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Learning-Based Hand Motion Capture and
Understanding in Assembly Process

Liang Liu , Yong Liu , Member, IEEE, and Jiangning Zhang

Abstract—Manual assembly is still an essential part in
modern manufacturing. Understanding the actual state of
the assembly process can not only improve quality con-
trol of products, but also collect comprehensive data for
production planning and proficiency assessments. Ad-
dressing the rising complexity led by the uncertainty in man-
ual assembly, this paper presents an efficient approach to
automatically capture and analyze hand operations in the
assembly process. In this paper, a detection-based track-
ing method is introduced to capture trajectories of hand
movement from the camera installed in each workstation.
Then, the actions in hand trajectories are identified with a
novel temporal action localization model. The experimental
results have proved that our method reached the applica-
tion level with high accuracy and a low computational cost.
The proposed system is lightweight enough to be quickly
set up on an embedded computing device for real-time on-
line inference and on a cloud server for offline analysis as
well.

Index Terms—Assembly line monitor, hand motion
capture, temporal action localization.

I. INTRODUCTION

A S GREAT progress has been achieved in Industry 4.0,
most routine industry operations have been performed

automatically by machines [1], [2]. However, for industries
such as computers, communications, and consumer electron-
ics, the short sales cycle and diversified product models make
them unsuitable for fully automatic production. Manual and
semi-automatic assemblies are still considered indispensable for
manufacturing [3].

Despite the flexibility and easy implementation of manual as-
sembly, quality control for manual assembly is much more diffi-
cult than the machine. The quality of the product will be greatly
improved if the factory can monitor and manage the manual
assembly process. In reality, almost all monitoring systems for

Manuscript received August 4, 2018; revised October 12, 2018; ac-
cepted November 8, 2018. Date of publication December 7, 2018; date
of current version July 31, 2019.This work was supported in part by the
National Key R&D Program of China under Grant 2017YFB1302003 and
in part by the National Natural Science Foundation of China under Grant
U1509210. (Corresponding author: Yong Liu.)

L. Liu and J. Zhang are with the Institute of Cyber-Systems
and Control, Zhejiang University, Hangzhou 310027, China (e-mail:,
leonliuz@zju.edu.cn; zhangzjn@qq.com).

Y. Liu is with the State Key Laboratory of Industrial Control Technol-
ogy and Institute of Cyber-Systems and Control, Zhejiang University,
Hangzhou 310027, China (e-mail:,yongliu@iipc.zju.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2018.2884206

assembly lines are nonintelligent, which only use surveillance
cameras to record operations. These systems can replay for spe-
cial situations, while it is impractical to monitor and manage the
entire assembly process as it will take a lot of time and labor to
view the whole video manually.

In addition, with the progress of optimization research and
sensor technology, some research studies for optimizing the as-
sembly process have been proposed, which can take a more
scientific production planning [4] and achieve a more careful
proficiency assessment for operators [5], [6]. All these meth-
ods can be applied to real factories only if operational data
can be collected during the daily assembly process. Traditional
factories obtain statistics through random manual inspections
or simulation tests so that the data are limited. Due to the un-
certainty of manual operation, the operating habits vary from
person to person, and there are unpredictable interruptions or
exceptions in manual assembly lines, which are hard to capture
by traditional methods.

Overall, it is important to automatically capture and under-
stand operations in the manual assembly process. Thus, the
assembly can be monitored and managed to improve quality
control of products. Furthermore, those more accurate and com-
prehensive process data can also be collected to optimize the
assembly process.

There are three main challenges in real manual assembly
lines.

1) It is hard to capture and identify the specific content of
operations over a long time range as the shape and speed
of the hand vary frequently, and different actions are also
similar in appearance.

2) The solutions to capturing and understanding the assem-
bly process should not interfere with the operation. Thus,
additional symbolic gestures that will increase the overall
time are undesirable. Similarly, it is not a good solution
to place markers on the assembly line or the body of
operators.

3) For manufacturers, it is critical to maintain the overall
solution with a reasonable cost, so that it can be applied
to dozens of workstations on assembly lines.

