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a b s t r a c t

In this paper, an accurate real-time ball trajectory estimation approach working on the onboard stereo
camera system for the humanoid ping-pong robot has been presented. As the asynchronous observations
from different cameras will great reduce the accuracy of the trajectory estimation, the proposed approach
will main focus on increasing the estimation accuracy under those asynchronous observations via
concerning the flying ball’s motion consistency. The approximate polynomial trajectory model for the
flying ball is built to optimize the best parameters from the asynchronous observations in each discrete
temporal interval. The experiments show the proposed approach can performance much better than the
method that ignores the asynchrony and can achieve the similar performance as the hardware-triggered
synchronizing based method, which cannot be deployed in the real onboard vision system due to the
limited bandwidth and real-time output requirement.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The task to build the onboard vision system for the humanoid
Ping-Pong robot,1 shown in Fig. 1, is a challenge, as the vision
system equipped on the robot will be constant vibration when the
arm hitting the ball. Thus the vision system needs to estimate its
6 DOF pose related to the table quickly and localizes the ball’s
coordinates related to the table by the triangulation and then
estimates the trajectory of the ball to further predict the ball’s
arriving time, velocity and position for the visual servo planning
of the arm. In the designated vision system, the multiple-camera
pose estimation algorithm [1] is used to estimate the pose in real-
time and a Kalman filter [2,3] based estimation method to predict
the status of the ball. Then the accurate real-time ball trajectory
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1 The video of our Ping-Pong robot working with onboard vision system is

attached in the submission system.

estimation becomes the critical point for the onboard stereo vision
system.

In the normal rallying, the processing of the ball flying through
the table only takes less 600 ms. The arm needs to occupy about
400 ms to start its motion and move to the hit point, and the
prediction will cost 50 ms, there are only less 150 ms left for the
ball’s trajectory estimation. Thus two difficulties for the trajectory
estimation come up.

The first difficulty is to design the optimal capture software
and hardware system that can consider both the accuracy and
the capability of real-time performance. In the designated vision
system, two cameras2 working at a resolution of 640 × 480
pixel, 60 frame/s are used. Although a larger frame rate and higher
resolution will lead to more dense or accurate observations for the
trajectories, it will also slow down the output of the estimation
results of the trajectory due to the limitations of the computation
and transferring bandwidth. In the designated vision system, it is

2 There is a rigid constraint among these two cameras when mounting, the
constraint can be calibrated offline.
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Fig. 1. Our Humanoid Ping-Pong Robot equipped with two onboard cameras with a baseline of 34 cm on the robot’s head. It can walk by two legs and rally to human only
with its onboard stereo vision system.

difficult to use the hardware triggers to synchronously control the
capturing of the stereo images, as the hardware triggered mode
needs to synchronize the capturing time strictly and will interrupt
the data transferring from the camera to the principal computer on
the robot, thus the time of the image pairs processed in the com-
puter will severe lag their captured time and the prediction for the
ball’s arriving time will be intractable, although it can guarantee
the synchronism of the image pairs from different cameras.

Then the second difficulty comes up, how to reduce the errors
in trajectory estimation caused by the asynchrony stereo image
pairs. Although these two cameras are set at the frame rate of
60 HZ, their real frame rateswill bewave around their setting rates
and there is also a time interval between those image pairs as the
hardware-triggeredmode is not available. This small time gap such
as an interval less than 1/60 s will also lead to large estimation
errors to the trajectories, as there will be a remarkable motion for
the fast ball between two asynchronous observations from stereo
cameras. Fig. 2 shows the result of a simulation experiment, which
can illustrate that the different time gaps of the two cameras will
induce significant affections of localization accuracies. The results
show that the estimated localization errors from the first 10 pairs
of observations3 may rough close to be the ball’s radius, those
errors thus will be amplified in the prediction processing and then
the robot’s armwill fail to hit the ball back to the expected position.

In the following, we will address on the second difficulty and
propose a ball trajectory estimation method, which can output
accurate trajectories for the humanoid ping-pong robot in real-
time, the proposed approach will consider both the asynchrony
caused by the software trigger and the ball’s motion model simul-
taneously.

