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Abstract—Feature selection tries to find a subset of feature
from a larger feature pool and the selected subset can provide
the same or even better performance compared with using the
whole set. Feature selection is usually a critical preprocessing
step for many machine-learning applications such as clustering
and classification. In this paper, we focus on feature selection for
supervised classification which targets at finding features that can
best predict class labels. Traditional greedy search algorithms
incrementally find features based on the relevance of candidate
features and the class label. However, this may lead to suboptimal
results when there are redundant features that may interfere with
the selection. To solve this problem, we propose a subset selec-
tion algorithm that considers both the selected and remaining
features’ relevances with the label. The intuition is that features,
which do not have better alternatives from the feature set, should
be selected first. We formulate the selection problem as maximiz-
ing the dependency margin which is measured by the difference
between the selected feature set performance and the remain-
ing feature set performance. Extensive experiments on various
data sets show the superiority of the proposed approach against
traditional algorithms.

Index Terms—Conditionally independent, dependency margin,
feature selection, forward greedy search, redundant feature.

I. INTRODUCTION

FEATURE selection tries to reduce the number of features
while keeping the same or even better learning perfor-

mance. It’s a frequently used preprocessing step for many
machine learning applications [1]. As it removes irrelevant,
redundant and noisy features, the learning speed is usually
significantly increased and in some cases the learning per-
formance can even be improved because irrelevant and noisy
features are excluded from the learning process. Feature selec-
tion is a broad research area and it can be divided into two
categories, one is for supervised learning [2]–[8] where the tar-
get is to learn the prediction function between the features and
the label, the other is for unsupervised learning [9]–[13] which
tries to find the underlying structure of the data in some fea-
ture space. In this paper, we mainly focus on feature selection
for supervised classification.
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Feature selection for supervised classification can be for-
mulated as: given the original feature set F = { f1, f2, . . . , fi}
and label Y , find the proper feature subset S ⊂ F which can
“best” predict Y . That problem can be decomposed into four
sub-problems [14].

1) Feature evaluation which evaluates the relevance
between a feature and the class label.

2) Search strategies which quickly find the optimal subset
from a large pool.

3) Stopping criterion which determines when to stop the
search.

4) Validation strategies which validates the selected feature
set.

In particular, the feature evaluation and search strategies
play critical roles in a feature selection algorithm.

Feature evaluation functions measure the relevance between
a feature and the label, the most straightforward and perhaps
the most effective evaluation criteria is directly evaluating [15]
the features by the classification performance. However, this
process is usually very slow and not scalable to real prob-
lem when the feature set is very large or when the classifier
is complicated. To solve this problem, researchers propose
to use simpler indirect feature measures such as informa-
tion entropy [16], [17], consistency [5], [18], dependency [19],
divergence [20], and fuzzy-rough measurement [21], etc.

For search strategies, exhaustive search [22] may provide
the optimal solution but it only works when the number of
features is small. As the number of features increases, the com-
putation increases exponentially, which makes it impractical
for many learning algorithm with high dimensional feature.
Some works [16], [23] propose to rank individual feature
based on the relevance between each feature and the class
label which drastically reduces the computation, making it lin-
ear to the number of features. However, this approach will not
work well when there are redundant features in the feature
set. Guyon and Elisseeff [24] also used sample examples to
show that “perfectly correlated variables are truly redundant in
the sense that no additional information is gained by adding
them.” To solve this problem, some researchers propose to
use greedy strategies which iteratively maximize the gain of
the feature importance evaluation functions and then generate
the nested subset of features. It has been shown that the for-
ward greedy search strategies are particularly computationally
advantageous and robust against overfitting. However, the for-
ward greedy strategies only considers the relevance between
the feature and the label while ignoring the redundancy among
the features. It suffers from the problem of generating nonopti-
mal subsets because the importance of features is not assessed
in the context of remaining features [24]. In Fig. 1, we
use Guyon and Elisseeff’s [24] example to demonstrate the
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Fig. 1. Sample data set with three features and two labels from [24], we use
circles and dots to represent samples with different labels. The sub figures in
the diagonal show the histograms of the projections of the different samples
on the axes, and the other sub figures show the scatter plots in the 2-D space
of the corresponding features, to facilitate its reading, the scatter plot is shown
twice with an axis exchange.

problem that the forward greedy search strategies may find a
suboptimal subset. There are three features and the third one
(third row in Fig. 1) separates the two classes best by itself
(bottom right histogram in Fig. 1). It is therefore the best can-
didate in a forward greedy selection process. However, the
two other features are better taken together than any subset
of size two including it. In this example, the third feature is
actually redundant to the other two features. If the evaluation
function only considers the feature relevance, the third feature
will always be chosen with a higher priority than the other
two features in the beginning of forward greedy searching.
This leads to the suboptimal solution and also suggests that
we should pursue a better solution framework that can avoid
the limitations of forward greedy search strategies.

In this paper, we present a new feature evaluation function,
named dependency margin of subsets, which can overcome
the problem of forward greedy searching strategies by con-
sidering both the feature relevance and redundancy simultane-
ously. We also present a feature selection algorithm based on
Yu and Liu’s [3] redundant feature selection theory.

The rest of this paper is organized as follows. In Section II,
we will review the related works on feature selection and moti-
vate the basic idea to solve the problems of current forward
greedy search methods. In Section III, we briefly introduce
some background knowledge on Yu and Liu’s Bayesian con-
ditionally independent theory on feature redundancy [3], which
is used in our formulation. In Section IV, we present our
dependency margin based feature selection method. Empirical
comparisons of our method comparing with state-of-art fea-
ture selection methods are presented in Section V. Finally, we
conclude this paper and discuss future directions in Section VI.

II. RELATED WORKS AND BASIC IDEA

A. Related Works

Feature selection is one of the fundamental problems in
machine learning. Earlier research mostly focuses on select-
ing “relevant” features that are highly relevant to the class

label [5], [18], [25]. However, in many real world prob-
lems, such as genomic microarray analysis [26] and text
categorization [27], the extracted features usually have high
redundancy. This makes the “relevance” based algorithms
selecting suboptimal features [4], [15], [25], [28]. Researchers
proposed many algorithms for feature selection considering
redundancy in the feature set. There are generally two types
of redundancy considered in the work.