In this paper, a learning-based framework for hand motion
capture and understanding in assembly lines is proposed. As
illustrated in Fig. 1, this work focuses on real-time tracking of
hand locations in assembly and identifying operational actions
at the frame level. The framework can be summarized into two
closely related main parts: hand motion capture and hand ac-
tion understanding. Our method extracts the movement of hands
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Fig. 1. Demonstration of our framework on hand motion capturing and
understanding. The motion trajectories of hand in each video frame are
represented by bounding boxes with recognition the action of hands.
Different colors indicate different action instances.

with a novel tracking method, in which a network detects hands
in the keyframes, while the tracking submodule predicts hand
locations in each frame, and the results of detection and track-
ing are fused by a special matching algorithm. Meanwhile, a
temporal action localization model is designed for simultane-
ously categorizing and localizing the time boundaries of atomic
actions in the video segments.

Our method captures the hand position and action content of
operators in real time. The hand action sequences can be con-
catenated to describe the operation by finite-state machines [7]
in a complete operating cycle. Contrasting the actual operation
with the standard operating procedure, supervisors can easily
access production process information, such as if there are any
operational omissions, which workstation cause drift, the valid
operation time of operators in a cycle. Our method provides an
effective way to obtain human data in the production process.
The contributions of this paper are summarized as follows.

1) We designed a flexible and effective multiple-object
tracking framework, which can capture the challenging
movement of hands in the assembly process. Further-
more, the temporal action localization method we pro-
posed can accurately detect the atomic action instances
at a frame level from untrimmed video streams.

2) Our markerless framework has no influence on produc-
tivity and can detect the semantic content of the operation
in the assembly videos for a long time. The structured ac-
tion results in temporal and spatial can be further utilized
to improve quality control or assembly line optimization.

3) The extra equipment costs of our approach are fairly low
and can be set up quickly in productive factories that only
require a webcam installed on each workstation. More-
over, the method is lightweight enough to be deployed on
an embedded device for real-time processing.

4) The entire framework based on deep learning is learnable;
thus, it can be easily extended to the new assembly lines,
which have different scopes of recognition. Our approach

has already been deployed on several production lines in
real factories.

The remainder of this paper is organized as follows. Section II
reviews related research works. Section III gives a brief instruc-
tion of data acquisition. In Section IV, the framework and details
of the proposed method for hand motion capture and hand action
understanding are introduced. In Section V, details of data an-
notation and experiments are illustrated, and the effectiveness of
the proposed method is evaluated. Finally, Section VI concludes
this paper.

II. RELATED WORK

A. Motion Capture Systems

Motion capture, which has shown significant advances in
recent years, is the process of recording the movement of ob-
jects or people [8], [9]. The motion capture techniques can
be implemented with special sensors, such as inertial mea-
surement units [10], [11] or multiple hardware synchronized
infrared cameras [12]. However, these methods that utilize
expensive devices and mainly depend on the markers equipped
on the objects or environments are not suitable for manual
assembly.

Recently, many markerless motion capture approaches have
been developed that would not interfere with the captured object.
There are many works on human or hand motion capture with
low-cost depth cameras, such as Microsoft Kinect [13], [14],
Intel RealSense [15], and Leap Motion sensor [16]. However,
limited to the range and accuracy of hardware, they can only
reconstruct coarse skeletal motion [17]. Besides, these devices
are still quite expensive to be densely deployed.

With the development of deep neural networks, it has become
possible for low-cost methods to capture object locations with a
few ordinary cameras or even one monocular camera [17], [18].
However, even the complex methods, which can make accurate
predictions in natural scenes with a lot of computational costs,
are hard to handle the common problems in assembly scenes
such as motion blur and occlusion in the assembly video [19],
[20]. Thus, the method, which is lightweight to be deployed
and is able to adapt the challenging movements, is desired in
assembly.

