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Abstract—In this paper, we present a stereo visual-
inertial odometry algorithm assembled with three separated
Kalman filters, i.e., attitude filter, orientation filter, and po-
sition filter. Our algorithm carries out the orientation and
position estimation with three filters working on different
fusion intervals, which can provide more robustness even
when the visual odometry estimation fails. In our orientation
estimation, we propose an improved indirect Kalman filter,
which uses the orientation error space represented by unit
quaternion as the state of the filter. The performance of the
algorithm is demonstrated through extensive experimental
results, including the benchmark KITTI datasets and some
challenging datasets captured in a rough terrain campus.

Index Terms—Kalman filter, multi-sensor fusion, pose
estimation, robot vision, visual-inertial odometry.

I. INTRODUCTION

V ISUAL-INERTIAL odometry (VIO) is a comprehensive
technique, which fuses the information from both the vi-

sual odometry (VO) and the inertial measurement unit (IMU)
in order to estimate the six degrees of freedom (6DOF) pose.
Therefore, the VIO can combine the advantages of the visual
sensors and the inertial sensors, and can provide more accu-
rate long-term 6DOF odometry estimation. In fact, the VIO has
become an essential technique for mobile robots, especially in
environments without GPS.

With recent advances in the robotics applications, more and
more mobile robots are deployed in complicated and hostile
environments, such as the field rescue robots [1], legged robots
[2], [3], service robot [4], [5], etc. As a result, the VIO faces new
challenges in order to work under these environments. There
are two main challenges for the VIO systems working in hostile
environments.

A. Mismatch of the Fusion Interval With VO and IMU

There is an intrinsic conflict in VIO due to the different mea-
surement principles of VO and IMU. As we all know, the sam-
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pling rate of the IMU is normally three to five times of the cam-
era’s sampling rate. This means that the IMU will output three
to five measurements between two adjacent images. Classical
Kalman filters combine visual and inertial cues in two nonopti-
mal ways. The first way is to ignore the abundant measurements
from the IMU in order to synchronize the measurements from
both the IMU and the VO [6]. This method is obviously unsat-
isfactory because it loses dynamic information from the IMU,
which can trace better than an assumed model if with a higher
sampling rate [7]; the second way is to propagate the IMU’s
state model for several times before the VO updating the state
estimates [8]. However, this method equals to integrating mea-
surements of the IMU between the adjacent updates of the VO
in essence. In this situation, the drift of the estimation from the
IMU will be raised significantly with the increasing of the fu-
sion interval, as the IMU requires the VO to rectify its drift as
soon as possible, especially for the translation drift during the
fusion of the VIO. On the other hand, the VO always suffers
from the image pairs with small motion, which will lead to fail-
ure or low estimation accuracy. So the VO tends to implement
a key-frame technique, which tries to use the image pairs with
a relative large motion (equal to increasing the temporal fusion
interval), to improve the estimation accuracy of the 6D motion.
Then, the accuracy of the estimation from the VO can be im-
proved with the increasing fusion interval, which is in conflict
with the propagation of the IMU. We call this conflict as mis-
match of the fusion interval, which is more severe in challenging
environments, such as rough roads, bumping, illumination vari-
ation, occlusions, etc., and will lead to frequent VO failures.
So the first challenge is how to design the VIO filter that can
balance the requirements of VO and IMU on the fusion interval
simultaneously.

B. Maintain robust VIO Estimation With Low-Precision
IMU

IMUs which can offer high accuracy for extended periods of
time are both bulky and expensive [9]. However, small mobile
platforms require the VIO system to be small volume and low
price and, thus, highly precise IMUs have to be replaced with
noised low-cost ones [10]. Currently, there are a lot of VIO fu-
sion algorithms and benchmark datasets, but most of them need
to deploy a highly precise IMU to measure the vehicle move-
ments [11]–[13]. Provided with noised IMU measurement, their
algorithms are proved to be not always effective in challenging
environments. In fact, it is much more difficult to get precision
estimation from low-cost sensors with low-computational re-
sources [10]. Here, we come up the second challenge to design
a robust VIO fusion algorithm that can support low-precision
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IMU working at hostile environments in order to make the plat-
forms portable and economic.

In this paper, we address the above two challenges in chal-
lenging environments and present a novel stereo VIO algorithm
with multiple Kalman filters ensemble. To overcome the conflict
mentioned in the first challenge, we use separated orientation
and position filters (PFs) working on different frequencies to
estimate the 6DOF odometry of the system. In order to support
low-precision IMU addressing on the second challenge, we de-
sign a cascading fusion architecture, which fuses the pitch, roll
twice with the attitude filter and orientation filter (OF) to ob-
tain long-term stable and accurate orientation. The main three
contributions of this paper are given as follow:

1) Separated Fusion for Sensors With Varied Sam-
pling Rate: We decompose the classical integrated VIO filter
into three subfilters, attitude filter (AF), OF, and PF. This sep-
arated fusion framework can support better multiple sensors
working on different sampling rates and fuse them with varied
updating intervals. The PF in our VIO fuses at each sequenced
image frame, and can estimate a precision velocity with the
minimal fusion interval in the VIO to reduce the error caused
by the drift of the IMU. The fusion cycle of the OF is set to the
time interval of two adjacent key frames in the VO, thus the OF
can employ more precise orientation results estimated by the
VO from the image pairs with a larger motion during the longer
interval. The AF can provide accurate fusion results on the pitch
and roll based on the gravity with the fusion interval same as the
output cycle of the IMU. By this way, our VIO fusion algorithm
can take advantages of all the useful information in order to give
better pose estimation.

2) Cascading and Multiple-Level-Fusion Architec-
ture: We use a cascading fusion architecture to estimate ori-
entation, which enables better support on low-precision IMUs.
Our VIO uses multiple-level-fusion, which combines the first
level of AF and the second level of OF, to output robust and ac-
curate orientation. A further PF is used to estimate the position
and velocity by fusing the information from the IMU and the
VO. This can be more robust against the VO failure and large
drifts in low-precision IMUs.