1) Type I: A feature is redundant with respect to another
feature according to the capability to predict the class
label.

2) Type II: A feature is redundant with respect to another
subset of features according to the capability to predict
the class label.

Based on different redundancy definitions, redundancy
based feature selection algorithms can be roughly divided into
two categories. The first category uses feature relevance to
identify redundant features [17], [29]–[32]. These approaches
tend to select features which provide maximal relevancy with
respect to the label and at the same time minimize the rele-
vance among each pair of the selected features. For example,
Peng et al. [17] and Ding and Peng’s [32] feature selection
algorithm uses mutual information to measure the relevance
among features. Biesiada and Duch’s approach [31] uses the
pairwise Pearson χ2 test which uses the difference between
the feature probability distribution of two random variables
to measure the relevance. In Appice et al’s approach [29],
their improved REDUCE algorithm operates by pairwise com-
parison of the feature redundancy. These approaches can
handle the first type of redundant features well, however, they
fail when the type II redundant features exist because they
only consider pairwise redundancy. Furthermore, the relevance
between the pairwise features may not be a proper evaluation
measure for the feature redundancy. It has been proved by
Guyon and Elisseeff’s [24] example that “very high variable
correlation (or anti-correlation) does not mean absence of vari-
able complementarity.”1 Guyon and Elisseeff’s example also
demonstrates that correlated among features is not the same
as redundancy among features.

The second category of redundant feature selection algo-
rithms is based on the framework of Bayesian conditional
independency [33]. It starts from the research works of
John et al. [34], which classifies features into three disjoint
categories, namely strong relevant, weakly relevant and irrel-
evant features [34]. Although they have realized that some
features, which are totally conditional independent with the
labels, can be viewed as redundant and eliminated, their
theory still cannot explain why some weakly relevant fea-
tures are not required by the optimal feature subset. As an
extension, Yu and Liu [3] introduce the Markov blanket into
John et al.’s [34] theoretical framework and give a more pre-
cise definition of the feature redundancy, which points out
weakly relevant features with Markov blanket as also redun-
dant. Although the second viewpoint and its theory can explain
and define the feature redundancy very well, it is not really

1In Guyon and Elisseeff’s example [24, Fig. 2(b)] they employ two highly
correlated features which can achieve almost perfect separation results.
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practical as it is very difficult to find the Markov blanket
efficiently. Some other works [3], [35], [36] tend to employ
symmetrical uncertainty based approximate Markov blanket
to remove the redundant features to improve the efficiency.
Furthermore, all of those solutions consider individual feature
relevancy and redundance, they cannot remove the redundant
features of type II, e.g., the third feature in Fig. 1, which are
identified by a subset of features.

B. Basic Idea

We use D(X, Y) (abbreviated as D(X)) to denote the rele-
vance based feature evaluation function which represents the
relevance of subset X corresponding to the labels Y . Assuming
P is the selected feature set in the forward greedy processing,
F is the full feature set and xi is the current candidate fea-
ture to be evaluated. The feature selection in each iteration of
forward greedy searching can be formulated as follows:

x∗ = arg max
xi

[D(P ∪ {xi})− D(P)], ∀xi ∈ F − P.

Consider the example presented in Section I, suppose the
three features in this example are denoted as F = { f1, f2, f3}.
Based on the setting in this example, we have D({ f3}) >

D({ f1}), D ({ f3}) > D ({ f2}), D ({ f1, f2}) > D ({ f3}),
D ({ f1, f2}) > D ({ f1, f3}), and D ({ f1, f2}) > D ({ f2, f3}). In
the forward greedy searching, if we use D as the evalua-
tion function, it is obviously that f3 will be selected firstly2

and will lead to the weaker subset in feature selection. To
solve this problem, we propose to reformulate the evaluation
function as

E(X) = D(X)− αD(F − X)

where α is a nonnegative balancing coefficient. The new
evaluation function calculates the distance of the relevance
evaluation between the selected feature subset and the remain-
ing subset, we call the new evaluation function the margin of
subsets. We evaluate the gain of the feature xi with the new
evaluation function as follows:

G(xi) = E (P ∪ {xi})− E(P) = [D (P ∪ {xi})− D(P)]

+ α [D(F − P)− D (F − P− {xi})]. (1)

According to the above definition, we can see that this new
evaluation function considers the gain of the candidate feature
xi on both the selected feature subset P and remaining feature
subset F − P− {xi}.

In the new evaluation function, αD(F − X) measures the
redundancy of current candidate feature. In the first iteration
of the forward greedy processing when P = φ, the gain on old
evaluation function D(X) will only evaluate the relevancy of
each single feature with respect to the labels. While in our new
evaluation function, the term α[D(F − P)− D(F − P− {xi})]
measures the redundancy of xi with respect to the full feature
set F. This means that although xi is highly relevant with the
label individually, if xi is redundant, the value of α[D(F) −
D(F−{xi})] will penalize the total gain of the single feature xi.

2In the first iteration of greedy searching, the gain of f3 (D(f3)−D(φ)) is
larger than the other two.

Thus, our new evaluation function measures the relevance and
redundancy of candidate feature simultaneously. And α can
be used to adjust the ratio of redundancy evaluation terms.
In example 1, let us consider two gain functions of f2 and
f3, respectively, in the first round of iteration with our new
evaluation function.

The gain of f3 with new function is

G(f3) = E(f3)− E(φ) = D ({ f3})− D(φ)

− α
[
D ({ f1, f2})− D ({ f1, f2, f3})

]
.

Gain of f2 with new function

G(f2) = E(f2)− E(φ) = D ({ f2})− D(φ)

− α
[
D ({ f1, f3})− D ({ f1, f2, f3})

]
.