B. Action Understanding Methods

Temporal action localization is one of the classical prob-
lems in video action understanding, which focuses on catego-
rizing and localizing the time boundaries of action instances in
untrimmed videos. Following the progress made in the action
recognition task [21], [22], recent works based on two-stream
networks [23] can achieve acceptable results [24], [25], but
these works suffer from the heavy computation of dense op-
tical flows; thus, they are not suitable for real-time services.
Recently, several approaches based on three-dimensional (3-D)
convolutional networks have been proposed. One of the most
representative works is a method named CDC [26], which can
output frame-level predictions of action instances by upsam-
pling in the time dimension. However, it will lead to inconsistent
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Fig. 2. Environment of data acquisition and the location of cameras.

categories between adjacent frames; thus, it requires additional
postprocessing to smooth the predictions.

Moreover, most of the above methods focus on sports activ-
ities or daily activities, on which videos were collected from
various sources, such as movies, YouTube, and television chan-
nels [27], [28], where action instances in different categories
have obvious differences in appearance and with a long dura-
tion. There is a large gap in the performance to understand subtle
actions in manual assembly scenarios, where the appearance of
the foreground and background is similar.

III. DATA ACQUISITION

In our framework, all video data came from the manual as-
sembly lines, which produce various models of laptops in a real
factory. In order to reduce the equipment costs and the impact
on operators, only a web camera is installed at each worksta-
tion. The camera installation location and the data acquisition
environment are shown in Fig. 2. There are no other wearable
devices or sophisticated sensors.

All video data are collected from a total of 30 workstations
distributed in three different assembly lines. The total video
length reached 104 h. All the videos are collected at a resolution
of 1920 × 1080, 30 frames/s. We employed experienced work-
ers to annotate several types of data to train and validate our
learning models. The specific labeling method and details will
be described in Section V-A.

IV. PROPOSED METHOD

In this section, a markerless hand motion capture and under-
standing framework is presented. The flowchart of this frame-
work is shown in Fig. 3. Given the video stream captured from
the camera equipment in a workstation, the general analysis
procedures are summarized as follows.

1) Hand motion extraction: Hands in keyframes will be de-
tected by detection networks, and a tracking module is
used to associate and interpolate the hand bounding boxes
in consequent frames as hand trajectory extraction.

2) Trajectory cropping: Each trajectory of hand is trimmed
and sampled into fixed-length video clips. Followed by
cropping each hand area from the video clip, each hand
video clip is converted into video segments with a fixed
size.

3) Temporal action localization: Locating and classifying
all hand action instances in the video segments by the
temporal action localization networks.

4) Action instance reconstruction: Combining action in-
stances in the video segments and removing irrelevant
action instances to form a temporal and spatial descrip-
tion of the hand movements for the complete video.

We present the details of the proposed method as follows.

A. Hand Motion Extraction

Since the information in the captured high-resolution video
is redundant, it is unfocused and computationally expensive to
process the original video directly [29]. Previous works have
shown that as a key part of the human visual system, visual
attention mechanisms can filter irrelevant visual stimuli in or-
der to focus more on the important parts [30]. In the manual
assembly scenario, the region of hands contains most of the
information in manual assembly lines that we need to focus.
But it is quite a challenging task to track the nonrigidity hands
with irregular movement. Thus, we introduce a detection-based
“tracking-with-matching” framework for real-time hand motion
extraction.

1) Hand Detection: The field of object detection has made
rapid progress in recent years. Most methods can be divided into
one-stage detection [31], [32] and two-stage detection [19], [33].
The former has been shown, which are more lightweight and can
achieve similar performance. In our approach, we modify the
original SSD networks [31], the classical one-stage detection
model, with MobileNets [34] as backbone networks for feature
extraction.

In short, the SSD meta-architecture has a collection of an-
chors overlaid on the different layers with different spatial lo-
cations, scales, and aspect ratios. The SSD detector appends
convolutional detection layers to the different layers of the trun-
cated backbone network, which allows the detections predicting
at multiple scales. These extra layers are trained to make two
predictions for each anchor, a discrete class prediction and a
continuous position offset, by which the anchor needs to be
shifted to fit the ground-truth bounding box.

