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Abstract Pose estimation methods in robotics applications
frequently suffer from inaccuracy due to a lack of
correspondence and real-time constraints, and instability
from a wide range of viewpoints, etc. In this paper,
we present a novel approach for estimating the poses
of all the cameras in a multi-camera system in which
each camera is placed rigidly using only a few coplanar
points simultaneously. Instead of solving the orientation
and translation for the multi-camera system from the
overlapping point correspondences among all the cameras
directly, we employ homography, which can map image
points with 3D coplanar-referenced points. In our
method, we first establish the corresponding relations
between each camera by their Euclidean geometries and
optimize the homographies of the cameras; then, we
solve the orientation and translation for the optimal
homographies. The results from simulations and real
case experiments show that our approach is accurate
and robust for implementation in robotics applications.
Finally, a practical implementation in a ping-pong robot is
described in order to confirm the validity of our approach.

Keywords Multi-camera System, Pose Estimation,
Coplanar Points, Ping-pong Robot

1. Introduction

Pose estimation from a referenced rigid structure is one of
the most basic and important problems in robotics vision
and computer graphics. It can be used to obtain the 6DOF
(degrees of freedom) of the cameras needed for further
implementation, e.g., in helping robots to locate targets
in referenced coordinates [1, 2], in calculating coordinates
in images of virtual 3D objects to synthesize augmented
reality scenes [3], in locating flying balls for robots [4], and
in calibrating the camera-laser sensor system [5].

Although the single camera pose estimation problem has
been widely researched in the last decade, the methods
used often suffer from low robustness and ill-conditioned
pose estimation problems. Furthermore, a relatively small
angle for viewing influences the accuracy of the estimated
pose.

In practical robotics vision applications (e.g., catching
objects via robot arms, playing ping-pong with robots, etc.,
all of which may require the vision system to perform in
real-time), the tasks of pose estimation (which aim to locate
the absolute coordinates of objects via the vision system
of the robot) require quite a high degree of accuracy and
robust performance in most conditions. A single camera
cannot provide enough precision or robustness in such
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tasks for pose estimation, and thus a multiple camera
system is required. Furthermore, task-related robots are
normally required to obtain the absolute coordinates of
a tracing target in the referenced space via rigid point
correspondences from landmarks, while a single-camera
system will obtain infinite solutions for the target due to
the property of perspective projection.

In the specific case of mobile robots, pose estimation
methods for multiple camera systems have always faced
the following challenges:

(1) In applications of mobile robots - especially in the case
of robots working at high speed - to achieve the poses
of all the cameras simultaneously is the most important
requirement. Otherwise, the poses estimated individually
will break the rigid constraint among all the cameras in the
multiple camera system, as there may be some motion in
the pose estimation of different cameras due to the high
speed of the robot.

(2) Methods are always required that can work accurately,
stably (with low standard deviation - STD) and robustly
under any angle of viewpoint due to the uncertain poses
of mobile robots.

(3) The task of localization is always followed by the task
of pose estimation; thus, the methods should also provide
preferable localization performance for their estimations.

(4) As the movement of the robot may shake the rigid
rig among the cameras and introduce bias, the pose
estimation methods should also be robust in relation to the
interference of bias on solid rigs.

(5) Mobile robots are real-time systems, and so they require
the pose estimation methods to calculate as quickly as
possible and with fewer point correspondences, due to the
mobility of a given view.

In this paper, we address all the above challenges and
present a novel approach for estimating the poses of all
the cameras in a multi-camera system with only a few
coplanar points in a manner that is accurate, robust and
simultaneous!, and we aim to resolve the above four main
challenges as they arise in the practical vision system of a
humanoid ping-pong robot.

2. Related Works

Pose estimation for single cameras [6-11] has been studied
for many years. Recently, much of the research has focused
on pose estimation in multi-camera systems, due to the
limitations of single cameras, e.g., their low accuracy and
limited field-of-view.