The difference of the gain between feature subset f3 and
f2 is

G(f3)− G(f2) =
[
D ({ f3})− D ({ f2})

]

− α
[
D ({ f1, f2})− D ({ f1, f3})

]
.

In the above example, although D ({ f3}) is larger than
D ({ f1}) and D ({ f2}), it is actually redundant with respect to
{ f1, f2}. The α is the penalty factor which controls the weight
of the penalty term. It also means that a proper α can lead
to G(f3) − G(f2) < 0, thus the forward greedy searching
algorithm in the first iteration will select f2 instead of f3.

The basic idea of the new feature evaluation function is
trying to maximize the relevance based gain margin of the
candidate feature subset and remaining subset with respect to
the labels.

III. THEORETICAL FRAMEWORK FOR FEATURE

SELECTION WITH DEPENDENCY MARGIN

In Yu and Liu’s work [3], they build the optimal feature set
by selecting relevant and nonredundant features. Their defini-
tion on optimal feature set is based on Koller and Sahami [4]
and Kohavi and John’s [15] works on feature redundancy,
some related definitions are reviewed as follows.

Definition 1 (Conditional Independency [37]): Let U be a
finite set of variables with discrete values, and X, Y , Z stand for
any three subsets of variables in U. X and Y are conditionally
independent given Z if

P
(
X = x̂|Y = ŷ, Z = ẑ

) = P
(
X = x̂|Z = ẑ

)
whenever

P
(
X = x̂, Y = ŷ

)
> 0.

We use notion I(X, Y|Z) to denote the conditional indepen-
dency of X and Y given Z. In the following sections, we also
use P

(
x̂|ẑ) to represent P

(
X = x̂|Z = ẑ

)
.

Based on the definition of conditional independency,
Pearl [37] had defined several properties as follows.

Theorem 1: Let X, Y , Z be three disjoint subsets of vari-
ables from U, then

Symmetry

I (X, Y|Z)⇔ I (Y, X|Z).

Decomposition

I (X, Y ∪W|Z)⇒ I (X, Y|Z) and I (X, W|Z).
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Weak union

I (X, Y ∪W|Z)⇒ I (X, Y|Z ∪W).

With the concept of conditional independency, several def-
initions on relevant features are listed below.

Let F be a full set of features, Y is the label, f is a feature
and Si = F − { f }. The concepts of feature relevance can be
formalized as follows.

Definition 2 (Strong Relevance [3]): f is strong relevant iff
there exists some f̂ , ŷ and ŝi for which P(f = f̂ , Si = ŝi) > 0
such that P(Y = ŷ|f = f̂ , Si = ŝi) 
= P(Y = ŷ|Si = ŝi).

Definition 3 (Weak Relevance [3]): f is weakly relevant iff
it is not strong relevant, and there exists a subset of feature
S′i of Si for which there exists some f̂ , ŷ, and ŝ′i for which
P(f = f̂ , S′i = ŝ′i) > 0 such that P(Y = ŷ|f = f̂ , S′i = ŝ′i) 
=
P(Y = ŷ|S′i = ŝ′i).

According to the same notion, the irrelevance can be defined
as follows.

Definition 4 (Irrelevance [3]): f is irrelevant iff ∀S′i ⊆
Si, P(Y = ŷ|f = f̂ , S′i = ŝ′i) = P(Y = ŷ|S′i = ŝ′i).

According to the definitions, strong relevance of a feature
indicates that the feature is always necessary for an optimal
subset; it cannot be removed without affecting the original
conditional class distribution. Weak relevance suggests that
the feature is not always necessary but may become neces-
sary for an optimal subset at certain conditions. Irrelevance in
Definition 4 indicates that the feature is not necessary at all.
As those weak relevant features are difficult to be determined
whether they belongs to the optimal subset or not only from
the viewpoint of relevance, Yu and Liu [3] tried to solve this
problem from the viewpoint of redundancy.

In Yu and Liu’s [3] redundant feature theories, they intro-
duce the Markov blanket to describe the feature redundancy
and the definition of Markov blanket is given as follows.

Definition 5 (Markov Blanket [4]): Given a feature f , let
Mi ⊂ F(f 
∈ Mi), Mi is said to be a Markov blanket for f iff

I (F −Mi − { f } ∪ Y, f |Mi) .

Definition 6 (Redundancy Feature [3]): Let F be the cur-
rent set of features, a feature f is redundant and hence should
be removed from F iff it is weakly relevant and has a Markov
blanket Mi within F, that is Mi ⊂ F − { f }.3

According to the Definition 6, we can judge which of
weakly relevant features should be selected and which of them
removed to construct the optimal feature subset.

Thus, the optimal feature set [3] can be demonstrated with
Fig. 2. There are four disjoint parts for an input feature
set: 1) irrelevant features; 2) weakly relevant but redundant
features; 3) weakly relevant but nonredundant features; and
4) strong relevant features. The optimal feature set is consisted
of 3) and 4).

IV. FEATURE SELECTION WITH DEPENDENCY MARGIN

The proposed feature selection approach employs the
forward greedy searching to generate a sequence of features.

3Here Mi should not equal to F − { f }, otherwise all the weakly relevant
feature can find the Markov blanket Mi = F − { f } based on Definition 3.

Fig. 2. View of feature relevance and redundancy [3].

The user can either choose top k features as the desired
feature subset or use wrapper method to choose the best
feature subset with corresponding classifier from the nested
subsets constructed with the sequenced features. For example,
suppose a sequence of features generated by our method is
F = { f1, f2, . . . , fn}, then we can generate n nested
candidate feature subsets from that sequence as
{ f1}, { f1, f2}, . . . , { f1, f2, . . . , fn}. Each candidate subset
is evaluated with tenfold cross validation and the subset with
highest classification accuracy is output.

A. Definitions on Dependency and Dependency Margin

In this section, we will present the definitions of dependency
and dependency margin within the Bayesian framework, and
several theorems based on those definitions are also presented.