We use MobileNets as backbone networks for feature extrac-
tion and adopt the original SSD implement (SSD-VGG [31])
that appends six extra layers for detection. The main reason that
makes MobileNets speed up is the depthwise separable convo-
lution (DSC) layers. The general idea behind DSC is to split
convolution into a depthwise convolution and a 1 × 1 pointwise
convolution that reduce the number of parameters and increase
the speed. Consequently, we replace the following appended
convolution with DSC.

It requires matching anchors with ground-truth instances
when training the detection networks. For each anchor, we re-
gard all ground-truth boxes with Jaccard overlap higher than a
threshold (0.5) as matched, that is different with most detec-
tion frameworks [19], [33], which only match the anchor with
maximum overlap. By increasing the abundance of samples, this
modification will improve both the stability and the convergence
speed of training with a minor effect on the final accuracy.
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Fig. 3. Flowchart of our proposed method.

The rest of the details in our implementation are same as the
standard SSD detector [31].

2) Hand Tracking: The detection model predicts hand re-
gions in the static keyframes. In order to represent the move-
ment of hands, we need to associate hand bounding boxes in
consecutive frames. Due to the frequent occlusion and the vi-
olent movements of hands, both state-of-the-art single-object
tracking algorithms (e.g., ECO [35] and KCF [36]) and multiple-
object tracking algorithms (e.g., NOMT [37]) cannot perform as
expected.

In our approach, we propose a simple but effective detection-
based tracking framework that can be combined with the afore-
mentioned state-of-the-art trackers, as well as weak trackers,
such as Kalman filters and even linear interpolation predictions.
We associate the detection results of keyframes with the frame-
wise tracking results by linear assignment and interpolate the
object locations in each frame with the prediction of the trackers.
In particular, our framework introduces an efficient and effec-
tive state machine to deal with object occlusion and motion
blur, which are the most challenging difficulties in hand motion
capture.

Algorithm 1 summarizes the proposed framework. A group
of trackers T = {T} is created based on the detection results of
the first frame, and each tracker T has an initial state T state as
“Active” and a counter Tuc for recording the number of frames
that the tracker does not match with any detections.

For a new frame It , new locations L and the prediction con-
fidence score S of tracked objects are predicted by the active
trackers {Ti | T state

i = Active}. If the tracker is lost due to move-
ment, obstruction, or other reason, the confidence score will be
lower than the preset threshold δ. We set the state of these track-
ers to “Sleep” and keep the same location as the last frame if it
exists. On the other hand, instead of frame-by-frame detection,
the model predicts the hand locations Bt only when the current
frame is a keyframe in order to reduce the total computational
overhead.

The detected hand locations and tracked hand locations for
the current frame are matched by the Hungarian algorithm with
Jaccard overlap cost that results in a set of matching pairs M,
the unmatched detections UDet, and the unmatched trackers
UTck. We consider all unmatched detections to be new objects,
and the corresponding new trackers are generated. Meanwhile,
we temporarily assume that all unmatched tracker objects are

missing detection due to motion blurring or occlusion, which
might be detected in the next few frames. Therefore, we set
the state T state of the unmatched trackers to “Wait.” Finally,
the predicted locations of matched trackers are updated by the
confidence-weighted average of detections, and tracking loca-
tions and the state T state and the counter Tuc of matched trackers
are reset.
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After matching, dead trackers that not matched in the last N
frames will be popped from T to another set T̂ . The trajectories
of dead trackers are used for further analysis. We discard trajec-
tories that are too short and trim the last N positions in every
trajectory as they are unmatched with detections.

Our framework can be combined with many kinds of trackers.
There are some differences in detail to balance the performance
of tracker and detector. For high-performance trackers, such as
KCF [36] and ECO [35], unmatching occurs more often when
there are some mistakes in the detection. So, the trackers with
state “Wait” should continue to predict in subsequent frames.
In contrast, for the weak trackers, unmatching is more likely
because the tracking object is lost. The waiting state trackers
should keep the previous positions in the next frames as in the
sleep state.