2. Related works

In practical real-time vision tasks [4–9] such as accurate detect-
ing [5] or tracking [6] fastmoving targets, the temporal asynchrony
problem among the cameras usually is non-ignorable as the tiny
temporal intervals among asynchronous camerasmay lead to large
estimation errors especially when the velocities of the targets are
quite large or even the worst condition that one of the camera’s
frame rate is unknown. Thus almost all those multi-camera vision
systems [10–12] need to concern the asynchronism among the
cameras for accurate results.

3 As mentioned previously, only 150 ms, which can be approximated into 10
frames of the camera working with 60 fps, is left to our vision system to capture
the images of the ball and estimate the trajectory of the ball, so we only concern the
localization errors of the first 10 pairs of the ball’s images.

There are three categories of themethods to synchronizemulti-
camera system: hardware-triggered synchronization, software-
triggered synchronization, and motion consistency based synchro-
nization.

The hardware-triggeredmethods [23–27] use special hardware
to connect all cameras physically and control their capturingwith a
synchronous signal. Then the time gap between different cameras
can be reduced to the level of microsecond, which can be suitable
for most of the synchronous observations in fast motions. The
drawbacks of these approaches are also obvious, the physical con-
nection for those cameras may not be available in some practical
applications. In addition, the strict physically synchronization will
seriously affect the real-time capability of the image frames, as the
hardware signal is treated as a higher priority that will interrupt
and delay the transferring of the images to the processing devices.
Then these methods are not suitable for those systems, such as the
onboard vision system of the ping-pong robot, with the require-
ment of real-time capability.

Instead of using hardware triggers to send signals, the software-
triggered methods [13–15] will use some software synchroniza-
tion commands to trigger the multi-camera or estimate the time
intervals among cameras. The binary light source based synchro-
nization [13] is a typical software-triggered method, which uses
a random on–off light source to generate a binary valued signal
that is captured by the video cameras, and then the captured
binary-valued sequences are matched to estimate the time inter-
vals among cameras. Moreover, some systems [14,15] may use
the network messages to synchronize the clocks of the computers
directly connected with the cameras and the network latency is
also concerned during the synchronizing. Although this kind of ap-
proach does not require that all the cameras should be connected
physically with a triggering control unit, it also requires additional
devices or special connection architectures, e.g. the client/server
architecture in [14], to produce the software commands for the
synchronizing of cameras.

The motion consistency based methods [16–19] can be re-
garded as post-processing synchronizations; these methods will
utilize the consistency of the motions observed by different cam-
eras in both time and space. Thesemethods need to capture enough
image frames of the same motion from different cameras and thus
estimate the time gaps among those cameras based on the fact that
the timeline of the motion is unique and all the observations from
different cameras should be consistent with the unique motion.
There are varied consistency features that may be used to estimate
the time gaps, such as the dynamic silhouettes of objects [16], the
distribution of the correlating space–time interest point [17], the
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Fig. 2. Simulation example of the impact relations between the capturing time gap of two cameras and the trajectory estimation errors. In this simulation, two cameras are
setting with a resolution of 640 × 480, working at 60 frames/s and use the intrinsic and external parameters as same as the real cameras. The x-coordinate is the number
of the frame pair, which contains two frames from different cameras with a time gap of t12 . The y-coordinate is the distance error between the estimated position from
asynchronous observation and the ground true value.

similarity of the action features [18], the photogrammetric fea-
tures [19] and the motion model of the object [20] etc. The motion
consistency basedmethods do not require additional synchroniza-
tion devices, thus can be more flexible comparing to the previous
two kinds of methods. The proposed synchronizing approach in
this paper may be categorized into the motion consistency based
synchronizations. As there are fewer image features, normally the
observations can only obtain the ball and the reference points
in the Ping-Pong table by color segmentation, the flying ball’s
physical model will be employed as the motion consistency.