Definition 7 (Dependency): Suppose F is the feature set, Y
is the label, for a set X ⊆ F, the dependency of X is defined as

D(X) =
∑

∀x̂i,ŷj

P
(
X = x̂i, Y = ŷj

)
{P(X=x̂i)=P(X=x̂i,Y=ŷj)}.

It is also can be denoted as

D(X) =
∑

∀x̂i,ŷj

P
(
X = x̂i, Y = ŷj

)
{P(Y=ŷj|X=x̂i)=1}.

Here we let D(φ) = 0.
Definition 8 (Dependency Margin): F is the feature set, Y

is the label, for a set X ⊆ F, the dependency margin of X is
defined as E(X) = D(X)− αD(¬X).4 Here, ¬X = F − X.

Theorem 2 (Monotonicity of Dependency): F is the feature
set, Y is the label, considering two feature subsets M ⊆ F,
Q ⊆ F. If M ⊆ Q, then D(M) ≤ D(Q).

Proof: If M = Q, obviously D(M) = D(Q). Thus, we
only need to consider the condition of M ⊂ Q, let us con-
sider M ∪ { f } = Q, f ∈ F. For any of m̂i, ŷi that satisfies
P(ŷi, m̂i) = P(m̂i), P(m̂i) = ∑

∀f̂ P(m̂i, f̂ ) = ∑
∀f̂ P(m̂i, f̂ , ŷi),

let q̂i = (m̂i, f̂ ), then for each q̂i, we have P(ŷi|q̂i) = 1. This
means P(m̂i) will be always included in D(Q) for any m̂i, f̂
that satisfies P(ŷi, m̂i) = P(m̂i). Thus, D(M) ≤ D(Q).

Based on Theorem 2, we can easily obtain the monotonicity
of dependency margin as follows.

Theorem 3 (Monotonicity of Dependency Margin): F is
the feature set, Y is the label, considering two feature subsets

4In this solution, we set α = 1.
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Algorithm 1: Strong Relevant Features Generation
Algorithm

Input: F
Output: Strong relevant feature set A1

1 A1 ← φ;
2 for each a ∈ F do
3 if D(F) > D(F − {a}) then
4 A1 = A1 ∪ a;
5 end
6 end

M ⊆ F, Q ⊆ F and M 
= φ, Q 
= φ. If M ⊆ Q, then
E(M) ≤ E(Q).

Considering the definitions of dependency and conditionally
independent, we can easily present the following corollary.

Corollary 1: F is the feature set, Y is the label, and G =
F− { f }, if D(F) > D(G), then I(Y, f |G) will not be satisfied.

B. Feature Subsets Division

Based on the dependency margin, we develop the forward
greedy search algorithm for feature selection as follows. Our
approach has two stages, the first one is a preprocessing step
to divide the whole feature set into three disjoint subsets, A1,
B2 and C3, where A1 is the strong relevant feature set, B2 is the
approximate weakly relevant but nonredundant feature set and
C3 = F−A1−B2 is the set of remaining features which may
contain weakly relevant but redundant features and irrelevant
features. In the second stage, the forward greedy based feature
selection algorithm is applied to A1, B2, and C3 sequentially to
make sure those strong relevant features and weakly relevant
but nonredundant features can be selected earlier than those
weakly relevant but redundant features and irrelevant features.

The strong relevant features generation algorithm is detailed
in Algorithm 1.

When considering Algorithm 1, we have the following
theorem.

Theorem 4: F is the feature set, Y is the label, f ∈ F, if
D(F) > D(F − { f }), then f is a strong relevant feature of F.

Proof: If D(F) > D(F − { f }), based on the Corollary 1, it
is easy to see Y and f is not conditionally independent given
F− { f }, and thus f is a strong relevant feature of F based on
the Definition 2.

Theorem 4 can guarantee each feature in A1 is a strong
relevant feature, however, it cannot guarantee that all the
strong relevant features are selected into A1. We then use
Algorithm 2 to select an approximate weakly relevant nonre-
dundant feature set, B2, which may contain strong relevant
features. The approximate weakly relevant but nonredundant
feature set generation algorithm is shown in Algorithm 2.

Considering Algorithm 2, we have the following theorem.
Theorem 5: F is the feature set, Y is the label, each element

b in B2 does not contain Markov blanket Mi within F (Mi ⊂
F − {b}).

Proof: Assuming b ∈ B2 and there is a Markov blan-
ket Mi(Mi ⊂ F − {b}) for b within F, that is I(b, F −
Mi − {b} ∪ Y|Mi). For any m ∈ F − Mi − {b}, we have

Algorithm 2: Approximate Weakly Relevant
Nonredundant Feature Set Generation Algorithm

Input: F, A1
Output: Approximate weakly relevant nonredundant

feature set B2
1 B2 ← φ;
2 for each b ∈ F − A1 do
3 if ∀m ∈ F − {b} satisfied

D(F − {m}) > D(F − {m} − {b}) then
4 B2 = B2 ∪ b;
5 end
6 end

I(b, {m} ∪ Y|F − {m} − {b}) based on the property of weak
union. Thus, we have I(b, Y|F − {m} − {b}) based on the
property of decomposition. Obviously, this will conflict with
D(F − {m}) > D(F − {m} − {b}). Thus, b has no Markov
blanket within F based on Corollary 1.

Obviously the features in B2 satisfy the definition of weak
relevance, thus, the feature in B2 is either a strong relevant
feature or a weakly relevant but nonredundant feature.

C. Forward Greedy Feature Selection With Dependency
Margin

The feature selection algorithm with dependency margin is
given in Algorithm 3. In this algorithm, we first select the
features in A1 according to the dependency margin function.
Then a forward greedy searching is used to choose the feature
that maximally increase the dependency margin function iter-
atively (step 5). After all the feature in A1 are selected, B2 and
C3 set are sequentially selected with the gain of dependency
margin function.

D. Further Analysis on the Margin-Based Algorithm

Compared with traditional forward greedy based feature
selection algorithms, our margin based feature selection algo-
rithm will use three disjoint sequent subsets as its input and
thus to select those strong relevant and weakly relevant but
nonredundant features earlier than other features.