We adopt ECO and the linear KCF with HoG features as the
high-performance trackers. In addition, the linear observation
Kalman filters with the constant-velocity motion model and the
simple linear interpolation model are used as two types of weak
trackers. Note that the detected location is the observation z in
Kalman filters, and the state x is modeled as

x = [u, v, s, r, u̇, v̇, ṡ, ṙ] (1)

where (u, v) is the center position of the bounding box, and s
and r represent the area and the aspect ratio of the bounding
box, respectively. u̇, v̇, ṡ, and ṙ are the respective velocities in
image coordinates.

The tracking module can efficiently interpolate and associate
the detection results in temporal. After tracking, the movements
of hand in the untrimmed video V can be formulated as a set of
hand trajectories Φ = {T}. The hand trajectory consists of a set
of associated boxes T = {bt | ts ≤ t ≤ te}, where ts and te are
the indexes of the first frame and the last frame, respectively. bt

is the corresponding bounding box of the hand in frame It .

B. Hand Motion Understanding

In order to understand the semantics of hand trajectories, it is
necessary to know when and where the action instances appear
in each trajectory. For this purpose, we propose action classi-
fication models as baselines and temporal action localization
models for more accurate detection.

1) Trajectory Cropping: Most of the deep learning models
for video content analysis require fixed-length video segments as
inputs, such as two-stream networks [23] or 3-D convolutional
networks (C3D [38]). However, the length of hand trajectories is
variable with changing hand size and location in each frame. It
is necessary to segment trajectories and crop the patch of frames
from the video to obtain the video segments with a fixed number
of frames.

We collect a fixed number of frames for action recognition
by a fixed-length temporal sliding window and then cropped all
frames into image patches with the same size. More specifically,
we slide the window without overlap for each trajectory on the
corresponding video clip to get the segments. Then, every video
segment will be cropped to ignore the unused background by
some cropping strategies.

Fig. 4. Key idea of our temporal action localization method. There are
two parallel fully connected layers that predict the action class and time
offset of the seeds, respectively.

The most natural way is to set a fixed circumscribed cuboid
of each hand trajectory segment in the video for cropping. How-
ever, it may require a large area to cover a wide-range moving
hand. In order to crop out an image patch containing the hand
region in each frame without losing the background informa-
tion in a small area around the hand, another crop method is to
crop the area of the extended hand bounding box in each hand
trajectory. We crop the image patch from a rectangle region that
the center of the region lies in the center of the hand bounding
box. The size of the region is set slightly larger than most of
the hands that appear in the field of view and adapt only when
the hand appears on the border. After cropping, we scale the
cropped image patch to a fixed size.

Since this crop method undermines the stationarity of back-
ground, classical methods for video processing in the fixed cam-
era, such as background subtraction and change detection [39]
cannot be used. However, this cropping method makes atten-
tion by retaining the saliency area and tracking the hand in the
center of the image patch. Benefiting from the explicit attention
mechanism, the deep learning models that we proposed for hand
action understanding can actually work better.

2) Temporal Hand Action Localization: Generally, given
a video segment, an action model predicts the global properties
or frame-level results. The action models we implemented in
this paper adopt a sequence of C × 112 × 112 tensors as input,
where C is the number of channels determined by the type of
input. The length of the segments L is set to 16, in which the
frames are sampled from the original segments with a sampling
interval G = 3.

Since the movement between two adjacent actions tends to be
more intense, it is more likely that different actions break into
two trajectories. It is more common that only one action instance
exists in a segment. According to our frame-level annotations,
each frame has a corresponding action category in the video
segment. Therefore, one of the possible solutions for detecting
the action instances in the video segment is to predict the unique
action label, which is set to the category that appears most
frequently over all frames.

We implement the video classification models based on C3D
networks [38] and two-stream networks [23], respectively, as
baselines. Details of implementation are shown in Table I. All
the classification models are trained with a standard cross-
entropy loss between the predicted action probability and the
action label.

However, if there are multiple action instances in a segment,
the classification models that use the most frequent category
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TABLE I
BASIC MODEL ARCHITECTURE FOR VIDEO CLASSIFICATION

as the label will have poor accuracy at the frame level. Since
the actions with a shorter duration are submerged, there is an
upper bound for frame-level accuracy of classification models.
In order to increase the accuracy, we present a temporal action
localization approach to predicting the time boundaries of hand
action instance in a small granularity.