3) Ensemble With Low-Cost Linear Subfilters: We
provide a novel low-cost implementation of the VIO estimation,
which may be more competitive when concerning deploying the
VIO into the embedded computation system. Compared with
the uniformed nonlinear filter, those three linear subfilters in
our VIO only need to estimate a few state vectors, they also do
not need to compute the Jacobi in the EKF or sigma point in the
UKF.

The following section provides an overview of the related
works on the VIO. The stereo VIO with multiple Kalman filters
ensemble is described in Section III. Finally, experiments are
described in Section IV followed by concluding remarks and
future work in Section V.

II. RELATED WORK

The VIO is an extension of the research on visual odometry
[14]. Generally, there are two kinds of VIO systems based on the
number of cameras, i.e., stereo VIO [6], [7] and monocular VIO

[15]–[19]. As the monocular vision system cannot recover its
scale in the estimation, most monocular VIO systems [15]–[18]
employ tightly coupled approach, which combines the disparate
raw data of vision and inertial sensors in a single, optimum
filter, rather than cascading filters, one for each sensor [20].
While almost all the stereo VIO systems employ loosely cou-
pled approach, they use separate inertial navigation and VO
based structure-from-motion blocks running at different rates
and exchanging information [20].

Recent tightly coupled work [11] introduces the nonlinear
optimization into the VIO and treats the visual-inertial fusion as
an optimization problem. This work has a clear fusion frame-
work and can achieve superior performance when both kinds of
sensors can provide high-quality data. The weaknesses are also
obviously, the results are sensitive to the data quality and it is
also easy to converge to the suboptimal solutions once there are
not enough constraints.

When considering the loosely coupled fusion, Kalman filter
is the most popular one among various solutions. There are
two categories based on their data flows of the prediction and
observation in the filter.

The first category [8] uses the measurements of the IMU to
predict the states by the kinematics model and the observations
come from the estimated results of the VO. As the measurements
of the IMU include the linear acceleration, those methods of the
first category are able to provide accurate estimation of the linear
velocity with the kinematics model in a short time interval, those
methods are suitable to estimate motions with variable veloci-
ties. However, those methods are also sensitive to the bias and
drift of the IMU, as they only use the IMU to forecast future mo-
tion. The process to integrate the measurements of the IMU with
the kinematics model can be regarded as an open-loop system,
any small bias and drift on the measurements will be amplified
by the integration operation and cause large estimation errors in
the VO. Especially, when the key-frame technique is employed
in the VO, the time interval that needs to predict by the IMU
will increase, this will bring severer error accumulation. A typi-
cal example of the first category is proposed by Tardif, George,
Laverne, Kelly and Stentz [8]. They used the position, veloc-
ity, orientation, bias of the linear acceleration, and the bias of
the angular speed of the system as the model state vector. The
position, velocity, and orientation of the system in the states
are calculated from the measurements of the IMU. They then
use the position and orientation estimated by the key-frame
based VO as the observations and fuse with an EKF. Obvi-
ously, the accuracy of their prediction model will be signifi-
cantly reduced as the fusion interval is increasing. This happens
especially with low-precision IMUs. Furthermore, the high di-
mension and the correlation of the state vector will also increase
the complexity and difficulty of implementation.

On the other hand, the second category [6] uses the estimated
results of the VO to predict the model state and the observations
come from the measurements of the IMU. Those methods in
the second category are able to attach an additional low-level
attitude filter [21], which is applied in the measurements of
the IMU directly and can provide long-term, stable, drift-free
attitude of the system. The advantage of this attitude filter is
obviously, it can provide long-term accurate attitude angles,
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Fig. 1. Coordinate used in our stereo VIO system, including
IMU(orange sensor in figure) and stereo camera (yellow sensor in fig-
ure). The IMU coordinate is represented by (Xi, Y i, Zi) and its origin
Oi; the camera coordinate is (Xc, Y c, Zc) and Oc; the global coordinate
is (Xg, Y g, Zg) and Og. The direction of the gravity is also shown in the
global coordinate.

which will bring significant improvements on the accuracy of
the odometry estimation. As the estimated results of the VO
cannot provide the linear velocity, there will be some difficulties
to include the linear velocity in the state equation. That is why
all the methods of the second category only consider the OF and
those methods of the second category can also be called inertial-
aided visual odometry. The main drawback of these methods is
that the position estimation will be unavailable once the VO
fails. A typical example of the second category is presented by
Konolige, Agrawal, and Sol [6], which only uses the OF between
the IMU and the VO and achieves a dramatically improvement
on the long-term VO accuracy. However their method cannot
predict the position and velocity once the VO fails. To solve
these problems, we present our cascading fusion architecture
and introduce the PF in our approach.

In short, both categories of the aforesaid approaches cannot
sufficiently address on the challenge of mismatch of the fusion
interval. They are not able to take full use of the information
from both the camera and the IMU. In this paper, we propose a
new VIO algorithm, which uses separated attitude filter, OF, and
PF. In our PF, the propagation and observation of the position
states come from the IMU and the VO, respectively, which
is the same as the first category. In our OF, the propagation
and observation of the orientation states come from the VO
and the IMU, respectively, which is the same as the second
category. Thus, our approach has the potential to combine the
advantages of both categories and suppress their drawbacks to
achieve accurate estimation when using low-precise IMUs.

III. STEREO VISUAL-INERTIAL ODOMETRY

Before introducing the detailed filters, the coordinates used
in our stereo VIO are introduced first, shown in Fig. 1. There
are three coordinates used in our stereo VIO, the original global
coordinate {G}, IMU coordinate {I}, and stereo camera coor-
dinate {C}. We parallel X-O-Y plane of {G} to the horizontal
plane. The Z axis points opposite to gravity. The X-axis points
forward of the mobile platform, and the Y-axis is determined
by the right-hand rule. Then, the task of VIO is to estimate the
6DOF pose of the IMU-affixed coordinate {I} with respect to

Fig. 2. Framework of our stereo VIO with three filters. The first filter
fuses angular speed and linear acceleration of the IMU to get drift-free
attitude estimation. The second filter is an indirect Kalman filter designed
for orientation fusion of the VO and the IMU. The third filter is a PF of the
VO and the IMU.