Based on the definitions of Markov blanket and dependency,
we can obtain the following theorem.

Theorem 6: P is the feature subset of F, Y is the label,
f ∈ F and f 
∈ P, if D(P ∪ { f }) > D(P), then there does not
exist Mi (Mi ⊂ P) to be a Markov blanket for f .

Proof: We first assume there is a subset Mi (Mi ⊂ P) to be
a Markov blanket for f , then I(P − Mi ∪ Y, f |Mi). Based on
the symmetry of Theorem 1, we obtain I(f , P −Mi ∪ Y|Mi),
and then we can obtain I(f , Y|P) based on the weak union of
Theorem 1. Now we consider the condition that D(P∪{ f }) >

D(P), it is easy to obtain that I(Y, f |P) (that is I(f , Y|P))cannot
be satisfied based on the Corollary 1. Thus, Mi does not
exist.

Theorem 6 tell us that if D(P∪ { f }) > D(P), f cannot be a
redundant feature with respect to P∪ { f } in the Bayesian fea-
ture redundancy theoretical framework. And let us reconsider
the gain function presented in (1): when the current selected
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Algorithm 3: Dependency Margin-Based Feature
Selection Algorithm

Input: A1, B2, C3
Output: Sequenced feature set P

1 P← φ;
2 Q← A1;
3 while Q 
= φ do
4 for each a in Q− P do
5 a∗ = arg maxa [E(P ∪ {a})− E(P)];
6 end
7 P← P ∪ {a∗};
8 Q← Q− {a∗};
9 end

10 Q← B2;
11 while Q 
= φ do
12 for each a in Q ∪ A1 − P do
13 a∗ = arg maxa [E(P ∪ {a})− E(P)];
14 end
15 P← P ∪ {a∗};
16 Q← Q− {a∗};
17 end
18 Q← C3;
19 while Q 
= φ do
20 for each a in Q ∪ A1 ∪ B2 − P do
21 a∗ = arg maxa [E(P ∪ {a})− E(P)];
22 if there are multiple equal maximal ai(i > 1) then
23 a∗ = arg maxai D(P ∪ {ai});
24 end
25 end
26 P← P ∪ {a∗};
27 Q← Q− {a∗};
28 end

feature set P = φ, the gain function has calculate the term
D(F)−D(F− { f }). Obviously D(F)−D(F− { f }) ≥ 0 based
on Theorem 2, and the condition that f is redundant with
respect to F may occur only when D(F) − D(F − { f }) = 0,
thus D(F)−D(F − { f }) in the gain function can be regarded
as a penalty term to reduce the total gain when f is redundant
with respect to F.

The main reason that traditional relevance based forward
greedy searching approaches often selects weaker feature
subset is they always choose those redundant but highly label-
related features at the very beginning of the forward greedy
searching. Compared with traditional approaches, our depen-
dency margin based approach selects the feature that is not
redundant with respect to both selected subset and remaining
subset. This makes it more likely to converge to the global
optimal subset.

As directly selecting optimal feature subset with the concept
of Markov blanket is intractable, we introduce the dependency
margin based feature selection algorithm, which first finds the
strong relevant and weakly relevant but nonredundant feature
subsets and then ranks the features by each feature’s gain
of dependency margin. According to the Definitions 2 and 3,

Theorem 4 cannot guarantee that all the strong relevant features
are selected into A1, similarly, Theorem 5 also cannot guarantee
that all the weakly relevant but nonredundant features are
selected into B2. Assuming P∗ is the optimal feature subset
presented in Fig. 2, then we have (A1∪B2) ⊆ P∗. It means C3
may contain few weakly relevant but nonredundant features,
which should also belong to the optimal feature subset P∗.
That’s why we also rank the features from C3 in Algorithm 3.

V. EXPERIMENTS

In this section, we empirically evaluate our approach [feature
selection with dependency margin of subsets (FSDMS)] with
other current state-of-art methods. In the following experiments,
we use seven feature selection methods, which are ReliefF,
consistency, dependency, information gain, correlation-based
feature subset selection-sequential forward (CFS-FS), fast cor-
relation based filter (FCBF), and IRelief, to carry out the
comparable experiments. For the ReliefF, consistency, depen-
dency, information gain, IRelief, and our FSDMS methods,
we use forward greedy searching to generate the nested fea-
ture subsets, such as { f1}, { f1, f2}, . . . , { f1, f2, . . . , fn}. Then a
wrapper based method is used to evaluate those feature sub-
sets (to use desired classifier to test each candidate subset
with tenfold cross validation and output the subset with best
classification accuracy) and output the final feature subset. As
the wrapper based method is implemented to our FSDMS, we
also call it WFSDMS.

The detailed reviews on every comparable feature selection
methods are given as follows.

1) ReliefF [38]: It searches for nearest neighbors of
instances of each class and weights features according to
how well they distinguish instances of different classes.
In our experiments, we employ reliefF based evaluation
function and forward greedy search to output the nested
feature subsets and then use the same wrapper policy
to output the optimal subset with highest classification
accuracy among all the nested subsets.

2) Consistency [5]: The consistency based feature selec-
tion was originally presented by Dash and Liu [18] as
a filter based approach. It evaluates the feature subsets
based on the consistency with the labels. Hu et al. [5]
improved the consistency based approach, which can
enable the computation of consistency with numeri-
cal data. Hu et al. [5] also employed a forward greedy
search policy to generate the sequence of features based
on their gain of consistency to the selected features, then
the wrapper policy is implemented in the nested subsets
based on the feature sequence generated by the gain of
consistency. In our experiments, we use Hu et al.’s [5]
consistency method.