One of the most important advantages of a multi-camera
system is that it can recover stereo information easily
(e.g., the visual odometry [12], which employs calibrated
cameras to recover the 3D information of targets), and it

! Here, we only need to estimate one representative pose of the
multi-camera system - any other poses of any other camera may be
obtained by transforming with the known orientations and translations
existing between each camera.
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can help to estimate the motion of the cameras from the
optical flow via the Kalman filter method or by minimizing
a cost function based on the geometric and 3D properties
of the features.

Generally, there are two kinds of multi-camera systems:
one is designed for overlapping fields of view [13-17] and
the other for non-overlapping fields of view [18, 19].

The methods for a non-overlapping system [18, 19]
require the use of cameras which are placed rigidly on a
moving object, where the translation and rotation between
the cameras are known. When the object is moving
rigidly, these methods can recover the 6DOF motion for
the multi-camera system via the point correspondences
between two points seen before and after motion. These
methods are normally implemented on a vehicle or other
moving objects, and require relative motion between every
other image.

The methods for overlapping systems also employ
cameras placed rigidly, with known translation and
rotation between each camera, and they can recover
the pose of their systems with only one frame of the
multiple images from different cameras. As such, these
methods can be used to process static scenes. As there
are many efficient pose estimation methods for single
cameras, an intuitive solution for overlapping fields of
view in multi-camera systems is to estimate the pose for
each camera and then reduce the ambiguities produced
by the estimated poses of every camera based on their
rigid constraint via fusing or polling policies. The methods
presented by Baker et al. [14] and Viksté et al. [15]
belong to this category. However, this kind of method
does not obtain a unifying pose for the multi-camera
system with all the information from all the cameras
simultaneously. It may introduce some inconsistencies
with the rigid constraint between each pair of cameras,
which may reduce the precision of multi-camera systems
for measurement or object localization (i.e., stereo vision
for grasping with robots [20]). In this paper, we
present a novel approach which estimates the pose of a
multi-camera system with overlapping fields of view and
can calculate the unifying pose for the system with all the
information from all the cameras simultaneously.

3. Our Approach to Pose Estimation for Multi-camera
Systems

Pose estimation for a multi-camera system should
calculate the orientation and translation with the rigid
pose constraint among the various cameras. Most
existing methods attempt to solve the orientation and
translation directly, by optimization [21] or iteration [11,
22].  In contrast, we employ homography, which is
widely implemented in calibration [23, 24] and can
map image points with 3D coplanar referenced points.
Firstly, we establish the corresponding relations between
each camera using their Euclidean geometries and
optimize the homographies of the cameras; then, we
solve the orientation and translation from the optimal
homographies.



3.1 Problem definitions

The intrinsic parameters of the i camera in a
multi-camera system are denoted by K;. The spatial
3D point M = [X Y Z]T has its image on the jth
camera, denoted by mi = [/ ¢/]T. The absolute
6DOF?(three for rotation and three for translation) of
this camera are denoted by [Rj tj]3x4. The rotation
and translation from camera j to camera i are denoted
by [Rjj tij]3x4, which can be calibrated accurately as
previously, since multi-camera systems are rigid. The
translation between cameras i and j can be calculated as

follows: R Re t R
EHEIEMIEH g

The task of estimating the absolute pose of a multi-camera
system can be formalized as follows. Given a set of
coplanar non-collinear 3D coordinates of referenced points
M;,i =1,..,n,n > 3, the corresponding images in a multi-
camera system are m%, i=1,.,nn>3andj=1,..kk>
2, which is the number of cameras. Based on the above
corresponding points, it will estimate the Rj, t; for each
camera with the known rigid translation between cameras

[Rij tij]r l,] =1,..k

3.2 Homography for coplanar corresponding points

The homogeneous coordinate of the referenced point M =
[X Y Z 1] and the corresponding image point of
camera j in the homogeneous coordinate h = [u v 1]T
has a project relation, and here the 3D referenced points
are coplanar. As such, we can assume that Z = 0, and we
have:

1‘2].