Fig. 3. Fusion intervals for three sub-filters. The OF has the largest
fusion interval ΔK ; the fusion interval of PF is ΔT ; and the Attitude
Filter has the smallest fusion interval Δt.

{G}. In our VIO, {C} is set at the coordinate of the left cam-
era. As the relative pose between {C} and {I} is rigid, we can
calibrate their relative pose in advance. For simplicity, in the
following filters, the 6DOF pose calculated by the VO is trans-
formed to {I} with the known rigid transformation between
{I} and {C}. Then, our filters only need to predict the relative
6DOF pose between {I} and {G}.

The detailed fusion processing of stereo VO and the IMU is
shown in Fig. 2. Fig. 2 shows that our stereo VIO runs separate
inertial sensor fusion and vision based structure from motion
fusion. It belongs to the loosely coupled approach. This choice
is based on the following two reasons. The first is that the stereo
VO is more precise and complete compared to the monocular
VO, it is also able to avoid the problem of scale ambiguity in
the monocular VO. Using loosely coupled approach will not
break the natural integrity of the stereo VO modular; the second
reason is that the covariances of the stereo VO and the IMU
are varied, sometimes their covariances may lie on different
scales and change with the time, thus it will lead to intractable
estimation for their coupled variance if using tightly coupled
approach.

Fig. 3 shows three different fusion intervals used in our ap-
proach for those three subfilters mentioned in Fig. 2.

A. Stereo Visual Odometry

The basic idea of the stereo VO is to estimate the motion be-
tween two adjacent frames by tracking the same feature points
projected on these frames. In our VIO, the stereo VO is treated
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as an independent module. CenSure detector is widely used due
to its robustness and low-computation complexity. We use Cen-
Sure detector to obtain interest points in the left camera image
and find their corresponding feature points in the right camera
by searching the matched points along the baseline with a min-
imal zero-mean normalized cross-correlation score [22]. Using
those feature pairs from left-right cameras, we can reconstruct
the sparse 3-D points. By tracking the feature pairs between
sequential images with the SURF descriptors, the motion esti-
mation can be described as a 3-D-to-2-D problem [23], which
refers to estimating the motion from the sparse 3-D features
calculated by the stereo vision system in the earlier frames and
the corresponding matched 2-D features in current frames. In
our 3-D-to-2-D motion estimation, RANSAC is also used to
remove those outliers. The 3-D-to-2-D feature pairs from both
cameras are all considered in the same optimization function,
which tries to minimize the reprojection errors of the images
and will concern the rigid constraint of the stereo vision system.

We also implement the key-frame selection and the
Levenberg–Marquardt optimization into the estimation to
improve the accuracy. Similar to [11], the key-frame in our
approach is selected based on the motion between frames. Given
the current key-frame, the next key-frame is selected when
either the norm of the translation from successive candidate
frame to the current key-frame is larger than 0.3 m or the norm
of the Rodrigues representation of the rotation from successive
candidate frame to the current key-frame is larger than 0.25 rad.

Although the stereo VO is quite precise in most of condi-
tions, its performance is also sensitive to many factors, such as
complexity of the motions, illumination changing, environmen-
tal features and quality of images etc. Especially in those high
speed small autonomous mobile platforms, the images are easy
to be blurred, which will lead to failure on feature matching
and thus the stereo VO will fail to estimate the motions. In this
condition, the inertial sensor is helpful to recover the motions.
This is also the reason that the stereo VIO will be more robust
than the stereo VO.

B. Drift-Free Attitude Estimation

Although the IMU can output relatively reliable measure-
ments of the angular speed and the linear acceleration, the
attitude1 only integrated from the measured angular speed may
suffer from drift. Thus, we apply an attitude Kalman filter [21],
i.e., filter 1 in Fig. 2, to output long-term stable attitude, i.e. the
angles of roll and pitch.

Assuming u is the 3D linear acceleration of the IMU in
coordinate {G}, g = [0 0 − g]T is the gravity acceleration
in coordinate {G}, and R is the rotation matrix from {G} to
{I}. We use a to denote the linear acceleration measured by
IMU in coordinate {I}. So the measured a will include both the
gravity acceleration and its linear acceleration

a = R (u + (−g)) = −Rg + Ru

= R [0 0 g]T + Ru = gx + Ru. (1)

1According to [21], attitude refers to the robot’s orientation relative to the
gravity vector, usually described by pitch and roll.

In formula (1), x is the third column of R, it is only related to
the attitude of IMU, and can be represented with pitch and roll.
That is,

x = [−sin (pitch) cos (pitch) sin (roll)

× cos (pitch) cos (roll)]T .

In this equation, yaw is not correlated. If the acceleration u
is treated as the disturbance, then we can observe x by a in
our filter. Because a is not accumulated with time, so attitude
estimation is free from drift.

Based on the kinematics, we have Ṙ = �θ̇ ×�R, that is

ẋ = θ̇ × x. (2)

Here, θ̇ is the 3-D angular speed of the IMU. �θ̇×� is the
skew symmetric matrix, it is also denoted as S(θ̇). Discretizing
formula (2), we can obtain

xn = An−1xn−1 . (3)

Here, An = I + S (θ̇n ) sin(‖θ̇n ‖t)
‖θ̇n ‖ + S 2 (θ̇n )(1−cos(‖θ̇n ‖T ))

‖θ̇n ‖2 . t is

the sampling cycle of IMU. An is an orthogonal rotation matrix.
I is an identity matrix of 3×3.

Based on formulas (1) and (3), we can obtain the system
model: {

xn = An−1xn−1
yn = xn + Rnun/g.