3. Trajectory estimation with asynchronous observations

3.1. Camera model used in the proposed approach

In the proposed onboard vision system, the intrinsic param-
eters and external parameters of those two cameras are already
calibrated, then the ball center can be recovered by the following
perspective projection model [20]:⎡⎢⎢⎣
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(Xw, Yw, Zw)T and (Xc, Yc, Zc)T denote point P in world coordinate
and camera coordinate respectively, and P ’s image is denoted as
(u, v)T. A3×4 is camera’s intrinsic matrix. R and t denote the cam-
era’s external parameters.

Based on formula (2):
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, using m̃ =

(u, v, 1)T and M̃ = (Xw, Yw, Zw, 1)T to denote the homograph co-
ordinate of the image point and the world homograph coordinate
of the point respectively, then:
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(5)

3.2. Motion model of the flying ping-pong ball

As the proposed onboard vision system needs to estimate the
accurate ball trajectory quickly before the ping-pong ball flies over
a quarter length of the table. Thus the motion model of the flying
ball should be able to obtain accuracy trajectory as well as costing
with tiny computation complexity. The forces [21,22] acting on the
flying ball is shown in Fig. 3.

The world coordinate is located at the center of the table, there
are four forces, i.e. the gravity (Fg ), the air resistance (Fs), the air
buoyancy (Fb), and the Magnus force (Fm) acting on the flying
ball. As the ping-pong bat used by our robot is pure wooden, the
ball will be barely spinning when hitting, then the Magnus force
can be regarded as zero. Fg and Fb are always along the vertical
direction and have the opposite direction and constant magnitude,
thus it can be denoted as an unify FVertical = Fg − Fb. The air
resistance is assumed to be always contrary to the ball’s flying
direction and proportional to the ball’s velocity. In the following
approximated motion model, the air resistance is not involved
directly; however, the air resistance can be implanted during the
parameters estimation.4

Using g, Q̈ (t) , Q̇ (t) ,Q (t) to denote the gravity acceleration,
the ball’s acceleration, velocity, and position at moment t , then
the ball’s approximated motion model in the world coordinate is
presented:

Q̈ (t) =

⎡⎣Ẍ(t)
Ÿ (t)
Z̈(t)

⎤⎦ =

⎡⎣ 0
0

−g

⎤⎦ (6)

Q̇ (t) =

⎡⎣Ẋ(t)
Ẏ (t)
Ż(t)

⎤⎦ =

⎡⎣ Ẋ(t0)
Ẏ (t0)

−g(t − t0) + Ż(t0)

⎤⎦ (7)

4 The proposed approach uses an approximate model to fit the motion in a short
interval, in this condition, these estimated parameters fitted for the approximated
motion model already contain the affection of the air resistance.
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Fig. 3. The world coordinate and forces on the flying ball.
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Obviously, it is a polynomial approximated model for the flying
ping-pong ball. Here t0 is the initial moment. It only needs to
estimate seven parameters, i.e., the initial position of the ball
X (t0) , Y (t0) , Z(t0), the initial velocity of the ball Ẋ (t0) , Ẏ (t0) ,
Ż(t0) and the gravity acceleration g .

3.3. Trajectory estimation

In the proposedmethod,we assume the capturing cycles of both
cameras are stable although the capturing cyclesmay be varied and
unknown. The time intervals (or capturing cycle) among two suc-
cessive frames are denoted as t1 and t2 for the left camera and right
camera respectively. In the proposed onboard vision system, it is
difficult to use the hardware-triggered method to synchronize the
capturing time of both cameras due to the bandwidth limitation to
output andprocess the frames in real-time, then these two cameras
will work asynchronously, t1,2 is used to denote the time gap
between two cameras. Furthermore, the time gaps will be shifty
with the variations of the overload conditions in the operating
system and the overload of the CPU and Bus etc. Thus t1,2 is not
a stable constant in practice and will be changed related to the
system overloads. In the proposed approach, the image capturing
time gaps, t1,2, is assumed as a constant in a short time quantum,
which is reasonable in practice. Thus t1,2 can be regarded as a stable
value in a very short observation.