The temporal action localization model we proposed is based
on 3-D convolution [38], abbreviated as “C3D-TAL,” and the
basic idea is inspired by the offset regression in object detection.
Fig. 4 shows the key idea of our temporal action localization
method. We select some frames at equal intervals from the input
video segments as temporal seeds, with which we predict the
action category and time boundaries. We use the whole topmost
feature maps and append two fully connected layers in parallel,
one of which predicts the confidence scores of action classes
s of each seed, and the other predicts the offsets of the time
duration t̂ = {t̂x , t̂y} of the action. Notice that these two fully
connected layers can be merged into one without any difference
in results. We split it into two for interpretability.

Similar to the anchor mechanism described in Section IV-A1,
we require matching each seed to ground-truth instance. We
adopt the action class c at the seed frame as the action label
of the corresponding seed. The time offsets t = {tx , ty} are the
difference of frame indexes between the seed frames and the
frame boundaries of the seed action. Then, the loss for the seed
is measured as a weighted sum of a location-based loss and a
classification loss as follows:

L(s, t̂, c, t; θ) = Lcls(c, s) + α · Lloc(t̂, t) (2)

where θ are the model parameters. The weight term α is set to
1 by cross validation. The classification loss Lcls is the softmax
loss over multiple-class confidence scores (s). The localization
loss is a Smooth L1 loss between the ground-truth offsets (t)
and the predicted offsets (t̂c ) for the corresponding class c

Lcls(c, s) = −
K∑

i=1

1(si = c) · log
esi

∑K
k=1 esk

Lloc(t̂, t) = −
K∑

i=1

1(t̂i = c) · Smooth-�1(t̂i − t) (3)

where 1(.) is the indicator function so that only the prediction
that matches the ground-truth class of the seed is considered in
the loss.

During testing, given a video segment, we can get the
prediction of instances for all seeds. The category and the
corresponding offsets of each seed are set to the class with
the maximum confidence score. In addition, there might be an
overlap for the predicted action instances of different seeds.
The category is set to the class with the highest score for the
overlapped frames.

The steps mentioned above break the original video into clips
by tracking hands, and the clips are segmented and cropped into
video segments. The networks predict the action instances in the
segments, which can be used to reconstruct the actions in the
original video by the index of frames, as the action instances in
the adjacent frames of the same trajectory can be merged. Note
that the frames that are predicted as “Irrelevant” are discarded
as a rectify approach to handle errors in the tracking module.

V. EXPERIMENTS AND DISCUSSIONS

A. Details of Data and Experiments

As described in Section III, there are two types of annotated
data to train our learning-based models: keyframe hand anno-
tation and hand action instance annotation. For the purposes of
the experiments, all the annotated data is divided into three main
subsets: training, validation, and test.

1) Keyframe Hand Labeling: The hands that appear in the
field of vision of the camera could belong to the operator at this
workstation or someone else and may or may not wear gloves
according to the different requirements of the process. We use
the bounding box to label every hand in the image except for the
hand with severe occlusion or motion blur. We carefully labeled
12 913 images: 9014 for training, 1950 for validation, and the
remaining for testing. In order to reduce the number of similar
samples, the maximum sampling frequency of the annotation
is 0.1 Hz, which means that we annotate one frame from the
original video every 10 s and skip over some frames with only
minor changes.

2) Hand Action Instance Labeling: The training process
in our framework has two stages. We train the hand detection
network and extract enough trajectories in advance. For each
trajectory, we have frame-level annotations that every action
instance in the trajectory is annotated by the action category, the
index of the start frame, and the ending frame. The hand action
dataset contains six types of common assembly-related atomic
action categories and a “Irrelevant” class to exclude the wrong
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TABLE II
STATISTICS FOR ACTION CATEGORIES

TABLE III
PERFORMANCE COMPARISON OF HAND DETECTION MODELS

tracks that are the errors from the hand motion capture module.
In particular, the class named “Idle” represents that the hand is
at rest without any meaningful operation, and the class named
“assemble” represents all meaningful assembly actions except
the special actions contained in the categories of the dataset.
Statistics for the number of action instances in the training and
validation sets are given in Table II. We do not analyze the test set
as if it were unknown to us, but it should be similar to other sets.