(4)

In (4), y = a/g Rnun/g is treated as disturbance. When ac-
celeration un is small, we can introduce a measurement noise v
to model accelerations. Also, we can introduce a process noise
ω to measure inaccuracies in modeling and gyro noise. Then,
we can obtain the model used in the filtering equations{

xn = An−1xn−1 + ωn−1
yn = Hnxn + vn .

(5)

Hn = σnI, σn is a binary variable that equals 1 or 0 deter-
mined by the acceleration. Hn is designed to reduce error from
large acceleration. When acceleration is larger than the given
threshold, σn = 0. In this circumstance, the system has no ob-
servation and estimates the attitude only by formula (3) until
the next measurement of the IMU is obtained. Even though the
system switches between model with observation and model
without observation, this Kalman filter can be proved to be sta-
ble by both theory and real world experiments [21].

Filter 1: Attitude Filter.
Propagation: For each measurement of the IMU, propagate
the filter state x and covariance Q with angular speed
obtained from the IMU.
Update: If the acceleration of the IMU is less than the given
threshold (2m/s2), σn = 1 otherwise σn = 0.

The covariance matrix Q of ω is a tuning parameter in this
filter and it is assumed to be a diagonal matrix with nonzero
entries. The diagonal elements of Q can be estimated through
the noise of angular speed measurements. The covariance matrix
W of v is also a diagonal matrix, assuming the measurement of
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each acceleration axis is independent. The diagonal elements of
W can be estimated mainly by the acceleration threshold that
determines the value of σn .

C. Orientation Estimation With Indirect Kalman Filter

The OF is used to estimate the three orientation angles of
the system, i.e., yaw, pitch, and roll. In our OF, we introduce
the indirect Kalman filter [24], which uses the orientation error
space represented by the error unit quaternion instead of the
orientation represented by the unit quaternion as the state of the
filter. The state vector of this indirect filter does not need to
be positive or unit and it has only three elements. Its state prop-
agation model and measurement model are also much simpler.
Moreover, the processing of the data fusion occurred in the er-
ror space is represented by the error quaternion, which could be
closer to a linear space and, thus, more suitable to the Kalman
filter.

We use the unit quaternion, G
I q to represent the relative ori-

entation from {I} to {G}. All the orientation values estimated
by VO are also transformed to the coordinate of {I}. We use G

I q̂
to denote the estimate of G

I q, and δq to denote the error between
G
I q̂ and G

I q as following:

G
I q = G

I q̂ ⊗ δq. (6)

⊗ denotes the multiplication operation of the quaternion.
Assuming the rotation estimated by VO between two adjacent

key-frames can be denoted with Δq. Then, we have

G
I q̂k = G

I q̂k−1 ⊗ Δqk−1. (7)

In our approach, we assume the values of δq is normal distri-
bution with mean zero and tiny variances, then based on formula
(6),

G
I qk ≈ G

I qk−1 ⊗ Δqk−1 = G
I q̂k−1 ⊗ δqk−1 ⊗ Δqk−1 . (8)

Then, we have the following derivation:

δqk = G
I q̂T

k ⊗ G
I qk

=
(
G
I q̂k−1 ⊗ Δqk−1

)T ⊗
(
G
I q̂k−1 ⊗ δqk−1 ⊗ Δqk−1

)
= ΔqT

k−1 ⊗ δqk−1 ⊗ Δqk−1 .

Here, δqk−1 can be denoted as

δqk−1 = [δq0 δq1 δq2 δq3 ]
T
k−1

= [δq0 0 0 0]Tk−1 + [0 δq1 δq2 δq3 ]
T
k−1 .

Then,

δqk = ΔqT
k−1 ⊗ [δq0 0 0 0]Tk−1 ⊗ Δqk−1

+ΔqT
k−1 ⊗ [0 δq1 δq2 δq3 ]

T
k−1 ⊗ Δqk−1

= [δq0 0 0 0]Tk−1 +
[

0 0
0 ΔRT

k−1

]
[0 δq1 δq2 δq3 ]

T
k−1

=

⎡
⎢⎢⎢⎣

(δq0 )k−1

ΔRT
k−1

⎡
⎣ δq1

δq2

δq3

⎤
⎦

k−1

⎤
⎥⎥⎥⎦ . (9)

ΔR is the rotation matrix corresponding to Δq. According
to formula (9), we can find the scalar of the error quaternion
remaining constant, while the vector of the error quaternion is
transformed by ΔRT .

With the transformation of modified rodrigues parameters
(MRPs) [18]:

δe =
[
δq1/ (1 + δq0) δq2/ (1 + δq0) δq3/ (1 + δq0)

]T
.

(10)
According to formula (9), δq0 is invariant between state k-1

to k. We then have⎡
⎢⎣

δq1/ (1 + δq0)

δq2/ (1 + δq0)

δq3/ (1 + δq0)

⎤
⎥⎦

k

= ΔRT
k−1

⎡
⎢⎣

δq1/ (1 + δq0)

δq2/ (1 + δq0)

δq3/ (1 + δq0)

⎤
⎥⎦

k−1

(11)

which can be abbreviated as

δek = ΔRT
k−1δek−1 . (12)

MRPs will bring additional convenience during the calcula-
tion of the transformation. The inverse transformation, from δe
to δq, is

δq0 =
1 − ||δe||2

1 + ||δe||2
δq = (1 + δq0) δe. (13)

Assuming the noise of the system is additive, the state model
of the system is

xk = ΔRT
k−1xk−1 + ωk−1 |x=δe. (14)

If we use δe as the measurement vector, the observation
equation of the system is

yk = xk + vk . (15)

ω in (14) denotes process noise and v in formula (15) represents
observation noise of the system.

Then the OF is given in the following:

Filter 2: OF.
Propagation: For each key-frame captured by stereo
cameras, propagate the filter state δe and covariance Q
with relative rotation calculated by VO.
Observation:

(I) Get yaw from IMU measurement, pitch and roll
from Filter 1 at the time that the last key-frame
is acquired.

(II) Get yaw from IMU measurement, pitch and roll
from Filter 1 at the time that the current key-frame
is acquired.

