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a b s t r a c t

Nonnegative matrix factorization (NMF) has been proved to be a powerful data representation method,
and has shown success in applications such as data representation and document clustering. However,
the non-negative constraint alone is not able to capture the underlying properties of the data. In this
paper, we present a framework to enforce general subspace constraints into NMF by augmenting the
original objective function with two additional terms. One on constraints of the basis, the other on
preserving the structural properties of the original data. This framework is general as it can be used to
regularize NMF with a wide variety of subspace constraints that can be formulated into a certain form
such as PCA, Fisher LDA and LPP. In addition, we present an iterative optimization algorithm to solve the
general subspace constrained non-negative matrix factorization (GSC NMF). We show that the resulting
subspace has enriched representation power as shown in our experiments.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Finding a suitable representation is a fundamental problem in
many machine learning tasks, such as pattern recognition and
object detection [1–7]. A good representation can capture the
underlying structure of the data and can reduce the dimension-
ality so as to make the higher level inference easier. Subspace
representations construct a subspace from the original high dim-
ensional space and represent them as the projection on the sub-
space. It has been shown that subspace methods not only reduces
the computational cost due to the lower dimensionality but also
makes the higher level inference easier.

Subspace methods such as principal component analysis (PCA)
[8,9,1], linear discriminative analysis (LDA) [10,11] and locality
preserving projection (LPP) [12] can be understood as matrix fac-
torization subject to different constraints. These constraints are
usually designed to find basis functions satisfying certain proper-
ties. Principal components analysis enforces an orthogonality con-
straint of the basis vectors, resulting in an orthogonal subspace to
capture the major variance of the data. As a well-known dimension
reduction method, PCA is extended in different ways, such as
incremental learning and tensor analysis [13–15]. Extension
ial Technology Control Tech-
approaches of LDA and LPP are also proposed for performance
improvement [16–19]. However, the resulting basis and coefficient
vectors can be negative, which does not have intuitive psychological
interpretation. Non-negative Matrix Factorization (NMF) is a sub-
space method with nonnegative constraints on both the basis and
coefficients. The non-negative constraints lead to a parts-based
representation because they allow only additive, not subtractive
combinations. Such a representation encodes the data using few
active components, which makes the basis easy to interpret. The
previous research works have shown the superior performance of
NMF on document clustering [20], text mining [21,22], pattern
recognition [23,24] and audio analysis [25,26].

However, the non-negative constraints alone may not be
enough to capture the underlying structure of the data as other
subspace methods for example PCA do. In this paper, we present a
framework to enforce general subspace constraints into NMF. This
framework is general as it can be used to regularize NMF with a
wide variety of subspace constraints that can be formulated into a
certain form such as PCA, LDA and LPP. In addition, we present an
iterative optimization algorithm to solve the general subspace
constrained NMF. We show that the resulting subspace has enri-
ched representation power as shown in our experiments.

There are also some other work that tries to incorporate con-
straints into the NMF. Local non-negative matrix factorization
(LNMF) [27] has been proposed to achieve a more localized NMF
algorithm with the aim of computing spatially localized basis add-
ing orthogonality constraints that modify the objective function.
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Table 1
Various subspace constrained NMF via different parameter settings.

C α β L

LNMF [27,33] C1 or C2 α40 β40 I
PCA NMF C1 or C2 α40 β40

n n
L I ee1 1

2
T= −

Fisher NMF C1 or C2 α¼0 βo0
n

L I W ee2 1 T= − +

LPP NMF C1 or C2 α¼0 βo0 L D S= −

Y. Liu et al. / Neurocomputing 173 (2016) 224–232 225
Some similar works focus on constraining the orthogonality such as
[28] and [29]. The former solves the optimization problem with the
orthogonality constraints, while the later embeds the constraints as
part of the cost function. In Sparse NMF [30], the author enforces
the sparseness constraints explicitly in the objective function.
However, these algorithms and their solutions are specifically
designed for a particular constraint, which are in contrast with our
approach since we aim at providing a general theoretical frame-
work and solution.

