr,; (m+a, n+b)* @)

fo(mom) = { e Bolipom) = Salmen)

ofa,;(m,n),  Ei;(m,n)<Ey (m,n)
5
where o is a coefficient. In this paper, we set L = b5,

w = 1, 0 = 2, empirically, and we will provide more anal-
ysis in the supplementary material. According to Eq. {4| and
Eq.[3] the features extracted from color and depth informa-
tion can be sufficiently fused. By selecting the feature value
with higher regional energy instead of add or concatenate
the two features, the feature fusion result can be effectively
improved and get more useful information.

Residual learning In the training process, given the fea-
tures f obtained by energy based fusion operation, a convo-
lution operation C'onv is used to obtain the residual depth
d,. And the final output d,, of the coarse-to-fine stage can be
obtained by:

d, = Conv(f),

6
do = dy + dsc ©

Loss Function
The loss used in the coarse-to-fine stage is defined as:

Hqg Wy

Loss = — ZZ|

—dgi(m,n)) x ¥F (7)



where d, and dg mean the recovered depth map and
ground truth, respectively, H; and W are the height and
width of the depth map, and p € {1, 2}, if the value of the
corresponding position of ground truth is valid, the value of
the position of W is 1, and the rest is zero. v denotes the
number of non-zero points in the U.

Experiment

In this section, we evaluate the performance of our method
against different state-of-the-art (S0TA) methods on diverse
publicly available datasets, including the KITTI dataset and
NYUDv2 dataset.

KITTI dataset and implementation details

The KITTI dataset (Geiger et al.|2013)) is a large outdoor
dataset for autonomous driving, which contains 85k color
images and corresponding sparse depth maps for training, 6k
for validation, and 1k for testing. In validation, 1000 color
images and corresponding sparse depth maps are selected as
validation data. For training, we bottom-cropped color and
depth images to 352 x 1216.

In the sparse-to-coarse stage, the framework of STD (Ma,
Cavalheiro, and Karaman|2019) is used as the simple net-
work which pre-trained on KITTI to obtain coarse dense
depth map, and other approaches can also be used here.
All models are trained with Adam optimizer with 5,=0.9,
£82=0.999, and we set batch size as 8, the learning rate starts
from le-5 and reduces by 0.1 for every 10 epochs. The p in
the loss function is set to 2. The models are trained for 20
epochs.

NYUDv2 dataset and implementation details

The NYUDv2(Silberman et al.2012) dataset is comprised of
video sequences from a variety of indoor scenes as recorded
by both the color and depth cameras from the Microsoft
Kinect. Following (Mal and Karaman|2018)(Cheng, Wang,
and Yang| 2018)(Cheng et al.|2020), we utilize a subset
of 45K images from the official training split as training
data, and 654 official labeled images are used for evaluation.
Since the input resolution of our network must be a multi-
ple of 16, for a fair comparison with other methods, we first
down-sampled the input frames to 320 x 240, and center-
cropped the prediction of the network to 304 x 228 during
evaluation.

Like the KITTI dataset, the framework of STD (Ma, Cav-
alheiro, and Karaman|2019) is used as the simple network
to obtain coarse dense depth map. The p in the loss function
is set to 1. The learning rate starts from le-5 and reduces
by 0.1 for every 10 epochs, and the model is trained for 20
epochs. We utilize the Adam as the optimizer with 3;=0.9,
£52=0.999, weight-decay=0.01. When training the fine net-
work, we freeze the parameters of the coarse network and
finally make end-to-end predictions during the evaluation.

Evaluation Metrics
We use the standard metrics for evaluation: (1) root mean
squared error (RMSE): % Zw(dx — d,)?; (2) mean abso-

lute error (MAE): % ZT Jz — d|; (3) root mean squared

NES SRE N
(4) mean absolute error of the inverse depth (iMAE)
3
v | d, deg |°

For NYUDv2, in addition to using RMSE as an evaluation
metric, there are also the following: (1) mean absolute rela-

tive error (REL): 2 3~

error of the inverse depth (iRMSE):

de—dg
ds

; (2) 0, Percentage of pixels

[S9Y

%
d.’

satisfying max( ) < 7,7 € {1.25,1.252,1.25%}.