(III) Compute the relative rotation between two
key-frames with the angles above.

Update: Each time a key-frame is obtained, perform a
Kalman update.

Because xk and yk are both vectors in the approximate-
linear orientation error space, elements of them can be regarded
as decoupled with each other. So the covariance matrix Q of
process noise ω and the covariance matrix W of measurement
noise v are set to be diagonal matrixes. The sensors (camera and
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IMU) are installed close to horizontally on the vehicle and their
attitudes have small variation amplitude, diagonal elements of
Q and W can be determined by the uncertainty of roll, pitch,
yaw estimation from different sensors, respectively. Diagonal
elements of Q can be determined by the uncertainty of VO’s
motion estimation. Diagonal elements of W can be determined
by the uncertainty of IMU’s orientation estimation.

Finally, update equation of the filter turns out to be

x̂k = x̂−
k + Kk (yk − x̂−

k ) = δê−
k + Kk (δê−

IMUk
δê−

VOk
)

≈ δê−
VOk

+ KkδeV O
IMUk

. (16)

δeVO
IMU in (16) denotes the MRPs of δqV O

IMU , and

δqV O
IMU = ΔqT

V O ⊗ ΔqIMU .

Here, ΔqIMU denotes the rotation between two adjacent key-
frames measured by the IMU, and ΔqV O denotes the rotation
between two adjacent key-frames measured by the VO. δqV O

IMU
denotes the relative orientation between ΔqV O and ΔqIM U .

After filtering, x̂k is transformed into unit quaternion by
formula (13) and combined with the result of VO to obtain the
final estimates. Obviously, there are two advantages in our OF;
the first one is that our filter occurs in current orientation’s error
space, which meets the linear requirement of Kalman filter. The
second advantage is that our filter does not require addition
operation on the unit quaternion, this will maintain the unit
constraint of the unit quaternion.

D. Position Filtering

As mentioned in Section II, our PF uses the measurements of
IMU as the forecast and the observation comes from the VO,
which is opposite to our OF. In additional, the fusion intervals
of these two filters are designed to be different based on the
following considerations.

The OF working on the interval of the key-frame can improve
the estimation accuracy of the orientation. However, the incre-
ment on the fusion interval also brings two drawbacks. First,
the estimation of the position and velocity from the measure-
ments of IMU will suffer from the long fusion interval due to
the Abbe error2 of the large acceleration measurement (most of
the time caused by large gravity acceleration), even tiny bias
on the linear acceleration will lead to dramatic position error
accumulation over time. Thus, the accurate estimation of the
position and velocity with IMU is only limited to the short time
interval; second, the large fusion interval will also lead to rough
estimations on the position and velocity during the interval, be-
cause of the random drift of IMU and lack of feedback. This
will constraint the implementation of the VIO in the cases of
visual servo, which need smooth position and velocity output in
a short cycle. The experiment in Fig. 9 demonstrates the rough
estimation of the velocity when using large fusion interval.

In order to solve the aforesaid problems, we set the fusion
interval of our PF as the camera cycle. And we calculate each
frame’s motion relative to its previous key-frame, thus we can

2Abbe error, also called sine error, describes the magnification of angular error
over distance. The error of orientation brings large translational acceleration
errors from the large acceleration measurement.

obtain the VO output at each frame. Then, the fusion interval
in PF can be reduced to minimum even when the key-frame
technique is used.

In our PF, the state vector of the PF is [P V ]T , i.e., position
vector P and linear velocity vector V in the coordinate {G}.
The cycles of the camera and IMU are denoted as ΔT and Δt,
respectively, and i = ΔT/Δt . According to the integral of the
IMU’s measurements, the motion between two adjacent camera
frames, i.e., frame m and frame m-1, can be estimated with the
following discretized model:

[
P
V

]
m

=
[
I ΔT ∗ I
0 I

] [
P
V

]
m−1

+
i∑

j=1

Aj−1Bun−j (17)

where

A =
[
I Δt ∗ I
0 I

]
, B =

[
Δt2/2 ∗ I

Δt ∗ I

]

and un is the linear acceleration in coordinate {G} measured
by the IMU and whose timestamp is closest to and less than (or
equal to) the camera’s capture moment of frame m, shown in
Fig. 3.

Let x = [P V ]T , there are also two noise sources, the
process noise ω which incorporate linear acceleration noise and
the VO measurement noise v. Then, the filter equations are
⎧⎨
⎩

xm =
[
I ΔT ∗ I
0 I

]
xm−1 +

i∑
j=1

Aj−1B(un−j + ωn−j )

ym =
[
I 0

]
xm + vm .

(18)
Then, the PF is given as follow:

Filter 3: PF.
Initialization: set initial values for the filter state [P V ]T .
Propagation: For each camera cycle, ΔT

(I) use formula (17) to estimate the values of position
and velocity with the linear acceleration obtained
from IMU.

(II) Propagate covariance with the state transformation
matrix.

Update: For each camera cycle, perform a Kalman update
with the measurement of the VO between two camera
frames.

The covariance matrix Q of process noise ω and the covari-
ance matrix W of measurement noise v are taken as hyperpa-
rameters in this filter and are set to be diagonal matrices with
nonzero entries. As the uncertainty of the acceleration mainly
comes from the Abbe error of large acceleration measurement,
the diagonal elements of Q can be estimated from the direc-
tion and the norm value of the acceleration measurement in the
global coordinate {G}. The diagonal elements of W can be
determined by the uncertainty of motion estimation from VO.

With the PF, the linear velocity can be computed accurately.
When VO fails, we still can use the maintained linear veloc-
ity and the acceleration provided by the IMU to estimate the
translation motion, the orientation can also be estimated by the
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angular speed measured by the IMU. Then, our stereo VIO can
provide robust estimation under various conditions.