The rest of the paper is organized as follows: Section 2 gives a
brief review of the NMF. The general theoretical framework for
NMF with subspace constraints and their three examples PCA
NMF, Fisher NMF and LPP NMF are presented in Section 3. The
optimization algorithm is discussed in Section 4. The experimental
results will be shown in Section 5 and we conclude the paper in
Section 6.
2. A brief review of NMF

Generally, NMF [31] can be presented as the following opti-
mization problem:

C X BH B Hmin , s. t. , 0
B H,

( ≈ ) ≥

Here, xX ij
d n= [ ] ∈ × , each column of X is a sample vector. NMF

aims to find two non-negative matrices bB ij
d r= [ ] ∈ × and

hH ij
r n= [ ] ∈ × whose product can well approximate the original

matrix X. C (·) denotes the cost function. There are normally two
kinds of cost functions to represent the approximation in the NMF
optimization. Let Y¼BH, the first cost function is the Euclidean
distance between two matrices:

C x yX Y
ij

ij ij1
2 2( )∑= − = −

The second cost function is the K–L divergence between two
matrices:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C D x

x
y

x yX Y log
ij

ij
ij

ij
ij ij2 ∑= ( ∥ ) = − +

Although the C1 and C2 are convex in B only or H only, they are
not convex in both variables together. Thus Lee and Seung [32]
presented iterative update algorithms to find the local minima of
the objective function C1 and C2 [32].
3. General subspace constrained NMF

In this section, we present a general subspace constrained non-
negative matrix factorization (GSC NMF) framework, which can
enforce various subspace constraints into NMF. Let uU B Bij

T= [ ] = ,
the problem is formulated as follows:

O C uX BH HLHTr
1

U
i j

ij
T

,

∑α β= ( ≈ ) + − ( )
( )

α, β are const real number, and L n n∈ × is the parameter
matrix. The cost function C is either C1 or C2. When 0α > , mini-
mizing uij ij∑ leads to the basis (bi), which are orthogonal [33,27].

Table 1 shows different parameter settings for the GSC NMF
and their corresponding subspace constrains. With page limits, we
will only introduce the PCA NMF, Fisher NMF and LPP NMF in
detail in the following sections.
3.1. PCA NMF

The main idea of classical PCA is trying to maximize the
representation vectors' variance while keeping the orthogonality
of the basis. Assuming that the sample data set is x x x, , , n1 2{ … },
and the linear transform for PCA can be denoted as b x yT

i i= , here b
is the basis vector of B and yi are the representation vector. Then
the optimization function of PCA can be denoted as

y y y
n

ymax ,
1

i

n

i
i

n

i
b 1

2

1

∑ ∑( − ¯ ) ¯ =
= =

The vectors of b b b, , , r1 2 … are orthogonal.
When concerning the NMF form of X BH≈ , we have

X x x x, , , n1 2= [ … ], B b b b, , , r1 2= [ … ] and H h h h, , , n1 2= [ … ]. Then
the column vector of H can be viewed as the projection of original
data set X in the subspace constructing with the column vectors of
B, thus x Bhi i≈ .

We then let n nL I ee1/ 1/ 2 T= ( ) − ( ) . I is the identity matrix with
order of n and e is the n dimensional vector with all the elements
equaling to 1. We use m to denote the mean of the project vectors,
that is nm h1/ i

n
i1= ( ) ∑ = , and then

n n

n n

n n
n n

n

n n n

E

E

HLH H I ee H

HH He He

h h m m

h m h m

h m mh mm mm
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.

i
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i
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i
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i

T T T

T
2
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2
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T T T

T

∑

∑

∑ ∑ ∑

= ( − )

= − ( )( )

= − ( )( )

= ( − )( − )

+ + − −

= [( − )( − ) ] + −

= [( − )( − ) ]

Here, E h m h m T[( − )( − ) ] is the covariance matrix of the pro-
jections and thus maximizing HLHT is equivalent to maximizing

h mi
n

i1∑ −= , which is the core optimization function of PCA. At

the same time, minimizing ui j ij∑ ≠ will guarantee that all the basis

vectors are orthogonal.
Then let , 0α β > and n nL I ee1/ 1/ 2 T= ( ) − ( ) , the optimization

function (1) is a PCA constrained NMF.
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3.2. Fisher NMF

There are several works [34] and [35] introduce the Fisher's
discriminative information to NMF and show their ability on face
recognition and classification. The DNMF proposed in [35] can also
be unified to our GSC NMF, which we call Fisher NMF.