The flying ball’s homograph coordinate based on the motion
model can be given as follow:

Q̃ (t) = [X (t) , Y (t) , Z (t) , 1]T (9)
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1
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quences and their corresponding world coordinate from the left
camera, and use mj

2 and Q̃ (tmj
2
)(j = 1, 2, 3, . . . , q) to denote the

image point sequences and their corresponding world coordinate
from the right camera. Although the images fromdifferent cameras
are not synchronous, the capturing sequence for the same camera
can be in a right temporal order, which means the capturing time
ofmi

1 will be earlier than the capturing time ofmi+1
1 .

Then the following formula that can transform the world co-
ordinate of the ball to its corresponding image coordinate can be
obtained, based on formula (5):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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In the above formula, m̃i
1 and m̃j

2 are denoted as the left and
right cameras’ re-projections from the ball’s world coordinates

respectively, and the time moment at the first frame coming from
left camera is t0. The trajectory estimation can be regarded as a
discrete optimization problem shown in formula (11), which is to
use many parameterized sub-trajectories in a short time quantum
to represent the whole trajectory, and once the parameter sets
for every sub-trajectories are obtained, the whole trajectory of the
flying ball can be estimated.
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Based on the formula (6)–(11), the optimization need to solve
nine parameters, which are denoted with a parameter set E
(E = {X (t0) , Y (t0) , Z (t0) , Ẋ (t0) , Ẏ (t0) , Ż (t0) , g, t2, t1,2}). In
the proposed approach, the Levenberg–Marquardt (LM) optimiza-
tion method is used to solve these parameters, and the initial set-
tings for these nine parameters are also discussed in the following
section.

As the onboard vision system for ping-pong robot needs to
process the camera observations and output predictable results
for the flying ball in real-time, the trajectory cannot be optimized
until all the observations obtained. Following the idea of estimating
the discrete sub-trajectories to estimate the whole trajectory, we
present an algorithm to estimate the parameter set E for each
sub-trajectories and also iterate to optimize the sub-trajectory’s
parameters with a slider window policy.

The Slider Window based Real-time Trajectory Estimation Al-
gorithm (SWRTEA) is given as follow:

3.4. Discussing and setting on the algorithm

As each slider window in algorithm 1 will confirm a position
state for the ball’s trajectory, it is easy to generate the ball’s trajec-
tory, which can be represented by a sequenced discrete position
states located in the timeline of both cameras.

As mentioned in previous section, the formula (11) in the
SWRTEA is solved by the LM optimization method, thus the rea-
sonable initial values for those parameters are required. There
are nine parameters in E. The initial values of the gravity accel-
erate is set as g = 9.8 m/s2, and t1,2 =

t1
2 , which means

the initial value of time gap is half cycle of the left camera, t2’
initial value is set the same as t1. As the time beginning from the
first iteration, which means Q̃ (t0) = Q̃ (0) at the observation
of m1

1. The proposed approach will first assume the observations
from both cameras are synchronous, thus the initial values of
X (t0) , Y (t0) , Z (t0) can be calculated from m1

1 and m1
2. Then the

initial values of Ẋ (t0) , Ẏ (t0) , Ż (t0) can be obtained by derivation
the positions of two successive observations from both cameras
which are assumed to be synchronous. After the first iteration,
those new estimated parameters are used as the initial values in
the next optimization iteration.

There are two additional parameters, i.e. H and K (Hi
1,K

i
1 for

the left camera, Hj
2,K

j
2 for the right camera), which need to be

mentioned. These two parameters are consistingwith the cameras’
intrinsic matrix and their corresponding external parameters at
each observation. The intrinsic matrix of camera is calibrated of-
fline, while the external parameters should be updated for each
observation. In the proposed onboard vision system for the ping-
pong robot, there are eight landmark points with known coordi-
nates placed on the table and the Perspective-n-Point method is
used to estimate the external parameters of the camera in real-
time.

As there are less than 15 points in the short time interval when
the balls fly over 1/4 of the table, the slider window size s will
also be less than 15, thus there are only dozens of dimensions in
the optimization, and the temporal computation for SWRTEA is
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also quite low as the parameters that need to be estimated can
be initialized very close to the optimal values. Thus step 5 in the
algorithm can reach the extremum with only several iterations,
and guarantee the real-time performance.