"
x
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Evaluation on KITTI dataset

Table.|l|demonstrates the quantitative comparison results of
our approach on the KITTI benchmark. Note that the results
of STD is obtained in supervised manner in Table[I]and Ta-
ble. [2} It is obvious to find that our FCFR-Net outperforms
existing SOTA approaches in RMSE, which is the main eval-
uation metric on the KITTI depth completion benchmark.
Due to the sensitivity of RMSE to outliers, our approach
has better processing ability for long-distance depth. Com-
pared with the results of STD (Ma, Cavalheiro, and Karaman
2019), our coarse-to-fine stage improves performance by
about 10% in RMSE. The qualitative comparison is shown
in Fig. [d] We can find that depth maps obtained by our ap-
proach are with sharper boundaries and more depth details,
especially on long-distance, which proves the effectiveness
of our approach.

RMSE MAE iRMSEiMAE

Method mm mm 1/km 1/km
CSPN 1019.64 279.46 293 1.15
STD 814.73 24995 2.80 1.21
CG (Lee et al.|[2020) 807.42 25398 2.73 1.33
RV 792.80 225.81 242 0.99
PwP (Xu et al.|2019) 777.05 235.17 242 1.13
RGBG&C 772.87 215.02 2.19 093

MSG-CHN (Li et al.[2020) 762.19 220.41 230 0.98
DeepLiDAR (Qiuetal.2019) | 758.38 226.50 2.56 1.15

Uber (Chen et al.[2019) 752.88 221.19 234 1.14
CSPN++ (Cheng et al.[2020) | 743.69 209.28 2.07 0.90
NLSPN (Park et al.[2020) 741.68 199.59 199 0.84
Ours 73581 217.15 220 0.98

Table 1: Quantitative comparison with state-of-the-art meth-
ods on KITTI Depth Completion testing set. The re-
sults of other methods are obtained from the KITTI on-
line evaluation site. The CSPN, STD, RV and RGBG&C
mean (Cheng, Wang, and Yang [2018))(Ma, Cavalheiro, and
Karaman| 2019)(Yan, Liu, and Belyaev|[2020)(Van Gans-
beke et al.[2019), respectively. The results are ranked by the
RMSE.

Evaluation on NYUDv2 dataset

To verify the effectiveness of our approach, we also eval-
vate our approach on the NYUDv2 dataset. Following
CSPN++ (Cheng et al.[2020) and NLSPN (Park et al.|2020),
we use 500 randomly sampled points as sparse input and the
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Figure 4: Qualitative Comparison on KITTI test set. From top-to-bottom: (a) Image, (b) NLSPN (Park et al.[2020), (c) CSPN++

Cheng et al.[[2020), (d) DeepLidar (Qiu et al.|2019), (e) STD (Ma, Cavalheiro, and Karaman|2019), (f) CSPN (Cheng, Wang,
2018), (g) Ours (FCFR-Net). The results are from the KITTI depth completion leaderboard in which depth images

are colorized along with depth range.

quantitative comparisons results are shown in Table.[2] It can
be seen that our approach outperforms SoTA approaches in
all metrics with 500 sampling points. And compared with
STD (Ma, Cavalheiro, and Karaman|[2019), the RMSE re-
sults obtained by our approach decrease by 13%. Fig. [3]il-
lustrates the qualitative comparison results, and depth maps
obtained by our approach have more depth details and ob-
ject edge structures, which proves the effectiveness of our
approach on indoor scenes.

Ablation Studies

In this section, we provide more analyses of the operations
utilized in our approach. We sort the depth maps in time
series and uniformly sample 1/4 of the data as mini-training
data for ablation studies for fast training.

Sparse input vs. dense input

Using STD (Ma, Cavalheiro, and Karaman| 2019) as
the baseline, we compare the depth completion results be-
tween sparse depth and dense depth as input. The output
of STD (Ma, Cavalheiro, and Karaman|[2019) (with sparse
depth as input) is regarded as the dense depth map. Under the
same framework, the results are shown in Table. El (ST and
DI), where S stands for sparse depth input, and D stands
for dense depth input. We can see that when the input depth

Method RMSEREL 0125 0,952 01 953

m m
STD_18 0.230 0.044 97.1 99.4 99.8
Sparse-to-Coarse 0.123 0.026 99.1 99.9 100.0
CSPN 0.117 0.016 99.2 99.9 100.0

CSPN++ (Cheng et al.2020) | 0.116 - - - -

DeepLiDAR (Qiuetal.2019) | 0.115 0.022 99.3 99.9 100.0
PwP (Xu et al.[2019) 0.112 0.018 99.5 99.9 100.0
Ours 0.106 0.015 99.5 99.9 100.0

Table 2: Quantitative evaluation on the NYUDv2 dataset.
Sparse-to-Coarse is trained using STD (Ma, Cavalheiro, and|
Karaman|[2019), other methods are the results of the respec-
tive papers. STD_18 means (Mal and Karaman|2018)), CSPN
means (Cheng, Wang, and Yang|2018)). And all methods use
500 sampled depth points as the sparse input.

is dense, all evaluation metrics are greatly reduced, which
indicates that the dense depth input provides effective con-
secutive information. Thus better depth completion results
can be obtained.