Linear discriminant analysis (LDA) tries to find a projection
direction that can separate the different classes. Define the
“between classes scatter matrix” SB and the “within classes scatter
matrix” SW which reveal the original data distribution informa-
tion. Fisher LDA expects to find a linear transformation matrix W
to maximize the SW

˜ and minimize the SB
˜ on the projection space,

where

S W S W

S W S W
W

T

B
T

W

B

˜ =
˜ =

To this purpose, the W can be solved by maximizing the cost
function:

J w S S W S W W S WTr TrB W
T

B
T

W( ) = (˜ − ˜ ) = ( − )

here we use the trace of a matrix as its scalar measurement.
Given l classes of input data with ni samples in ith class, per-

form the Fisher LDA on the data set. Denote y j
i as the projection of

jth sample in ith class, and mi is the mean of all projected samples
in ith class. Now we can calculate the within classes scatter matrix
SW
˜ of the projected samples as

⎛
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where YL Yi i i
T is the covariance matrix of the projected samples in

ith class with Y y y y, , ,i
i i

n
i

1 2 i
= [ … ]. nL I e e1/i i i i

T= − ( ) is a n ni i×

matrix where I is an identity matrix, and e 1, 1, , 1i
T= ( … ) is a ni

dimensional vector. For further simplification, let Y y y y, , , n1 2= [ … ]

denote the matrix of all projected samples where n ni
l

i1= ∑ = and
yi is the projected vector corresponds to xi. Besides, define a n n×
matrix which encodes the label information as follows:

⎧⎨⎩
n k

W
x x1/ if and both belong to the th class,

0 otherwise.
ij

k i j=

Let L I WW = − , then SW can be rewritten as

S YL YW
T

W
˜ =

Apparently, the between classes scatter matrix SB
˜ on the pro-

jection space can be represented in a similar way. Denote m as the
mean of all projected samples in all classes, we have
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where nL W ee1/ T
B = − ( ) , e 1, 1, , 1 T= ( … ) is a n dimensional

vector.
Recall that in the case of NMF where X BH≈ , H can be regarded

as the projection of X in the subspace constructing with the col-
umn vectors of B, which means H corresponds to the projected
matrix Y in formulas (2) and (3). Similarly, HL HT

W represents the
within classes scatter matrix SW

˜ of projected samples, and HL HT
B

represents the between classes scatter matrix SB
˜ at the same time.

Define:

n
L L L I W ee2

1 T
W B= − = − +

Then minimizing HLHTr T( ) is equal to optimize the discrimination
of projection. It is to say, to maximize the between classes scatter
and minimize the within classes scatter simultaneously.

Then let nL I W ee2 1/ T= − + ( ) , 0α = and 0β < , the optimi-
zation function (1) is a Fisher NMF with the constraint of
discrimination.
3.3. LPP NMF

Locality Preserving Projection (LPP) [12] is a typical subspace
learning method which poses local structure, which implements
similar idea to the popular nonlinear methods in manifold learn-
ing, such as Locally Linear Embedding (LLE) [36] and Laplacian
Eigenmap [37]. Introduce the local invariance idea to NMF, one can
implement the LPP NMF, which is the same as the GNMF proposed
by Cai et al. [38].