3) Dependency [19]: The dependency based feature selec-
tion defines the dependency as the discrimination of the
subset on the labels and then uses a greedy forward
searching policy to generate a sequence of features based
on the dependency gain of each feature. The forward
greedy searching is also used to generate the nested
candidate feature subsets, and then the optimal subset
is output via the wrapper method.
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TABLE I
FEATURE SELECTED WITH DIFFERENT ALGORITHMS ON SYNTHETIC DATA, RELIEFF, CONSISTENCY, INFORMATION GAIN, IRELIEF, AND WFSDMS

METHODS USING SVM, BAYES, AND CART AS WRAPPER CLASSIFIERS

4) Information Gain: This algorithm evaluates each
attribute by measuring the information gain with respect
to the class. This results in a sequence of features.
We then apply the same wrapper method to output the
optimal subset from those nested candidate subsets gen-
erated from the feature sequence. In our experiments,
we use the information gain code from Weka [39].

5) CFS-FS [25]: It is a subset based evaluation algorithm,
which exploits best-first search based on some correla-
tion measure which evaluates the goodness of a subset
by considering the individual predictive ability of each
feature and the degree of correlation between them.

6) FCBF [3]: It is a filter based selection algorithm, which
uses symmetrical uncertainty as the evaluation metric
to find the relevant features and then removes those
redundancy features with approximate Markov blanket.

7) IRelief [40]: Iterative Relief is an improved Relief algo-
rithm. It addresses on Relief’s weakness of lacking a
mechanism to deal with outlier data and has been exper-
imentally proved robust to the highly noisy data with
a large amount of irrelevant features and/or mislabel-
ing [40]. In our experiments, we use the IRelief code
from machine learning python (MLPY).5

In order to fully evaluate the performance of the proposed
feature selection algorithm, we also use three learning
algorithms, naive Bayes classification (NBC), classification
and regression tree (CART), SVM, to evaluate the predictive
accuracy on the selected subset of features with a tenfold
cross validation.

A. Experiments on Simulated Data

We use three synthetic datasets to evaluate the strength of
WFSDMS and compare it with ReliefF, CFS-CF, consistency,
dependency, information gain, FCBF, and IRelief. The fist
dataset is CorrAL data which has been widely used in many
feature selection evaluations [3], [34]. It contains six Boolean
features (A0, A1, B0, B1, I, R) and a Boolean class Y defined
by Y = (A0 ∧ A1) ∨ (B0 ∧ B1). Feature A0, A1, B0 and B1
are independent to each other, feature I is uniformly random,

5http://mlpy.sourceforge.net/docs/3.1/weighting.html

and feature R matches the class Y 75% of the time. In CorrAL
dataset, the optimal subset includes A0, A1, B0, and B1. The
Boolean features A0, A1, B0, and B1 have 16 combinations
(instances), we then repeat each combination with the same
probability to construct a CorrAL data with 1024 samples. The
irrelevant feature I and redundant feature R are then generated
using the dataset of 1024 instances.

We also use two other synthetic data, CorrAL-47 and
CorrAL-46, which are generated by adding more irrelevant
features and redundant features. The CorrAL-47 contains a
total of 47 boolean features including five original features A0,
A1, B0, B1, and R, 14 irrelevant features, and 28 additional
redundant features. Among the 14 irrelevant features, only two
features are uniformly random and each of the remaining 12
is completely correlated with one of the two features. Among
the 28 additional redundant features, for each of A0, A1, B0
and B1, there are seven features that are correlated with it
at various levels. The ratios of nonmatches are 0, 1/16, 2/16,
. . . , 6/16, respectively. CorrAL-46 is the same as CorrAL-47
except that it excludes R. The generation of the CorrAL-46
and CorrAL-47 is similar to the CorrAL, we extend the num-
ber of data instances discriminated by the optimal features A0,
A1, B0, B1 into 1024 and then generate redundant features and
irrelevant features.

Table I shows features selected by each algorithm. We use
A0, A1, B0, B1 combined with subscripts 0, 1, . . . , 6 to repre-
sent the newly introduced redundant features, with the value of
the subscripts indicating the ratio of nonmatches. I1 and I2 are
two irrelevant features using uniformly random. We use I1 or
I2 combined with subscripts 1, 2, . . . , 6 to represent irrelevant
features which is completely correlated with I1 or I2.

In our experiment, there are two relevance threshold γ in
FCBF, FCBF(0) and FCBF(log). We set the γ as the default
value 0 and the SU value of the �N/logN�th ranked feature
for each dataset, respectively.

We can see that most of the feature selection algorithms
fail to remove the highly redundant feature R in CorrAL
and CorrAL-47 except ReliefF and WFSDMS. However, the
ReliefF tends to select several redundant features correlated
with A0, A1, B0, and B1 in both CorrAL-46 and CorrAL-47.
The feature R can be viewed as the redundant feature that can
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TABLE II
DESCRIPTIONS OF UCI BENCHMARK DATASETS

TABLE III
CLASSIFICATION ACCURACY (IN PERCENT) OF UCI DATASETS WITH SUPPORT VECTOR MACHINE (SVM) CLASSIFIERS

only be identified by a subset (A0, A1, B0, and B1), which is
the type II redundant feature mentioned in previous section.
This subset related redundant features often occurs in high-
dimensional data and are hard to be removed by most heuristic
search algorithms. The experiments show that our WFSDMS
can find the optimal feature subset when there are redundant
features that can only be identified based on feature subsets
(e.g., the redundant feature R is defined by the subset of A0,
A1, B0, and B1).

The results on IRelief show although it can avoid select
irrelevant features in both CorrAL-46 and CorrAL-47, this
algorithm fails to remove those relevant but redundant features
such as R, A00 etc.

We also notice that the consistency based methods often
tend to select smaller feature subset in CorrAL-46, which does
not contain the redundant feature R. The reason is the consis-
tency metric tends to use an aggressive policy to estimate the
classification risk of the feature subsets [5]. This policy can be
viewed as a bias for small subset feature selection, which may
enhance the classification performance of consistency based
feature selection method, especially in some feature-number-
sensitive classifiers. However, this bias may not be useful to
find the true optimal feature subset.

We have also carried out the experiment on dataset with
dependency. However, the dependency based selection algo-
rithm failed to generate the nested candidate feature subsets
due to the weak discrimination of each Boolean feature. That is
the dependency of every feature is zero, when concerning the
dependency of each feature in those three synthetic datasets.