IV. EXPERIMENTS

In this section, we carry out two kinds of experiments to
evaluate the proposed method. In our comparative experiments,
we compare with three state-of-the-art approaches as follows:

The first method is an IMU aided stereo visual odometry
algorithm proposed by, Agrawal, and Sol [6]. This algorithm
only fuses orientation information of the IMU and the VO by
an EKF. In their approach, the results of VO are used to forecast
and the measurements of the IMU are used to give observation.
At the same time, the measurements of the IMU are used to
make drift-free attitude estimation. Their algorithm is denoted
as Fusion1 in the following experiments.

The second method is a visual-inertial fusion algorithm pro-
posed by Tardif, George, Laverne, Kelly, and Stentz [8]. This
method uses a delayed Kalman filter to fuse position and orien-
tation information from both the IMU and the VO. As their
filter puts the last values of the position and the Euler an-
gle estimated by the filter into the state vector, it is called
delayed Kalman filter. In that filter, the measurements of the
IMU are used to forecast and the results of VO are used to ob-
serve. Their algorithm is denoted as Fusion2 in the following
experiments.

The third one is the key-frame-based nonlinear optimiza-
tion algorithm presented by Leutenegger et al. [11]. In this
method, Graph Optimization [25] is used as the optimization
framework. The measurements of IMU and visual estimation
are tightly coupled. As the outlier rejection is performed by ap-
plying a chi-square test with IMU-based pose predictions, there
is no RANSAC involved in their approach. And the IMU mea-
surement is integrated with landmark reprojection errors in the
probabilistic manner. This method is denoted as optimization in
the following experiments.3

A. Experiments on KITTI Datasets

In the first experiment, we use the KITTI datasets [26] to
evaluate our approach and compare with the other three state-
of-the-art methods. The KITTI datasets are captured on an au-
tonomous vehicle platform named Annieway. It is equipped with
an inertial navigation system (GPS/IMU, OXTS RT 3003), mea-
surements from the GPS can be used as ground truths. There
are also two grayscale cameras, two color cameras and other
sensors mounted on top of the vehicle.

In our experiment, we use the data captured by the IMU
and the image pairs of the color cameras. These two color
cameras are mounted horizontally with a baseline of 53 cm
and can capture high-quality images with a resolution of
1226 × 370 pixels. We use the synchronized dataset, i.e.,
“2011_09_30_drive_0018,” which is calibrated and synchro-
nized at a frame rate of 10 Hz. The images in KITTI datasets
have high-quality features. Since the velocity of the vehicle is
almost constant, all the images in these datasets can be regarded

3For a fair comparison, the window size of the optimization method is set to
2 in our experiments.

TABLE I
AVERAGE TRAJECTORY ERRORS OF FIVE ALGORITHMS IN THE KITTI

DATASETS

AEX (m) AEY (m) AED (m)

Stereo VIO 2.12 ± 2.52 2.82 ± 2.23 3.53 ± 3.37
Optimization 3.26 ± 4.43 1.81 ± 2.34 3.72 ± 5.02
Fusion1 7.95 ± 10.07 4.35 ± 4.68 9.06 ± 11.10
Fusion2 7.09 ± 8.85 4.38 ± 5.04 8.33 ± 10.19
VO only 18.68 ± 15.54 5.98 ± 7.58 19.61 ± 17.29

as key-frames of VO and almost will not lead to any VO failure.
So the problem of mismatch of fusion interval is not major in
this condition.

As the KITTI datasets can provide ground-truth GPS posi-
tions in the plane of X and Y direction for each image frame.
In the following experiments, we introduce three quantitative
metrics to evaluate the performance of varied methods. These
three metrics are Average Error in X direction (AEX), Aver-
age Error in Y direction (AEY) and Average Error in Distance
(AED) respectively, calculated as follows:

AEX =
∑N

i=1

∣∣Xi − XGPS
i

∣∣
N

, AEY =
∑N

i=1

∣∣Yi − Y GPS
i

∣∣
N

AED =

∑N
i=1

√(
Xi − XGPS

i

)2 +
(
Yi − Y GPS

i

)2

N
. (19)

Here, N is the number of frames, XGPS
i and Y GPS

i are the
ground-truth values in X direction and Y direction obtained by
the GPS at the ith frame, Xi and Yi are the output results
in X direction and Y direction obtained by the corresponding
odometry method at the ith frame. Both AEX and AEY depend
on the choice of the coordinate system, slight rotation of the
coordinate system might cause very different error, while AED
is invariant to the choice of coordinate systems. So AED is the
most important and discriminated evaluation metric.

The results of AEX, AEY, and AED and their correspond-
ing variances for different methods are given in Table I. In the
experiments, we also compare with the odometry results esti-
mated by the original stereo VO method (denoted as VO only in
figures), which is introduced in Section III A. The results show
that our stereo VIO method can achieve the best performance
on AED among all the five methods, the variance of stereo VIO
on AED is also smallest among all the methods, which indicates
the output results of the stereo VIO are most stable compared
with other methods.

The visual results on the odometry estimations of differ-
ent methods are shown in Fig. 4. Fig. 4 shows the trajecto-
ries consisting of each (Xi, Yi) point estimated by odometry
methods in all the frames, the ground-truth trajectories for each
(XGPS

i , Y GPS
i ) point are also plotted in this figure.

During the experiments of KITTI datasets, pure VO estima-
tion fails five times in dataset “2011_09_30_drive_0018.” The
positions that VO failed are also plotted, point a to point e in Fig.
4, obviously, those positions are almost at turning corners. The
huge biases of the pure stereo VO’s trajectories in Fig. 4 also
indicate that pure stereo VO may not provide satisfied odometry
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Fig. 4. Results on dataset “2011_09_30_drive_0018.” Comparison on
ground truth GPS, VIO, VO, Optimization, Fusion 1, and Fusion2. The
mark a-e are the positions that VO failed.