The constraint of LPP is minimizing the following formula:

h h S
ij

i j ij
2∑ −

Here, hi is the r dimensional vector corresponding to the ori-
ginal vector xi after the matrix factorization of X BH≈ , hi is a
projection of xi in r dimensional subspace. ∥·∥ is the Euclidean
distance operation. S is the similarity matrix, which represents the
local structure of the original data set X. The constraint function
will represent that the subspace of H can keep the same local
geometrical structure as X. The S can be defined as
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⎪
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⎩

t
S

x x x xexp / ,

0 otherwise
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i j i j1
2 2 ε
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(− − ) − <
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0 otherwise
ij

i j i j j i2
2

=
(− − ) ∈ ( )| ∈ ( )

Here 0ε > and kNN(x) denote x's k nearest neighbor set. hi is a
vector with r dimensions and hi

k( ) is the kth dimensional element
of hi, considering the optimization function of LPP:
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Here, hrow
k( ) is the kth row vector of H, that is

h h hh , , ,row
k k k

n
k

1 2= [ … ]( ) ( ) ( ) ( ) . D is a diagonal matrix, and D Sii j ji= ∑ ,

L D S= − , which is called Laplacian matrix [39].
Then let 0, 0α β= < and L D S= − , the optimization function

(1) is a subspace NMF with LPP constraint.
4. Iterative GSC NMF algorithm

Let vV HLHij
T r r= [ ] = ∈ × , and we use the C2 cost function,

then the target function in formula (1) can be rewritten as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟O x

x
y

x y

u v

log

4

U
i j

ij
ij

ij
ij ij

i j
ij

i
ii

,

,

∑

∑ ∑α β

= − +

+ −
( )

Observing yBH Y ij≜ = [ ], uU B Bij
T= [ ] = and vV HLHij

T= [ ] = ,
we then have
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To solve the above optimization function, we use the auxiliary
function [32] similar to the EM algorithm.
Definition 1. If function G h h,( ′) satisfied G h h F h,( ′) ≥ ( ), G h h,( )=
F h( ) , then G h h,( ′) is an auxiliary function of F(h).

Based on Definition 1, we can obtain the following theorem.

Theorem 1. If G h h,( ′) is an auxiliary function of F(h), then when
updating F(h) with h G h harg min ,t

h

t1 = ( )+ , F(h) will be monotonous
and non-incremental.

The proof of Theorem 1 can be obtained from Definition 1
easily.

According to Theorem 1, F h F ht t1( ) = ( ), if and only if ht is a local
minima of G h h, t( ). If the target function F is differentiable and
continuous at an interval of ht, which also means F h 0t∇ ( ) = , then
we can obtain a sequence of estimations when we use the iterative
update rule in Theorem 1. Thus the target function F will converge
to a local minima h F harg min

h
min = ( ) with

F h F h F h F h F ht t
min

1 1 0( ) ≤ ⋯ ( ) ≤ ( ) ≤ ⋯ ≤ ( ) ≤ ( )+

Considering formula (4), the optimizations for B and H are non-
convex in function D X BH( ∥ ), we adopt alternate iterative method
to solve B and H. We use D H( ) to represent the function D X BH( ∥ )
with respect to H when B is fixed, and D B( ) to represent the
function D X BH( ∥ ) with respect to B when H is fixed. Based on
Theorem 1, our alternate iterative solution tries to find the cor-
responding auxiliary function of D H( ) and D B( ).

Theorem 2. Function:
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is an auxiliary function of D H( ). The proof is given in Appendix A.

According to Theorem 2, we then can minimize D H( ) with
respect to H and use the following updating rule:

GH H Harg min ,t t

H
1 = ( )+

We can update the value of H by solving G hH H, / 0mn∂ ( ′) ∂ = for
every subscripts of m and n.

The G hH H, / 0mn∂ ( ′) ∂ = can be decomposed as
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Based on the analysis in previous section, the projection matrix
L, which represents the constrained relations among the samples,
is usually symmetrical, thus

v

h
l h h l l h2i ii
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then
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and setting formula (6) to zero,we can then obtain
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The iterative update rule can be formulated as follows:
For H If β¼0,
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Here X Y○ denotes the operation of Hadamard product, and X Y/[ ] [ ]
denotes the operation of Hadamard division. X a[ ] denotes the
operation to a power for each element in matrix, 1m n× denotes the
m n× matrix with all the elements equalling to 1. dD ij= [ ], if i¼ j,
d lii ii= otherwise d 0ij = . F L D= − , and m mi= [ ] is a vector of

n1 × , m li ii= .
When l 0nnβ ≠ in formula (8), γ is a non-negative value, which

satisfy that m n,∀ , b C2/ 0i im mnγ γ β( ∑ − ( ) ) > and , and 1γ ≥ .
When l 0, 0mm β= ≠ in formula (12), γ is a non-negative

satisfying m n,∀ , b C2/ 0i im mnγ γ β( ∑ − ( ) ) > . The γ in formula (13) is
set according to the formula (8)–(12).