B. Experiments on UCI Benchmark Data

In the following, we also employed 15 UCI benchmark
datasets6 to evaluate the performance of our WFSDMS and

6http://archive.ics.uci.edu/ml/

the other seven feature selection algorithms.7 These datasets
contain various numbers of features, instances, and classes,
as shown in Table II. There are three datasets which con-
tain purely nonnumerical features, and the remainders con-
tain either purely continuous features or hybrid (discrete
and continuous) features. To enable the dependency calcu-
lation of numerical features, we adopt a new method sim-
ilar to Hu et al.’s [5] neighborhood approach according to
Definition 8.

Definition 9 (Numerical Dependency): F is the feature set,
Y is the label, for a set X ⊆ F, the dependency of X is
defined as

D(X) =
∑

∀x̂i,ŷj

P(X = x̂i, Y = ŷj){P(Y=ŷj|X=θ(x̂i))=1}

where θ(x̂i) =
{
x̂j|∀x̂j satisfied ‖ x̂i − x̂j ‖≤ θ

}
, and θ > 0,

||a − b|| is the Euclid distance of a and b. x̂j is the possible
value of X in dataset.

The experimental results8 are presented in Tables III–V. The
results in Table III are evaluated with SVM, the results in
Table IV are evaluated with CART, and the results in Table V
are evaluated with Bayes method.

For the performance of SVM-based classification, as shown
in Table III, WFSDMS comes with the highest accuracy in
nine datasets. The average accuracy on the total 15 datasets
are the second high among all the feature selection methods.
After further analysis, the WFSDMSs accuracy on Sonar is
much lower than the ReliefF’, which may lower down the
average accuracy of WFSDMS and lead to below the average
accuracy of ReliefF. We use a diagram (Fig. 3), to visualize the

7As the IRelief can only support two-classes datasets, we execute it in the
ten two-classes datasets of Table II.

8As the suggestion by Hu et al. [5], we set θ = 0.14. Each column of the
dataset is normalized into [0, 1].
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TABLE IV
CLASSIFICATION ACCURACY (IN PERCENT) OF UCI DATASETS WITH CART CLASSIFIERS

TABLE V
CLASSIFICATION ACCURACY (IN PERCENT) OF UCI DATASETS WITH BAYES CLASSIFIERS

Fig. 3. Pair-wise accuracy comparison between WFSDMS and other methods
with SVM classification on different datasets.

pair-wise performances of our WFSDMS comparing with other
methods with support vector machine (SVM) classification
on different datasets. The red box in figure represents that
WFSDMS’accuracy is higher than its comparable method’s
accuracy in current dataset. The green box shows WFSDMS’
accuracy is lower than its comparable method’s accuracy, and
white box shows two methods are on par. The result in Fig. 3
shows the WFSDMS achieves better performance in most of
dataset compared with other feature selection algorithms on
SVM classification.

For the performance of CART-based classification, as shown
in Table IV, WFSDMS comes with the highest accuracy in
five datasets, which is a little below the consistency based
feature selection methods (with six datasets). However, the
average accuracy of WFSDMS is the highest in all the eight
methods. Considering the pair-wise diagram shown in Fig. 4,
WFSDMS can achieve better performance in most of the
datasets. We then take a further analysis on the selected fea-
ture sets on WFSDMS and consistency methods, and the

Fig. 4. Pair-wise accuracy comparison between WFSDMS and other methods
with CART classification on different datasets.

consistency methods tend to select smaller feature subsets
comparing with WFSDMS. This may favor the short bias
of the CART classification. However, we have proved in
experiment 1, the short bias may be useful when consider-
ing improving the accuracy performance, it may not be able
to find the true optimal feature subset.

With regard to the performance of Bayes-based classifica-
tion, as shown in Table V, WFSDMS comes with the highest
accuracy in eight datasets, which is more than all the other
feature selection methods. The average accuracy of WFSDMS
is the highest in all the eight methods. Considering the pair-
wise diagram shown in Fig. 5, WFSDMS can achieve better
performance in most of the datasets.

The UCI data experimental results on different classifiers
also reminder us some interesting viewpoints. In the experi-
ment of wrapping with SVM, there are two datasets, i.e., blood
and Wpbc, which all the selection methods achieve the same
classification accuracy as the original feature set, while these
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Fig. 5. Pair-wise accuracy comparison between WFSDMS and other methods
with Bayes classification on different datasets.

two datasets training with original feature set cannot achieve
the same classification accuracies when using the CART and
Bayes. This may imply that SVM is not so sensitive to the
input features as it will map all the features into a higher
dimension with kernel functions. On the contrary, the Bayes is
quite sensitive to the input features in classifications, this may
explain why our method can achieve much better performance
in the classify of Bayes than the other two classifiers.

Fig. 6 shows the relation between the number of selected
features and the classification accuracies with different fea-
ture selection methods in wine and wpbc datasets. The results
show our WFSDMS tends to select those features that are
necessary (strong relevant) to the labels instead of select-
ing those features that are maximal positive related with the
classification accuracy. This is why our WFSDMS performs
much worse than other methods in the first selected feature,
and then its classification performance will increase quickly
with the increase of the number of selected features. This
selection scheme can help our WFSDMS avoid the selection
of highly relevant but redundant features, e.g., R in CorrAL,
and find the optimal feature set.

C. Experiments on Face Recognition

In this section, we show results for applying our feature
selection approach to the application of face recognition. In our
experiments, the CMU PIE Database9 is used. We manually
remove background by cropping and registering all the faces10

with a resolution of 64×64. Face examples in the database are
shown in Fig. 9.

To handle the variations of illumination conditions and
expressions in PIE database, the local binary patterns
(LBP) [41] feature is used in our experiments. We divide each
face (image) into 4 × 4 sub-regions (the size of each region
is 16 × 16 pixels) and then calculate the LBPu2

8,1 features of
every regions. Here, Superscript u2 stands for using only uni-
form patterns [42], and LPBP,R stands for pixel neighborhoods
which means P sampling points on a circle of radius of R.