Fig. 5. Error curves of varied methods comparing with the ground
truths from GPS on dataset “2011_09_30_drive_0018”. The horizontal
coordinate of the figure is the frame sequence of the camera. The vertical
coordinate is the bias value between the ground truth and the estimation

in the corresponding frame (
√

(Xi − XG P S
i )2 + (Yi − Y G P S

i )2 ). The

curve close to the zero line means the error is small. The mark a-e are the
positions that VO failed. The horizontal dash line represents the 3-sigma
error boundary of the corresponding method with the same color.

estimation when the platform drives a long distance and con-
tains some VO failures. The results in Fig. 4 show that all the
VIO algorithms can achieve much better odometry trajectories
compared with the pure stereo VO algorithm.

We also present the error curves of all the methods compared
with the ground truths from GPS. Fig. 5 shows the distance
error curve in each frame and the corresponding 3-sigma error

Fig. 6. Our toy vehicle VIO platform and the sample images captured by
our platform (including different scenes, variation of illumination, moving
objects, and blur).

boundary4 of the error curve for each method. The results show
that our VIO can have smaller overall errors and error boundary
compared with other state-of-the art methods. So our VIO is
capable to navigate in real world for kilometers and performs
better than other state-of-the-art algorithms.

B. Experiments on Small Mobile Platform

In order to evaluate the performance of our approach under
universal and challenging environments, we also build naviga-
tion system, equipped with an IMU (Xsens MTi28A53G35) and
a PointGrey Bumblebee2 stereo camera, mounted on a small toy
vehicle, shown in Fig. 6. Our IMU can output measurements at
a rate of 100 Hz, and the stereo camera works at a frame rate of
15 Hz, and the resolution for each camera is 640 × 480. In this
experiment, the toy vehicle drove on our campus, which has a
rough terrain environment with uphill and downhill. The images
captured during the experiments are shown in Fig. 6.

The IMU (MTi28A53G35) used in our platform is very noisy
and low-cost, the bias and noise of our IMU are significant
larger than other IMUs used in the state-of-the-art VIO methods
[11]–[13].

Comparing to the KITTI datasets, the datasets captured by
our small mobile platform have more challenges and irregular
motion styles. The challenges include:

The baseline of the stereo camera used in our system is 12 cm,
which is much less than that in KITTI datasets. It is well known
that shorter baseline will lead to larger triangulation errors in the
stereo VO system; the view of our system is also much narrower
than the view in KITTI, which will lead to less feature points in
stereo matching and, thus, reduce the accuracy; the IMU used in
KITTI is much more accurate than ours. Its drift is also much less

4Here the 3-sigma error boundary is calculated as 3σ, and σ is the standard
deviation of the error curve on frames for the corresponding method.
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Fig. 7. Experiment 1: trajectory obtained by our VIO in the circle ex-
periment. As there are uphill and downhill in circles, the trajectories of
every circles are arbitrary due to the rough terrain.

than ours; The most important challenge is that images captured
from our system are often blurred, shown in Fig. 6, due to jolt
when the toy vehicle bumping on rough terrain. Furthermore,
the rough terrain will also lead to unstable stochastic motions
which will lead to many failures to the estimation of the VO.

In our experiments, the velocity of the toy vehicle is random,
and the intervals of the key-frames are usually much larger than
the intervals of the camera images. As the pure VO is easy to fail,
the mismatch of the fusion interval is especially severe to the
accuracy of VIO in this condition. To evaluate the effectiveness
that the separated filters working on different fusion intervals
can accommodate this situation well, we also introduce another
two comparable VIO methods.

VIO-Key, which applies the fusion of the OF and PF presented
in this paper between every two key-frames. Then, those two
filters’ fusion intervals are manually set as the cycle of the key-
frames;

VIO-All, which applies the fusion of the OF and PF presented
in this paper between every two image frames. Those two filters’
fusion intervals are manually set as the capture cycle of the
vision sensor.

In the first experiment, our toy vehicle drove around a lawn
for four circles and the length of each circle is about 150 m.
As the roads around the lawn are quite rough, there are many
frames where the images are blurred. Fig. 7 shows the trajectory
estimated by our approach. The white point in Fig. 7 is the
starting point that our platform will drive through in each circle.
In this experiment, we will use the closed-loop error in the
starting point to evaluate the performances. We set the initial
global zero point at the starting point, and then the closed-loop
error is calculated as

√
x2 + y2 + z2 , where (x, y, z) is the

algorithm’s output of the position when the platform returns to
the starting point. The results of all six approaches are given in
Table II. The results show that our stereo VIO has the smallest
closed-loop error in each circle.

TABLE II
CLOSED-LOOP ERRORS OF SIX ALGORITHMS IN THE FIRST EXPERIMENT

WITH THE SMALL MOBILE PLATFORM

1st circle 2nd circle 3th circle 4th circle Average
error (m) error (m) error (m) error (m) error (m)

Fusion1 1.27 1.91 2.24 3.90 2.33 ± 1.26
Fusion2 1.76 3.78 6.49 6.53 4.64 ± 5.37
Stereo VIO 0.90 1.17 1.66 1.78 1.38 ± 0.17
VIO-Key 1.01 1.93 2.08 3.35 2.09 ± 0.92
VIO-All 1.38 3.70 4.12 5.87 3.77 ± 3.42
Optimization 2.51 4.99 5.69 4.26 4.36 ± 1.86

Fig. 8. Experiment 2: results of our VIO and other three state-of-the-art
algorithms, the mobile platform drives anticlockwise, and the white point
is the start point.