In each iterative update of B and H, the value of γ remains
constant for all the elements of H and B. We use γ to guarantee
that the iterative update of formula (7)–(12) will always output
non-negative values. At the beginning of each iteration for all the
elements in H, we set γ¼1 and then test whether γ can satisfy the
constraints ( b C2/ 0i im mnγ γ β( ∑ − ( ) ) > and ). If the current value of
γ cannot satisfy the constraints, we multiply a factor larger than 1,
e.g. 3, with γ until the new value of γ can satisfy the constraints.
And then updating the elements in H and B with that γ. Normally,
the value of γ will decrease after several iterations, and then the
remainder iterations will keep using γ¼1. With formula (13), we
actually add a constraint of bi im γ∑ = (γ¼1 when β¼0), and this
constraint can guarantee: (1) there will not be some basis vectors
(column vector in B) tending to all zero, while corresponding
elements in H tend to infinite; (2) the scales between each basis
vector will tend to similar.

To minimize D B( ) with respect to B, we can also construct
D B( )'s auxiliary function G B B,( ′) and iterate with , we also solve
G bB B, / 0mn∂ ( ′) ∂ = and can obtain
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Thus the updating rule for B can be given as follows:
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Then the solution for the target function can be obtained by
iterative executing formula (7)–(14), and if β¼0, then set γ as 1,
otherwise calculate γ with the method mentioned above.

In solution, our approach first randomly initializes the B and H
as nonsingular matrixes, whose elements hold uniform distribu-
tions within 0, 1[ ]. Let yBH Y ij≜ = [ ], the terminating condition
for the iteration is

y y ymax /
i j ij

new
ij
old

ij
old

,
( − ) < ϵ

Here, ϵ is a non-negative constant, yijnew denotes the value of
the current iteration, and yij

old denotes the value of the previous
iteration.
5. Experiments

In this section, we carry out experiments to evaluate the dif-
ferent NMF methods. Firstly, we show the results of the classifi-
cation experiments to evaluate their discriminative ability. Then
more specific analyses are presented to demonstrate the specific
characteristic of different NMF methods. For PCA NMF, we show its
superiority on the sparse basis and low reconstruction error,
where LPP NMF shows the ability to capture the data manifold.

5.1. Discriminative analysis

To evaluate the different NMF methods, we carry out classifi-
cation experiments to study their discriminative ability. The input
data is the ORL face database [40], which contains 40 persons and
400 face images totally, each person corresponds to 10 grayscale
face images with a resolution of 112� 92. In our experiment, we
adjust the resolution of images into 56�46 and normalize the
grayscale into 0, 1[ ]. For classification, divide the 400 face images
into training set and test set. For each person, 5 images are used
for training and the others are for test.

The comparison are taken between the PCA, Fisher LDA, LPP
and their corresponding NMF methods. An additional method to
compare is the ANMF. The implementation of ANMF is given by
[22], which does not set α and β explicitly and can be found in



Table 2
Parameters setting for different NMF methods.

Parameter NMF ANMF PCA NMF Fisher NMF LPP NMF

α 0 / 1 0 0
β 0 / 1 1 �1

Table 3
Classification results on ORL face database.