1‘3]. t]]M
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Here, s is an arbitrary scale factor, K; are the intrinsic
parameters of the j camera, and R; and t; are the
rotation and translation, respectively, of the corresponding
camera j. In the remainder of this paper, we use M to
represent the homogeneous coordinate of M, even though
M= [X Y 1]T. Next, we introduce the homography H
within Zhang’s calibration method [24]:

H] = /\]K] [1‘1]. I t]] with S]‘fﬁ = H]M 3)

H is a 3 x 3 matrix, also defined upon a scale factor 8.
For convenience of calculation, here, we only define the
scale factor with H(3,3) = 1. Assuming that H; =
[h1i hy, h3].}, then from equation (3) the rotation and
translation vector can be calculated as follows:

2 Most approaches provide only 5DOF motion, and the scale of translation
cannot be recovered. As such, we call our method ’absolute pose
estimation’.

— A Kk1
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A =1/ Ki’lhlj =1/ || K].’lhzi I, and so the aim of
estimating the 6DOF pose of the camera can be switched to
estimating the homography of the corresponding camera.

3.3 The global optimum for multi-camera systems

In our approach, we try to minimize the image distances
of all the cameras with respect to the referenced coplanar
points.

Given n referenced coplanar points and k cameras, we can
estimate the homography (Hj, j = 1, ..., k) for each camera
by minimizing the following function:

SR IR S
ZZH‘TH—;H;'Mi I (5)

j=1i=1 j

The above optimal function is established on the
assumption that the image points of each camera are
perturbed by Gaussian noise, which is quite usual in
many image noise removal methods [25-27] and vision
practices [28-30]. For cameras that are assembled
rigidly, the homography of each camera has inherent
constraint relations, which will help us to obtain the global
optimization for the multi-camera system using only a few
points.

3.4 Extrinsic translation for multiple cameras with homography

In this section, we will present the method for the
calculation a camera’s homography from one known
homography with known rigid rotation and translation.
Assume that there are two cameras, i and j, with a rigid
rotation matrix Rj; and translation vector t;;. Based on
equations (1) and (4), the translation and rotation between
these two cameras are:

=Ryt +t; = AjRin;1h3j +t; (6)
Ri = Rij * [A]Kl_lhll A]'Kj_lhzj AjKj_lhlj X )LjKj_lhzj}
@)

Thus, the homography of camera i has the following
relation based on the definition of homography in
equation (3):

H; ~ H: =K; [)\jRin;Ihlj )L]'Ri]'K]Tlhzj AjRin;1h3j + ti]']
®

The above formulation presents only the scale
transformation relation between the homographies
of two different cameras. However, in our approach, the
homography is defined with the scale H(3,3) = 1, and
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so the homography of H; can be calculated using the
function and input parameters Hj, Ri]-, tij:

H;

H (H Rl]/ 1]) H/(3 3)

)

With homography Hj, the rotation and translation vector
for camera i can be easily calculated by the formula (4).

Accordingly, the optimization function in (5) can be
rewritten as:

arg mmH Z Z || m

jll

H;(Hg, Rijq, tig)M; | (10)

Here, the scale factor s; can be calculated with the
following formula:

1, |
—H;M; = |7, (11)
S 1

3.5 Estimation of the initial homography

The solution for the formula (10) is a typical

nonlinear optimization problem. In our approach,
the Levenberg-Marquardt method is adopted, which has
been widely used in computer vision cases. When solving
the optimization with formula (10), an initial guess for Hq
is needed.

The method to calculate the initial homography H is
similar to Zhang’s approach [24] to calibration. Firstly,

assuming that x = [E;r H;r Fg}T,

we have: I -
[M 0 —uM }x:O 12)

and given equation 3,

of MT —oMmT

Since x is defined using a scale factor, the solution for
the above equation can be implemented with a singular
decomposition, and we can rewrite equation (12) as Ax =
0 (here, A is a 2n x 9 matrix and 7 is the number of
referenced points) and obtain the correct singular vector
of A associated with the smallest singular value [24].

Before calculating the initial guess as to the homography
using the above method, the data should first be
normalized [28] to obtain more stable and accurate results.

If a more accurate initial guess for the homography is
desired, the maximum likelihood estimation of H can also
be applied using the following function:

o m — iy ||? (13)

h M
Such that th; = % {"lr ~ i] , with H;r, is the ith row of H.
h; M; h2 Mi
The optimization of the above function can also be solved
using the Levenberg-Marquardt method, and the initial

guess can be obtained with the solution to equation (12).
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4. Experiments

We compared our method with various state-of-the-art
methods, using both simulations and real image data.
Finally, we present the practical implementation of our
method in ping-pong robots.