TABLE III
CLOSED-LOOP ERROR IN THE SECOND EXPERIMENT DRIVING AROUND A

LARGE LAWN CIRCLE

Closed-loop error (m)

Fusion1 4.43
Fusion2 4.16
Stereo VIO 1.91
VIO-Key 4.36
VIO-All 4.87
Optimization 6.57

In the second experiment, the toy vehicle drove around a large
lawn for about 200 m and went back to the starting position.
Trajectories of four approaches are plotted in Fig. 8. The closed-
loop errors of all approaches are given in Table III. In this
experiment, the vehicle drove fast on the rough terrain that
causes a lot of blurred images between point A and point B as
marked in Fig. 8. According to the results shown in Fig. 8, we
can find that fusion1, fusion2, and optimization have obvious
bias on their estimations, and our stereo VIO can estimate the
trajectory that is closest to the real one (at least, it is closest to
the starting point in Fig. 8). As we know, the blurred images
between point A and point B will lead to many failures on
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Fig. 9. Velocity of x direction estimated by Stereo VIO, Fusion 2, and
VIO-Key.

the VO estimation. Fusion1 does not provide PF, thus it will
lose translation information when VO fails. Fusion2 does not
use attitude filter to obtain stable and drift-free attitude for the
system, so the noised attitude estimation from our low-precise
IMU will impair the fusion results especially when the VO fails.
The large bias on optimization method may be caused by the
failure of nonlinear optimization, as the highly noised IMU and
VO failures in this dataset cannot give reliable constraints for
the optimization.

In both experiments, the results show that the proposed Stereo
VIO, which fuse at varied OF and PF fusion intervals, will al-
ways outperform VIO-Key and VIO-All, especially in experi-
ment 2, where the VO failure occurs frequently. The VIO-All
fuses at every two image frames and the effect of IMU is ex-
cessively suppressed, while VIO-Key fuses at every two key-
frames, its estimation accuracy will be greatly decreased once
the VO failure occurs.

We also plot the velocity curves estimated by the PF of Stereo
VIO, Fusion 2, and VIO-Key in Fig. 9. In Fig. 9, the positions
of Stereo VIO fuse with all the sequential camera frame pairs.
The positions of Fusion 2 and VIO-Key fuse with selected key
frame pairs. The green line shows the corresponding accelera-
tion measurements by the IMU along its x-axis. From the green
line, we can observe that the vehicle keeps stationary at the first
6 s the same as the real experiment, hile there is a significant
linear velocity drift on the key-frames based fusion (blue line,
black line). The black arrows show some timestamps where the
key-frames are selected, it is also notable that the linear veloc-
ity undergoes sharp jump at these timestamps. Thus, the PF fed
with key frame pairs will output less accurate velocity compared
with the PF fed with all camera frame pairs. From Fig. 9, we can
observe that Stereo VIO’s minimal position fusion interval has
better velocity estimation, which is crucially important when
VO fails.

Thus, our method can successfully avoid the conflict between
minimizing the fusion interval to reduce the error of the IMU
drift and the use of a large interval to improve the VO estimation
accuracy.

Fig. 10. Experiment 3: trajectories of four algorithms comparing with
the ground truths from GPS.

Fig. 11. Error curves of varied methods comparing with the ground
truths from GPS on experiment 3. The horizontal coordinate of the figure
is the frame sequence of the camera. The vertical coordinate is the bias
value between the ground truth and the estimation in the corresponding

frame (
√

(Xi − XG P S
i )2 + (Yi − Y G P S

i )2 ). The curve close to the zero

line means the error is small. The horizontal dash line represents the 3-
sigma error boundary of the corresponding method with the same color.

In the third experiment, the toy vehicle equipped with a GPS
sensor drove around a long distance about 1000 m in the same
rough terrain environment as the experiment 2. The estimated
trajectories and error curves by various methods are given in
Figs. 10 and 11. The AEX, AEY, and AED results are also
shown in Table IV. The results show that our algorithm can also
achieve the best AED and corresponding variance among all the
methods.
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TABLE IV
AVERAGE TRAJECTORY ERRORS OF FOUR ALGORITHMS IN THE DATASET

CAPTURED BY SMALL MOBILE PLATFORM

AEX (m) AEY (m) AED (m)

Stereo VIO 20.00 ± 13.03 6.92 ± 5.10 22.60 ± 11.52
Optimization 27.17 ± 21.84 7.18 ± 5.17 29.88 ± 20.03
Fusion1 32.49 ± 22.74 5.76 ± 4.44 34.37 ± 21.08
Fusion2 38.04 ± 30.71 7.93 ± 5.53 40.43 ± 29.14

The experiments in our small mobile platform show our ap-
proach can achieve superior performance comparing with other
state-of-the-art methods.

V. CONCLUSION AND FUTURE WORK

We have presented a novel multiple Kalman filters ensemble
algorithm for VIO in challenging environments. To adapt the
mismatch of the fusion interval, our algorithm uses separated
OF and PF working on different cycles to estimate the 6DOF
odometry of the system. In order to obtain high accuracy in long-
term estimations, we introduce an attitude filter fusing with the
input accelerations and angular speed of the IMU to obtain
long-term stable attitude. In our approach, the OF is built on the
orientation error space, which is a local linear space and more
suitable for the Kalman filter. The experiments carried out in
this paper have proved that our algorithm is superior to other
state-of-the-art algorithms.

Compared with traditional fusion methods which need to
consider complex nonlinear coupling of the states, the main
advantage of our approach is to employ a simple hierarchical
fusion architecture assembling with multiple simple Kalman
filters, which are easy to be implemented on those hardware
platforms with limited resources. Experimental results show the
performance of our approach is also robust to the low-precision
IMU, thus our method may have broad application prospects on
low-cost hardware systems such as ARM, FPGA, etc.

In our future work, we will further optimize our VIO algo-
rithm, reduce its computation complexity, and try to implement
it in the compact embedded platform. Integration of other low-
cost sensors, such as conventional low-cost GPS, is also a pos-
sible future task. As our current attitude filter sets fixed biases
for the gyroscope and accelerometer, there remains an unknown
bias in the output of our attitude filter. In addition, our attitude
filter is not tuned to handle large accelerations and, thus, the filter
is sensitive to attitude errors caused by them. Therefore, we will
try to introduce the DCM-based attitude estimation algorithm
[27] to improve the performance of our method by estimating
the gyroscope biases online and adapting attitude filter to han-
dle large accelerations. In addition of this future improvement,
we will also explore the method to adjust accelerometer biases
using the output of the VO, as the velocity measured by VO
should be equal to the velocity integrated from bias corrected
accelerations.
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