Class 5 10 15 20 25 30 Average

PCA 0.9160 0.8960 0.9053 0.9096 0.9144 0.9127 0.9090
Fisher LDA 0.9160 0.9420 0.9413 0.9230 0.8928 0.8860 0.9169
LPP 0.9000 0.8720 0.8800 0.8780 0.8400 0.7831 0.8589
ANMF 0.9230 0.9160 0.9120 0.8770 0.8888 0.8680 0.8975
PCA NMF 0.9400 0.9220 0.9307 0.9150 0.8984 0.8880 0.9157
Fisher NMF 0.9560 0.9440 0.9240 0.8990 0.9032 0.8870 0.9189
LPP NMF 0.9680 0.9420 0.9213 0.9200 0.9088 0.9007 0.9268

Table 4
Reconstruction error under different number of basis in test data set.

# Basis 40 60 80 100 120 140 Average

PCA 10.1649 9.0989 8.8058 8.5776 8.3821 8.1978 8.8712
NMF 10.2665 9.3003 9.0135 8.5381 8.2878 8.1993 8.9343
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Statistics Toolbox of MATLAB.1 Notice that Fisher LDA and Fisher
NMF are supervised feature extraction methods, where the others
are unsupervised. The parameter setting of all the NMF methods
are shown in Table 2, where the parameters of the PCA NMF,
Fisher NMF and LPP NMF are selected by the optimal grid search.

Here all the methods are regarded as feature extraction
approaches, which means we project the training set and test set
to the lower-dimensional space and then use the projected train-
ing samples to train a classifier for testing. For all NMF methods,
firstly we learn the basis matrix B from the training set. Define:

B B B B 15T 1 T( )= ( )+ −

Then we can get the projection of each test sample xtest with
h xBtest test= + . Finally, we train the classifier with the projected
training set and test on the projected test set. Here we use Softmax
regression for multi-class classification. The classification results
are shown in Table 3. To randomize the experiment, we extract
different number of classes of images from the whole database to
train and test. In each case, we set the reduced dimension r the
same as the number of classes k for all the compared approaches
except for Fisher LDA, where the reduced dimension of Fisher LDA
is k 1− . The showing results are all average value of 10 times of
random experiment. Results tell that the proposed NMF methods
give comparative results on the classification, where LPP NMF
performs best.
PCA NMF 10.2765 9.2718 8.7390 8.3750 8.0934 8.1571 8.8188
Fisher NMF 10.1801 9.2704 9.0105 8.2530 8.0730 8.0104 8.7996
LPP NMF 10.2497 9.4847 8.6515 8.4089 8.0551 7.6079 8.7560
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Fig. 1. Reconstruction error under different β in test data set.
5.2. Reconstruction study

We carry out quantitative experiments to compare the recon-
struction errors on test data. Comparisons are made between the
PCA and the different NMF methods. The reconstruction error is
calculated as x x Freconstruct original∥ − ∥ , F∥·∥ is Frobenius norm. The
results under different numbers of basis r are shown in Table 4.
Denote the trained basis matrix of PCA as W. As its column basis
vectors are orthogonal, the PCA's reconstruction instance can be
calculated as y xWWT= , x is an instance test set. When recon-
structing the test data using ANMF, NMF and PCA NMF approaches,
we reconstruct xtest with y xBBtest test= + , where B+ is calculated by
function (15).

Table 4 shows that PCA performs best on the low dimension of
basis. It is obvious since PCA is optimal for reconstruction. How-
ever, high dimensional basis leads to overfitting on PCA. It means
that the proposed NMF methods are more insensitive to the
dimension of basis, since it performs better than PCA and NMF
when the reduction dimension is high.

Considering the influence of the parameters, we compare the
performance of different NMF methods under a fixed reduced
dimension (r¼100) as shown in Fig. 1. Here we only consider the
influence of β since all of the NMF methods have a nonzero β. For
PCA NMF which has another parameter α, we set α¼0.1 in this
experiment. Notice that the abscissa axis is the absolute value of β
because the sign of β is different for different NMF methods. Fig. 1
shows the reconstruction error of different NMF methods when β
varies from e1 2− to e1 2+ . We can find that the NMF methods
outperform than NMF and PCA in most cases. All of the NMF
methods get the lowest reconstruction error at a medium value of
β. This is rational since the large β corresponding to stronger
constraint. Then the performance of the reconstruction will be
influenced, whether on training set or test set.
1 http://www.mathworks.com/help/stats/nnmf.html
5.3. Analysis on basis matrix