Furthermore, the time-consuming of the LM optimization is not
significantly relying on the window size, as there are only nine
parameters for every point pairs from different cameras, thus the
optimization temporal costs for window size 1 to 15 are almost
the same. Then the time-costs of varied window sizes are not
the main issue that should be concerned to choose the window
size. In the above algorithm, the size of the slide window is used
as a parameter to adjust the fitting results. To achieve real-time
estimation results, our model for the ball’s flying trajectory is an
approximation version of the real model, which simplifies many
complex parameters. Then it needs to fit proper parameters for
that simplified model with the real data. The slide window size
may be regarded as an important parameter in model fitting to
decide in which time interval the simplified model can be most
approximated to the real observation results, as the size of the
slide window is equal to the length of the time interval used in the
optimization. That is why the results with slide window size of 5
will be better than that with window size of 10 in the experiments
of Fig. 4.

4. Experiments and discussion

This section will present comprehensive experiments in both
simulation and real ping-pong robot system to evaluate the perfor-
mance of the proposedmethod and other state-of-the-art method.
This sectionwill compare the proposedmethodwith the trajectory
estimation method5 that directly calculates the positions of the
balls from a pair of images captured by two different cameras
without concerning the asynchrony between the cameras. This
method [22] is denoted as SA (Synchronizing on Asynchronous
condition) in the following experiments.

As the continuous trajectory of the ball is hard to be quantita-
tively evaluated, a discretemetric named timeline error to evaluate
the accuracy of the estimation is defined. And a discrete represen-
tation, Q (t) = [X (t) , Y (t) , Z(t)]T, is used to denote a piece of the
trajectory. The corresponding ground true trajectory is denoted as

5 The same ball motion model for both methods is used to compare fair.

Q ′ (t) = [X ′ (t) , Y ′ (t) , Z ′(t)]T. Then the errors can be calculated as
follows:
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Where n is the number of points in that piece of trajectory, if
the points number is equal to the size of the slider window, that is
n = s, then the quantitative error metric for each sub-trajectories
output by algorithm 1 can be obtained.

4.1. Simulation experiments

In the simulation experiments, the ground true trajectorieswith
the model in [21] are first generated, the model concerns almost
all the possible factors when the Ping-Pong ball flying. The exper-
iments also simulate two cameras working at 60 HZ with varied
time gaps, and obtain their estimation results with the proposed
approach and SA method. Then the errors can be calculated with
formula (12) for both methods working on different time gaps.
Fig. 4 shows the experimental results of trajectory estimation
errors comparing with the ground true trajectories.

In Fig. 4, the results indicate that the performances of SWRTEA
are always better than the performances of SA. The experiment of
Fig. 4 has employed three window sizes, i.e., 5, 10, and 15, and
the results show the size of 5 can obtain the best performance,
results of SWRTEA working at window size 5 on t1,2 = 3/600 s
and t1,2 = 5/600 s can be lower than 2 mm comparing with the
ground truth.

From the results in Fig. 4, it also proves the analysis of Sec-
tion 3.4, that the slider window’s size will also be related to the
accuracy of estimation, and the larger sizewill not lead to better ac-
curacy in ourmodel as it is an approximatemodel. To achieve real-
time estimation results, the proposed approach simplifies many
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(a) t1,2 = 3/600 s. (b) t1,2 = 5/600 s.

Fig. 4. The comparison results of the simulation experiments on trajectory errors estimated by SA and SWRTEA with varied window sizes. Here CB is the current beginning
of the slider window. The circles are denoted as the Em of SA, and stars are denoted as the Em of SWRTEA.

Table 1
The frame rate settings.

Experimental group I Left camera 60 HZ
Right camera 80 HZ

Experimental group II Left camera 60 HZ
Right camera 40 HZ

Experimental group III Left camera 60 HZ
Right camera 60 HZ

complex nonlinear parameters, thus the model used to estimate
the ball’s flying trajectory is reduced to an approximation linear
version of the real nonlinear physical model. Then it needs to fit
proper parameters for that simplified linear model from the real
data. The slide window size may be regarded as an important
parameter in model fitting to decide in which time interval the
simplified linear model can be most approximated to the real
nonlinear observation results, as the size of the slide window is
equal to the length of the time interval used in the optimization.
Obviously, a shorter time interval fitting with the approximate
linear model will be closer to the real nonlinear model. That is why
the results with slide window size of 5 will be better than that
with window size of 10 in the experiments of Fig. 4 (if the window
size is less than 5, there will be less constraint for the optimization
formula (11) and itwill also lead to aworse results). So thewindow
size is set as 5 in the following experiments.