In the following experiments,

estimation methods.

e MAAMC, the method introduced in this paper
(abbreviated as MAAMC) to obtain the pose of the
multi-camera system simultaneously.

e SAAMC, a simplified version of our MAAMC - it
separates the computation of the homography for each
camera and then obtains the pose of each camera
individually with formula (3).

e LHM, the method presented by Lu et al.. [11], which is
an efficient iterative approach for estimating the pose
for a single camera. This method has been shown
to be capable of dealing with arbitrary numbers of
correspondences and achieves excellent precision when
it converges properly®. We used LHM to estimate the
pose of each camera individually.

e MLHM [17], an enhancement of LHM, which transfers
all the cameras into one unified coordinate and
minimizes the total errors in 3D referenced space
iteratively. This method can also obtain the 6DOF
pose of the multi-camera system simultaneously. In
our experiments, weak-perspective models were used
to obtain the initial estimations for both LHM and
MLHM.

* JKR [16], a method which can estimate the poses of
each camera simultaneously.

e RPP [10], a robust pose estimation method from a
planar target presented by Schweighofer. It estimates
each camera’s pose individually.

¢ MAACM — MLHM, a hybrid method which employs
our initial pose estimation method to obtain the initial
estimation for MLHM.

we used seven pose

The above seven methods could be classified according
to three categories. One set includes the methods *
estimated from coplanar points, e.g., MAAMC, SAAMC
and RPP. The second set includes the methods °
estimated from non-coplanar points, e.g., LHM and
MLHM. The last method is MAACM — MLHM °, which is
a premium version of MLHM with an initial R estimated
by MAACM.

With the above seven methods, MLHM,MAAMC,JKR
and MAAMC — MLHM were all able to obtain the poses
of each camera simultaneously, while the other approaches
needed to estimate the pose of each camera one by one.

3 In our experiments, the code of LHM was downloaded from the author’s
website, http://www.cs.jhu.edu/~hager (30/04/2014)

4 In the following experiments, we use red lines to represent those pose
estimation methods from coplanar points.

5 In the following experiments, we use green lines to represent those pose
estimation methods from non-coplanar points.

® In the following experiments, we use blue lines to represent this method.



4.1 Simulation experiments

In these experiments, we simulated several cameras
placed rigidly. The distances 7 between cameras were
about 100. Each camera’s focal length ratio was set
as fu = fo = 540 and the simulation resolution was
640x480; thus, the principal point was located at the
pixel point (Up, Vp)=(320,240). The Gaussian noise for the
corresponding 2D point coordinates was also included in
the simulation model.

We used the relative error to evaluate the experimental
results. Given the true results of camera i, R;, T, the
relative errors for the multi-camera system are defined as

follows: ‘
| Ri —R; ||
Erot (%) = (14)
g ,21 IR

n

Epran (%) = 2 |t ” (15)
i*l

where 1 is the total number of cameras in the system,
and R; and t; are camera i’s rotation and translation,
respectively, obtained by the pose estimation approach.
We executed each experiment 300 times independently in
MATLAB and recorded the average.

To evaluate the effect of the estimation when the two
cameras are placed and subject to different amounts
of rigid motion, all the simulation experiments were
designed with random relative positions of the camera,
which was achieved by limiting three axis-rotation angles
with intervals of [0,2] degrees, translation vectors from
[50,0,0] to [60,10,10], and while controlling all the reference
points in the overlapping view.

4.1.1. Simulation experiments for R, T, localization and
re-projection error

As the performance of the pose estimation methods may
be influenced by the viewing angle, we evaluated the
performance (R, T, localization and image re-projection
error) of the above methods given small viewing angles
(which occurred quite frequently in the humanoid
ping-pong robot).