The visualization of basis matrix can give an intuitive sense
about what the methods learned the input data. Fig. 2 shows the 64
dimension basis obtained from the PCA, ANMF, NMF and PCA NMF.
We reshape the column basis vector as a 56� 46 grayscale image
and use darker gray levels to represent the larger values in the basis
vectors. In the basis vectors of ANMF, NMF and PCA NMF, the basis
images are sorted descended with respect to vii ( v HHii

T[ ] = ) from
left to right, up to down in Fig. 2. The value of vii can represent the
importance of the basis vector, a larger value of vii will indicate a
more important basis vector. The basis vector images of PCA are also

http://www.mathworks.com/help/stats/nnmf.html


Fig. 2. Basis vectors represented as images for the training samples of ORL data set. (a) PCA. (b) ANMF. (c) NMF. (d) PCA NMF.
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sorted descended based on their eigenvalues. We can observe that
the basis images of both NMF and PCA NMF contain more elements
close to zero (denoted with light color in the figures), and thus more
sparse than the basis vectors of PCA. The PCA NMF is adding non-
negative constraint to the basic PCA, and it can enforce the sparsity
while still being able to represent the most important basis vectors
capturing the largest variance, which means that PCA NMF is better
to learn the part-based representation. That is the top lines of the
basis images in both PCA and PCA NMF appear to have large areas
with dark pixels.

We also consider the orthogonality of the basis obtained by
each method, we use B B I F

T∥ − ∥ to measure the orthogonality.
The results are shown in Fig. 3, as PCA can always satisfy

B B I 0T
F∥ − ∥ = , we do not draw the curve of PCA in this figure.

The results show PCA NMF can achieve much smaller value of
B I F

TB∥ − ∥ , which demonstrates the orthogonality of basis.
As the orthogonality of basis are controlled by the term of
uij ij∑ , the value of α will affect the orthogonality of basis directly.

We then consider the relation between α and B I F
TB∥ − ∥ in Fig. 4.

As can be observed the orthogonality of the basis increases with α.

5.4. Analysis on dimensionality reduced projection

As we mentioned before, the H can be regarded as the pro-
jection of the original data which has a lower dimension. Whenwe
project the input data to a two-dimensional space, we can plot the
projection samples to visualize the dimension reduction. In the
dimensional reduction experiment, we use the face sculpture data
set from [41] as our input data. The high dimensional images
intrinsically lie on a low dimensional manifold corresponds to the
viewpoints and lighting angles. We use LPP NMF to reduce the
dimensionality, which keeps the local invariance of the input data
at the same time. For the convenient of visualization, the face
images are mapped to a two-dimensional space as shown in Fig. 5.
The result shows that the projected points reveal the intrinsic
manifold of the face images. More specifically, the left points
reveal the continuous change of the images with right cheek,
while the bottom points reveal the change of the images with left
cheek. The middle points correspond to the front view of face. It
means that LPP NMF can capture the underlying low dimensional
characters of the high dimensional face data with its consistency
of local neighborhood.
6. Conclusion

We have presented a general subspace constrained non-nega-
tive factorization (GSC NMF) framework, which can induce almost
most of the subspace constraints into a unified NMF optimization
function. An iterative optimization algorithm to solve the GSC NMF
is also proposed. The experimental results show that GSC NMF
framework and its iterative optimization algorithm can achieve
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better performance in data representation than the ordinary NMF
approach and PCA approach.
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Appendix A. Proof of Theorem 2

Obviously, G DH H H,( ) = ( ), we then need to proof
G DH H H,( ′) ≥ ( ). As function b hlog k ik kj− (∑ ) is convex, assuming

i j1, ,k ijkμ∑ = ∀ , then
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Comparing formulas (4), (5) and (A.2), we can obtain
G DH H H,( ′) ≥ ( ), thus G H H,( ′) is an auxiliary function of D H( ).
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