In the second simulation experiment, the slider window size is
set as 5, and concerning the detailed performances of these two
approaches on different t1,2. The results are shown in Fig. 5. The
results in Fig. 5 illustrate that although t1,2 is varied, the errors of
SWRTEA will converge to a small value, while the errors of SA will
increase significantly with the value of t1,2 increasing.

The third simulation experiment will evaluate SWRTEA work-
ing on the condition that one of the camera’s frame rate is un-
known. The simulation experiment sets three experimental groups
shown in Table 1, and the experiment will assume the frame rate
of right camera is unknown.

The experimental results on the unknown frame rate camera
are given in Fig. 6, and the trajectory estimation results are shown
in Fig. 7. The results show the estimation errors on frame rate are
quite low, even in the worst condition of group II, the maximal
estimation error is slightly larger than 1%. And the corresponding
trajectory estimation errors are also suitable small, that the maxi-
mal error is less than 3 mm in all the groups.

The overall performance of the proposed approach will be fur-
ther concerned. The average trajectories estimation errors under
different t1,2 are calculated. In our task, there is only less 150 ms
left for the vision system to estimate the trajectory, and the ball
just can fly over a quarter of the table within such an interval.

Table 2
Average errors for SA and SWRTEA under different t1,2 .

Average Etrajectory/mm STD/mm

t1,2 = 1/600 s SA 3.42 1.54
SWRTEA 0.830 0.122

t1,2 = 2/600 s SA 6.74 3.14
SWRTEA 0.803 0.122

t1,2 = 3/600 s SA 10.06 4.72
SWRTEA 0.793 0.141

t1,2 = 4/600 s SA 13.21 6.23
SWRTEA 0.783 0.145

t1,2 = 5/600 s SA 16.42 7.75
SWRTEA 0.767 0.130

So only the trajectory’s section that the ball flies into the table
and flies over a quarter of the table, i.e. y ∈ [−1375, −700],
is calculated. For each time gap, the experiment simulates 110
trajectories with the constraints of x ∈ [−500, 500], z ∈ [80, 400].
For each trajectory, the corresponding error is averaged on each
slider window Em to obtain the average trajectory error Etrajectory
for each single trajectory, and then average the Etrajectory of those
110 trajectories. The results are shown in Table 2. And the results
show that SWRTEA can achieve impressive better performance
than SA when considering their average estimation error on the
same trajectories.

4.2. Experiments on practical vision system

The experiments on our ping-pong robot hardware system are
also carried out, shown in Fig. 8, which having two cameras with
a rigid baseline of 34 cm, both cameras work at 60 HZ and output
the imagewith a resolution of 640× 480. An external stereo vision
system is also deployed to obtain the ground true trajectories
for evaluation; the external vision system has two high speed
cameras put on the ceiling of the table. Both external cameraswork
at 120 HZ, and also are synchronized by the hardware-triggered
signals, thus the ground true trajectories can be calculated offline
from those image pairs obtained by the external vision system.

In the experimental scene of Fig. 8, it is almost impossible
to align the observations from the external and onboard vision
systems. Thus the calculation for formula (12) is not available. So
this experiment aligns the continuous trajectory6 generated by the
observations from low rate onboard vision system with the dis-
crete observations obtained from the fast rate external vision sys-
tem in the Y direction. That is to choose the positions, which have

6 The continuous trajectory can be generated with interpolation based on the
parameterized formula (8).
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Fig. 5. The comparison results of the simulation experiments on trajectory errors estimated by SA and SWRTEA with different t1,2 . The circles are denoted as the Em of SA,
and stars are denoted as the Em of SWRTEA.

Fig. 6. Simulation comparison results of the frame estimation errors on SWRTEA with different window sizes. Here fm =
festimated −freal

freal
× 100%.