Directly learning vs. residual learning

When the input depth map is dense, network learning has
two choices: directly learn the final depth, or learn the resid-



(a)

Figure 5: Qualitative Comparison on NYUDv2. From left-to-right: (a) Image, (b) Dilated sparse input for visualization, (c)

Sparse-to-dense (Mal and Karaman|[2018), (d) CSPN (Cheng, Wang, and Yang|2018), (¢) Coarse result using Sparse-to-

dense(gd) (Ma, Cavalheiro, and Karaman|2019), (f) Ours fine result, (g) Ground Truth. The circled rectangles areas show

the recovery of object details.

name  S/Dinput residual number of encoders CS EF ll}MSE IMAE  RMSE — MAE
/km 1/km mm mm
ST S N 1 N N (concat) 3.81 1.60 942.65 299.46
DI D N 1 N N (concat) 2.90 1.35 845.55 264.80
DR D Y 1 N N (concat) 2.48 1.03 81694 228.27
DE D Y 2 N N (concat) 2.41 1.00 812.92 224.80
DCC D Y 2 Y N (concat) 2.41 1.00 805.23  224.07
DCA D Y 2 Y N (add) 2.40 1.01 806.26 225.23
DCFE D Y 2 Y Y 2.39 1.00 802.62 224.53

Table 3: Ablation study on KITTI Depth Completion selected validation dataset. C'S means channel shuffle, and £'F means

energy based fusion.

ual between the input depth map and the ground truth. In Ta-
ble. El (DI and DR), we compare the results between direct
learning and residual learning. Compared with direct learn-
ing, it is easy to find that residual learning results are greatly
improved in all evaluation metrics.

One feature extractor vs. Two feature extractors

For feature extraction, there are two choices: (1) concate-
nate color and depth images and use a feature extractor to
extract features, which named one feature extractor; (2) use
two feature extractors to extract features of color and depth
information respectively, then fuse them with concatenating
operation, which named two feature extractors. In Table. E|
(DR and DFE), we show the results of the on feature extrac-
tor and two feature extractors. As shown in Table.[3} the two
encoders can extract features of different scales of color and
depth information, and merge them separately. Thus the re-
sult is better than one encoder. Note that we use Resnet34 as
the feature extractor here.

Channel shuffle vs. no Channel shuffle

To demonstrate the effectiveness of the proposed chan-
nel shuffle operation, we demonstrate the depth completion
results with and without channel shuffle in Table. 3] (DCC
and DE). It is obvious to find that results obtained by ap-
proaches with channel shuffle outperform no channel shuf-
fle, which proves that the channel shuffle operation can suf-
ficiently exchange and fuse the features of color and depth
information. Thus more representative features and better
depth completion results can be obtained.

Energy based fusion vs. No energy based fusion

DCNN based approaches usually fuse the features ex-
tracted from color and depth information with concatenat-
ing or add operation. Here, to prove the effectiveness of the
proposed energy based fusion operation, we compare the re-
sults obtained by energy based fusion with other fusion op-
erations (concatenate and add) in Table.[3] DC'C means con-
catenate fusion results, DC A means add fusion results, and
DCFE means energy based fusion results. It can be seen that
energy based fusion achieves better depth completion for all
evaluation metrics, which proves that the proposed energy
based fusion operation can sufficiently fuse the features ex-
tracted from color and depth information, thus obtain better
depth completion results.

Conclusion

In this paper, we propose a simple and effective framework
for depth completion, which tackles the problem as a two-
stage task, i.e., a sparse-to-coarse stage and a coarse-to-fine
stage. We find that dense depth maps can provide consec-
utive features; thus, better depth results can be obtained.
Meanwhile, to obtain more representative features, channel
shuffle and energy based fusion operations are proposed,
which effectively and sufficiently extract and fuse the fea-
tures with color and depth images as input. Thus more ac-
curate depth completion results can be achieved. Extensive
experiments across indoor and outdoor benchmarks demon-
strate the superiority of our approach over the state-of-the-
art approaches.
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