In the simulation experiment, the 3D referenced points
were restricted in the plane with z = 0, x € [—200,200]
and y € [—300,300]. The cameras were placed within the
conic area (the vertex was (0,0, 0)), where the distribution
intervals were z € [1500,1700], x € [—980,980] and y €
[2500, 3200]. The experimental results are shown in figure 1
and figure 2.

We also carried out an experiment to evaluate the absolute
locating performances of these methods &. When executing
the pose estimation, a noised point (with a ground true

7 In the following experiments, the unit for distance for a coordinate is
mm.

8 In this experiment, we employed a very simple location method that
extracts lines from each camera with two points - the image point of the
object and the optic centre-point of each camera - and then calculated the
centre of those lines as the position of the target.

value P(430,760,200)) was generated out of the plane of
referenced points, and we used the estimated pose of each
camera to estimate the coordinate of point P with its image
(with the same Gauss noise as the referenced points) in
each camera. Its position in the referenced coordinates
was calculated by taking a radial from the centre of the
projection of each camera to the image of P in that camera,
and calculating the middle points of the perpendicular
bisectors between every two radials. The estimated P was
then obtained by averaging all the middle points. The
experimental results from the locating method are shown
in figure 1 and figure 2 (e) and (g).

According to figure 1(a),(b),(c) and (d), we can see that the
object space-minimizing-based approaches, i.e., MLHM
and LHM, will be much worse than the other approaches
for small angle of viewing conditions with increasing
noise. The reason may be that the initial guesses of MLHM
and LHM are normally far from the true pose when the
viewing angles are small; thus, they will converge on
another local minimum. That is why MAACM — MLHM
will achieve a better performance with a better initial
guess from MAACM. With such small angle viewing
conditions, RPP has a special optimization to avoid
converging on the local minimum so that it can achieve
the same best performance as our SAACM approach for
pose estimation.

According to figure 2(a)-(d), we can see that the object
space-minimizing-based approaches, i.e., MLHM, LHM
will be quite unstable for pose estimation for small
viewing angles. Figure 2(e) and (g) also show that the
approaches estimating poses simultaneously will achieve
better performances than those doing so individually for
localization.

The simulation experimental results also show that the
pose estimation for each camera in turn could perform
as well as the global optimization methods; however,
the performances in localization with those methods
estimated one by one were always worse than the global
methods. In our view, the reason for this may be that
the global optimization methods always consider the rigid
rig as the constraint in optimization, which may lead to
greater compromise in the computation of the average
system bias. However, the method optimizing singly can
ignore this constraint and converge on those poses with
less system bias, while the real rig is broken and leads to
poor performance in localization applications.

4.1.2. Simulation Experiments on Other Metrics

In the second simulation experiment, we further evaluated
four approaches, ie., JKR, MLHM, MAAMC and
MAAMC — MLHM, all which estimated the poses of all
the cameras simultaneously.

We first evaluated the performances of the four approaches
for different mounted cameras. Figure 3 shows the
experimental results after using various numbers of
cameras (3-5) in the multi-camera system. In this
experiment, we randomly chose 25 poses for the
multi-camera system, which were distributed in the half
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Figure 1. Simulation experiment results under varied Gaussian noise. There were two cameras in the multi-camera system using eight
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referenced points. (c),(d),(g) and (h) are the corresponding standard deviations of (a),(b),(e) and (f).
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Figure 2. Simulation experiment results under varied referenced points. There were two cameras in the multi-camera system using
Gaussian noise o = 0.5. (c),(d),(g) and (h) are the corresponding standard deviations of (a),(b),(e) and (f).
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sphere towards the original centre (0,0,0) with a distance
of 1,500, and then executed the estimation 200 times to
output the average. The results in figure 3 show that
the performances of all four methods will increase as
the number of cameras increases. Although the number
of cameras has been increased, the MLHM will also be
suffered with wrong initial values - this is why the MLHM
performances were worst while the MAACM — MLHM
performances were almost the best with a good initial
value from our MAACM.