Fig. 7. Simulation comparison results of the trajectory estimation errors on SWRTEA for the three experimental groups.
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Fig. 8. The experimental setting in our practical vision system for the ping-pong
robot. 1, 2: Two external cameras working at the frame rate of 120 HZ installed on
the ceiling; 3, 4: The hardware trigger to synchronize those two external cameras;
5, 6: Image data transferring from cameras to computer for offline processing;
7: Pitching machine launching repeatable trajectories of the flying ball; 8: World
coordinate in the center of the table.

the same Y coordination with the discrete observations obtained
from the fast rate vision system, from the continuous trajectory
estimated by the low rate vision system, and then compare their
biases on X and Y directions. Then the error on a piece of trajectory
can be calculated as follow:

E ′
x = (

1
n

n∑
i=1

|xi (Yi) − x′

i (Yi)|
2)

1
2

E ′
z = (

1
n

n∑
i=1

|zi (Yi) − z ′

i (Yi)|
2)

1
2 (13)

E ′
m =

1
n

n∑
i=1

⏐⏐|Q (Yi) − Q ′ (Yi)|
⏐⏐
F

Here Yi is sampled from the ground true trajectory that ob-
served by the external stereo vision system, there are n sampled
points in that ground true trajectory. And the error calculated by
formula (13) is called unified Y error.

In the first real experiment, the real observation image se-
quences are employed, and these images are captured by the
external stereo vision system working at the frame rate of 120 HZ
and strictly synchronized. In the experiment, the stagger frames
fromboth external cameras are selected. Thus these stagger frames
construct two asynchronous image sequences whose frame rates
are all 60 HZ and have a time gap of 5/600 s between each other.
Both SA and SWRTEA methods are then executed on those two
constructed image sequences, and calculate their unified Y errors
and timeline errors shown in Fig. 9 and Fig. 10 respectively.

The results in Fig. 9 are calculated by formula (13) as the ground
truth at the sample point Yi can be calculated by the synchronized
frames of the external stereo system in 120 HZ. In both error met-
rics, these two methods under varied window sizes, i.e., 5, 10, and
15 are also be evaluated. As the time stamp for each observation
in the asynchronous image sequences can be corresponding to the
observation used in the ground truth, the timeline error can also be
calculated with formula (12) shown in Fig. 10.

According to Fig. 9 and Fig. 10, the results show the proposed
method can achieve much better performance than SA on varied
window sizes. Although the results on Fig. 9, Fig. 10 also show
the absolute error calculated by the unified Y error is less than the
error calculated by the timeline error on the numerical value,7 the

7 As the unified Y error involves only the errors on the directions of X and Z , the
error on direction Y is indirectly coupled. While the timeline error concerns all the
errors in directions of X , Y and Z .

results on both figures indicate the same consistent performance
for those two methods, SWRTEA and SA. Comparing the results on
Fig. 10 and Fig. 4, it can be observed that the curves on both Fig. 10
and Fig. 4 are almost similar, which also indicate the consistency
between the simulation results and the real experimental results.
The timeline errors of the SWRTEA in Fig. 10 are all less than 3 mm
on the condition of window size 5, thus the proposed method can
satisfy the accuracy requirement of the onboard vision system for
humanoid ping-pong robot, as the error is only 1/10 of the ball’s
radius.

In the second real experiment, the onboard vision system of
our ping-pong robot is employed to obtain the trajectories of the
ball, and the offline processing results are used from the captured
images captured by the external stereo vision systemas the ground
truths. In that experiment, the slider window size is set as s = 5,
and each sample point Yi involving in the error calculation is
extracted from the external vision system’ observations based on
formula (13). The results are given in Fig. 11.

Fig. 12 gives out the estimated trajectories by SA and the pro-
posedmethod comparedwith the ground truth trajectory obtained
from the external vision system as shown in Fig. 8. Here Fig. 12 only
plots the Y -Z projections of the estimated trajectories. The results
indicate that the proposed method can perform much better than
SA and is almost overlapped with the ground true trajectory.