In the following experiments, we used a machine with 32-GB
RAM, Intel Xeon E5-1650 v2 processor, and a Nvidia GTX
Titan X (Pascal) GPU card as the server environment. On the
other hand, an embedded device, namely Nvidia Jetson TX2,
was used as the device-side hardware environment. We abbre-
viate these two environments as “Env A” and “Env B” in short,
respectively.

B. Experiments for Hand Motion Extraction

For both hand detection and tracking, the main aspect to be
considered is the tradeoff between the accuracy and the con-
sumption of time and space. In this work, we evaluate the
detection models on the test set based on four metrics: mAP
metric, inference speed (frames/s), model size, and counting
FLOPs (multiply adds). We compare our detection method
“MobileDet,” which is modified from the original SSD de-
tection framework, with four state-of-the-art methods on our
custom hand detection dataset. In addition, all models are under
the best hyper-parameters tuned on the validation set, and the
resolution of the input image is set to 300 × 300.

The experimental results in Table III show that all deep learn-
ing detection models except Yolo2-tiny perform quite well on
our dataset. The MobileDet model results in a slight decrease in
accuracy compared to the networks, which have more compli-
cated backbone, such as ResNet50 [40] for Faster RCNN_res50

TABLE IV
PERFORMANCE COMPARISON OF HAND TRACKING MODELS

and VGG16 [41] for SSD_vgg, while it gains a consider-
able reduction of inference time and FLOPs. The MobileDet
model even has around 1.5× increase in the inference speed
compared to Yolo2-tiny on the low-cost device-side environ-
ment. Besides, without any other model compression tricks, the
MobileDet model is the most compact to deploy.

Then, we design an evaluation method to compare the per-
formance of different tracking methods. We randomly select
1000 video clips first and use the most accurate detection model
(Faster RCNN-res50) to detect the hands in the first frame as
the initial locations for tracking. After that, we run all tracking
methods individually and record the results until all hand track-
ers are lost. Since the tracking methods have different criteria or
threshold for the lost, the results of the tracking algorithm are
not reliable to make a comparison. In order to objectively deter-
mine whether the tracker is on track or has lost, we perform the
detection on every frame as the ground truth of hand locations
and matching the detection results with the tracking results. We
regard a tracker that cannot match in ten consecutive frames
lost. We stop this tracker and discard the untracked frames in
the results.

The main factors for the tracking module are the robustness
and accuracy. Robustness depends on whether the tracker can
track the target for a long time, while accuracy reflected in
the ability of the tracker to independently discover that it has
lost the target. Therefore, we adopt the average actually track
length (Ave Len in Table IV) of trajectories as the robustness
measurement, the ratio of the number of tracking frames given
by the tracker to the verified number of valid tracking frames
(Ret Accu in Table IV) as the accuracy measurement.

As shown in Section IV-A2, we compare various trackers
with our “tracking-by-matching” framework. In addition, we
also evaluate the state-of-the-art algorithms (e.g., ECO [35] and
KCF [36]) separately with an infinite keyframe detection inter-
val (Det Gap=inf in Table IV), which means that never detecting
and matching hand after setting the initial locations. It is impor-
tant to note that the speed evaluated here is the average for
multiple objects, and the time for keyframe detection is also
considered. As shown in Table IV, ECO and KCF can attain
hand tracking but have poor performance in discovering lost
track, and there is even no determination of loss in the original
implementation of ECO. We also evaluated the performance of
trackers with different keyframe detection intervals (Det Gap in
Table IV) combining with our matching framework, the accu-
racy can be promoted even with a long interval detection. By
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Fig. 5. Sample of two segments. Even severely occluded hand can be tracked by our method, and every image patch in the segment is cropped
by the tracked hand location. Although different action categories are similar in appearance, our temporal action localization network can accurately
predict all action instances.

TABLE V
PERFORMANCE COMPARISON OF CROPPING STRATEGIES

reducing the detection interval, the length of tracks becomes
longer, and even the predictor with poor performance, such as
Kalman filters and linear interpolation, can achieve similar per-
formance to ECO or KCF with a much faster speed.