The face recognition process combines all the LBP features
of the 4 × 4 regions into a vector. This vector is used as the

9http://vasc.ri.cmu.edu/idb/html/face/
10The dataset after processing can be downloaded from our website,

http://www.nlict.zju.edu.cn/yliu/featureselection.html

input features to train a classifier. In our experiments, each
face region coding with the uniform patterns [41] will form
a feature vector of 59 dimensions, thus the total dimension is
944 (59× 16).

We then apply four feature selection approaches to find the
most relevant features,11 i.e., ReliefF, consistency, dependency,
WFSDMS, into the face recognition process, and try to select
the proper subset of face (image) regions. We randomly divide
all the images of each person into three equal subsets and then
use two subsets to apply feature selection approaches and train
a SVM classifier, the third one subset is used as test set. We
permutate between the training and testing datasets and then
obtain the average classification accuracy and average number
of selected features for each method. In our experiments, we
repeat the random division 20 times. The results are shown
in Figs. 7 and 8 where the horizontal axis, θ , is set from 3.1
to 5.1, this is based on the experimental observation of the
dimensional ratio of the face recognition problem comparing
with the previous experiments of UCI datasets, which con-
tains lower dimensions and use θ = 0.14 as their experimental
optimal setting.

According to Fig. 7, the results show that the accuracies
of our approach (WFSDMS) outperform most of other feature
selection approaches and they can produce higher accuracy
than the raw feature set. It is also suggested by Fig. 8 that
our approach can reduce the face features (regions) more effi-
ciently compared with other approaches with increasing θ .
When θ increases to 5.1, the number of face regions (fea-
tures) selected by our approach is reduced to minimum and at
the same time our approach’s accuracy reaches the maximum.

We also visualize the selected face regions by different fea-
ture selection approaches for further analysis. The results are
shown in Fig. 9. The black blocks represent those unselected
face regions. Each row in Fig. 9 represents the visualization
result of a certain method drawing under different persons.
The row 1, row 2, row 3, and row 4 represent the results
of WFSDMS, dependency, consistency, and ReliefF, respec-
tively. The results in Fig. 9 show that although our method
selects least number of face regions (almost half of the 16 face
regions) among all the four methods, it is still able to provide
sufficient discrimination performance. Furthermore, the face
and its division (4 × 4) in our experiments are symmetrical,
which means that there may be some symmetrical face regions
are redundant. And the results in Fig. 9 show that our method
prefers to select asymmetrical face regions, which may remove
those symmetrical redundancy in face recognition.

D. Analysis and Discussion

The simulated experimental results in Table I show that
almost all of the feature selection algorithms can remove
those irrelevant features, except two filter based methods, CFS-
SF and FCBF(0), which implies that pure linear correlation
based methods may encounter difficulties when processing

11In this experiment, we compare the performance of wrapper based meth-
ods selecting sub-regions (features). As the calculation of the entropy for
multiple dimensional vectors is intricate, this experiment does not include the
method of InfoGain.
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(a) (b) (c)

(f)(e)(d)

Fig. 6. Variation of average classification accuracies with the number of selected features. (a) Wpbc with SVM classification. (b) Wpbc with CART
classification. (c) Wpbc with Bayes classification. (d) Wine with SVM classification. (e) Wine with CART classification. (f) Wine with Bayes classification.

Fig. 7. Face recognition accuracy on different feature selection approaches
with varied θ , θ ∈ [3.1, 5.1].

Fig. 8. Features selected by different approaches with varied θ , θ ∈ [3.1, 5.1].

data with irrelevant features. Based on the observation of
Table I, it also shows that the type II redundant feature will
severely degrade the performance of feature selection algo-
rithms. That’s why those algorithms of CFS-CF, FCBF(0),
FCBF(log), Information Gain can almost find the optimal sub-
set in Coral-46, while they fail to find the optimal subset
in CorrAL and CorrAL-47. The results of those state-of-art
algorithms in simulated experiments also reveal that current
methods may already solve the problem of irrelevant feature

Fig. 9. Visualization of the selected features of different approaches
(θ = 3.1). The first row are the features selected by WFSDMS, the second
row are the features selected by dependency, the third row are the features
selected by consistency, and the last row are the features selected by ReliefF.

removing, however, the remainder difficulty may be how to
removing those relevant but redundant features especially in
those data with type II redundant features.

Although it has been generally recognized that the classi-
fier may not be the optimal evaluation criterion for the feature
selection results due to its intrinsic bias, we still have no better
choices especially when the ground true optimal feature sub-
sets are not available. At least using varied classifiers working
on large number of datasets to evaluate the performances of
those feature selection methods can reveal the superior feature
selection method in probability.

VI. CONCLUSION

This paper presents a feature selection algorithm using
dependency margin of subsets. This dependency margin based
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feature selection algorithm, which is estimated under the
theories of Bayesian conditional independency and Markov
blanket, employs independency to identify the strong rele-
vant features and weakly relevant but nonredundant features
and sorts the whole feature set with the sequence of strong
relevant feature, weakly relevant but nonredundant features
and remainder features. Then, a dependency margin based
evaluation function is adopted to select features with for-
ward greedy search algorithm from the sorted feature set.
As the result, this approach can avoid the interference of
relevant but redundant features and overcome the weakness
(choosing weaker feature subset) of the forward greedy search
based methods. Experimental results on simulated datasets,
UCI benchmark datasets and practical face recognition case
show the advantages of our method.

Several questions remained to be investigated in our feature
works.

1) When processing the datasets with numerical values, a
parameter θ , see Definition 8, is introduced to control the
calculation of the dependency. Obviously, this parame-
ter can be regarded as the granular control parameter
and will affect the results of feature selection. Currently,
we choose the value of θ empirically based on the
dimension of problems. Further research will be on a
principled and efficient way for parameter selection.

2) When concerning the relevance margin based evaluation
function, there is a parameter α attached with the rele-
vance function of unselected feature set. It is possible to
discover the theories or models to choose proper value
of α.
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