In the third experiment, the camera system working on varied
frame rates will be evaluated. Two groups of camera settings,
which assume the frame rate of the right camera in each group is
unknown, are used. The trajectories generated by these two groups
of camera settings are compared with the ground truth trajectory
obtained from the external vision system as shown in Fig. 8. The
trajectories estimated by SWRTEA and SA methods are given in
Fig. 13. The corresponding trajectory estimation errors are given
in Fig. 14. The results show that the SWRTEA can perfect approach
the ground truth and much better than the results of SA, although
the frame rate of right camera is unknown.

There is also a further experiment to evaluate the overall perfor-
mances of varied method working in real onboard vision system.
This experiment only considers the section of the trajectory from
the start point that the ball flies into the table to the end point that
the ball flies over 1/4 of the table. 48 trajectories with our ping-
pong robot’s onboard vision system are captured firstly; all those
trajectories are launched by a ping-pong ball pitchingmachine. The
unified Y errors for these 48 trajectories on SA and SWRTEA can be
calculated respectively. And the average error for each method is
also calculated. The results are given in Table 3. Here the ground
true trajectories are captured by the external stereo vision system,
which use two high-speed cameras with a frame rate of 120 HZ.
The performance of the proposed approach is then compared with
the hardware triggered synchronization method, which cannot
provide the results online and needs to be processed offline. The
same pitching machine is used to repeat another 36 trajectories
with the exactly same setting as the previous 48 trajectories. These
new 36 trajectories are observed by the same humanoid robot
vision system, while the captured image frames from these two
cameras are synchronized by hardware triggered control signals
with a frame rate of 60 HZ. The same unified Y error based evalua-
tion metric from those synchronous frames are calculated offline,
andHS (hardware triggered synchronization) is used to denote this
method’s average errors in Table 3.

The results in above table indicate that the proposed approach
can achieve much better overall performance than the SA method.
The results also show the performance of the SWRTEA can ap-
proach to the performance of the hardware-triggered synchroniza-
tion method, which cannot output estimation results in real-time
and requires offline calculation.
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Fig. 9. Real experimental results for both trajectory estimation methods evaluated by unified Y errors under different slider window sizes.

Fig. 10. Real experimental results for both trajectory estimation methods evaluated by timeline errors under different slider window sizes.

Fig. 11. Real experimental results of the trajectory estimation errors with onboard vision system, window size is 5.

5. Conclusion

This paper presents an accurate real-time ball trajectory esti-
mation approach, which can solve the problem of asynchronous

observations among different cameras by concerning the flying
ball’s motion consistency, with the onboard stereo camera sys-
tem equipped on the humanoid ping-pong robot. Both simu-
lation experiments and practical experiments are designed to
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Fig. 12. Comparison results of the trajectories obtained by SA, SWRTEA and ground truth. The red dots denote the ground truths, blue circles denote trajectory estimated by
SA, and green circles denote trajectory estimated by SWRTEA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

(a) Group I: left 60 HZ, right 40 HZ. (b) Group II: left 60 HZ, right 30 HZ.

Fig. 13. Trajectory comparison results on SWRTEA, SA and ground truth.

(a) Group I: left 60 HZ, right 40 HZ. (b) Group II: left 60 HZ, right 30 HZ.

Fig. 14. Real comparison results of the trajectory estimation errors on SA and SWRTEA for the two groups.

Table 3
The average estimation results of SA, HS, and SWRTEA on unified Y errors.

HS SA SWRTEA

Average E ′
trajectory/mm 4.19 21.30 5.56

STD/mm 0.397 2.19 0.804

evaluate the performance of the proposed approach comparing
with other state-of-the-art methods. The experimental results
show the proposed method can perform much better than the
method that ignores the asynchrony and can achieve the simi-
lar performance as the hardware-triggered synchronizing based
method.

The proposed approach is built on the framework of optimiza-
tion, thus it is able to be implemented to the cases with more
asynchronous cameras. Furthermore, the optimization framework
of the proposed approach can also support the conditions that only
one of the camera’s frame rate is known, which means the frame
rates of other cameras are unknown, as long as there are enough of
observations from all the cameras.
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Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2017.12.004.
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