Since the method of KCF tracker matching with every three-
frame detection consumes almost all the computing resources
to capture the movement of the hand on the embedded device,
there is no spare resource for action understanding. For a com-
promise between speed and performance, we adopt the tracking
method that utilizes Kalman filter predictors matching with ev-
ery three-frame detection. This method reduces the time for
motion capture by half and has similar performance.

C. Experiments for Hand Action Understanding

We evaluate the hand action understanding model with differ-
ent variants. First, we compare the effects of different cropping
strategies that are used to extract a fixed-size video segment for
each hand track. We evaluate the classification performance of
C3D and two types of two-stream networks with input of the
video clips: 1) without cropping; 2) cropped by circumscribed
cuboid; and 3) cropped by our tracking-based method.

Table V shows the segment-level classification accuracy of
different cropping strategies on different classification models.
The classification performance without cropping is poor for
both C3D and two-stream networks. As the region of interest
becomes smaller by cropping, the accuracy of networks rises.
The strategy that crops out the region around the hands in each
frame is around 10% higher than cropping in fixed positions
for C3D networks. However, the promotion for the two-stream
network is not obvious, since the estimation of dense optical
flow is not reliable when the hand moves rapidly. Notice that
the video segments cropped by tracking hands are actually based
on a pseudo moving camera model; there might be slight jitter
in the adjacent frames, which introduces a noise for optical flow.

The classification models actually take a role as a coarse
temporal action localization method. We evaluate our temporal
action localization model for more precise localization with a
metric of action localization accuracy at the frame level. Since

TABLE VI
PERFORMANCE COMPARISON OF ACTION UNDERSTANDING MODELS

the two-stream-based methods with a high computational cost
to get dense optical flow are not suitable for application, we
compare our method with a recent temporal action localization
model CDC [26] that is also based on the 3-D convolutional
networks.

As shown in Table VI, although the class models archive a
high accuracy at the segment level, even if the ground truth of the
segment-level label is given, there is a large gap in a frame-level
accuracy. By contrast, our temporal action localization model
(C3D-TAL) with acceptable additional parameters and time cost
has a much higher frame-level accuracy. As shown in Fig. 5,
the temporal action localization model can handle segments
with multiple action instances, while the classification method
does not. Although the two-stream networks are faster than the
networks based on 3-D convolution for inference, they require
extra time for extracting the dense optical flow, which costs
around 12 ms for a pair of frames (i.e., 180 ms for a segment) on a
GPU server. It is impractical for real-time computation on a low-
cost embedded device. We report the average inference speed
of each model. When the sample interval G = 2, a segment
represents 32 frames (around 1 s) in the video. Generally, there
are two segments at the same time, which means we need to
detect and track hands in 32 frames and predict actions for
two video segments in a second. We implemented a frame data
buffer for video processing pipeline, which reads the frames in
a separate thread. The data are used by the tracking module
and the action module in discrete steps along the dataflow path.
Benefiting from our lightweight detection and tracking module,
the time consumption is around 450 ms for tracking hands on
the embedded device. The remaining time is sufficient for our
model to predict actions.

VI. CONCLUSION

In this paper, we presented a lightweight learning-based
framework for hand motion capture and action understanding,
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which aims to collect the real data of operations in assembly
lines for quality control, production planning, and proficiency
evaluation. Particularly, a robust tracking method was designed
to adapt the challenging hand movements, and a novel tempo-
ral hand action localization model was introduced to detect the
content of hand operations. The experiments conducted on each
part of the frameworks demonstrated the speed and accuracy of
our method. Our approach that has been deployed on several
production lines in real factories validated the effectiveness of
the entire framework.

Our future works are as follows. Firstly, a better categorization
of actions will be studied to achieve a more comprehensive ac-
tion understanding. Secondly, understanding the combinations
of atomic actions to detect more complex motion patterns will
be more meaningful for the further analysis. Thirdly, the action
model can be more compact; two-stream methods with faster
dense optical flow estimation will be studied.
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