We also compared the execution time of the four methods
(MAACM, MLHC, JKR, MAACM — MLHM) to estimate
pose simultaneously, shown in figure 4. In this experiment,
we used a multi-camera system with two cameras and
randomly chose the pose of the two-camera system, each
method was executed 300 times and output their average.
The results in figure 4 show that the computation time of
JKR was the least among all four methods, as it is a linear
method. Our MAACM will be much faster than MLHM
and MAACM — MLHM. Although MAACM — MLHM
needs to execute both MAACM and MLHM, its temporal
cost is still less than MLHM, which indicates that the bad
initial guess for MLHM will lead to many more iterations
and more computation.

In order to evaluate the multi-camera algorithms’
robustness, we also inspected the disturbance introduced
by a small calibration error of the multi-camera system.
The experiment was carried out by adding Gaussian noise
to the parameters of the principal point (Up, V) of each
camera, the relative translation vector and the rotation
angles, separately. The Gaussian noise magnitudes
in Uy, Vo were 2.5 pixels, and 10 mm for all three
translation orientations, and 10 degrees for all three angles
correspondingly. The viewing angles were set to be large.
The 3D referenced points and cameras were placed in
the same manner as in the first experiment. The pose
estimation target-point was also set with a ground true
value (430,760,200). We executed the estimation 50 times
for each noised Uy, Vp, the relative translation vector T and
the relative rotation R. The average results are shown in
figure 5.

According to figure 5(a) and (b), we can see that
the object space-minimum-based methods (e.g., MLHM,
MAACM — MLHM) will give better pose estimations
than the others in relation to the rigid rig with noise,
and that they will also perform fewer pose estimations
than the image error-minimum-based methods (e.g.,
MAACM) as concerns the noise Uy and V{. In addition,
figure 5(c) illustrates that our MAACM will achieve the
best robustness as regards the overall performance of
localization.

4.1.3. Overall performance analysis of the simulation
experiments

In the above simulation experiments, we have presented
the performances of seven state-of-the-art pose estimation
methods for various metrics. In this section, we try to
present an objective analysis of our approach, in terms of
both robustness and accuracy, and in comparing it with the
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other six methods. In our analysis, we use a comparable
performance diagram to illustrate the performance of our
method vs the other methods. The results are shown in
figure 6. In figure 6, each row compares the performance
of our MAACM and the other methods for various
metrics: the red block means that MAACM achieves better
performance with the current metrics, the green block
means that MAACM achieves worse performance with
the current metrics, and the block with the dotted pattern
means that MAACM is indistinguishable from the other
methods.

The results in figure 6 illustrate that MAACM can
achieve better performances for most of the metrics
when compared to those methods obtaining poses
simultaneously. As concerns the comparison between
MAACM and RPP, it seems that RPP may be superior
to our MAACM. We further consider that the reason
why may be because RPP could search more possible
intervals of camera poses without the constraint of rigs
among the cameras during the optimization. Accordingly,
we carried out another comparison between RPP and
SAACM, which is our solution for MAACM when
there is only one camera. The results are shown in
figure 7, and they illustrate that our SAAMC may be
superior to RPP. Thus, our approach is better as regards
comprehensive performance under varied conditions and
will be appropriate for implementation in applications
requiring real-time and robust pose estimation, such as
augmented reality and robots, etc.

4.2 Real case experiments

We also carried out comparative experiments using real
image data. In these experiments, we built a miniature
multi-camera system with two Toshiba Teli cameras, as
shown in figure 8(left). Each camera was equipped with
a 4 mm lens and operated at a resolution of 640 x 480. In
the experiments, there were eight green referenced points
placed on the ping-pong table and one static table tennis
ball as a target point, as shown in figure 8(right). We
randomly placed the cameras of the system and obtained
their translation poses using the methods described above.
Next, we computed the positions of the table tennis ball
via the pose estimated by the different methods. The true
positions of the table tennis ball were obtained via a 3D
Micro-hite DCC coordinate-measuring machine (CCmy’.
There were 12 random positions for the translation pose
estimation and ball location - at each position, we executed
each method 200 times and removed the maximum and
minimum of each method. The final output results were
the average of the remaining data. The experimental
results are shown in figure 9. Figure 9 shows that
MAAMC can achieve the highest location precision
among all the methods and that it is also consistently more
stable than the others.

9For more details about the CCM, please  refer to
http://www.hexagonmetrology.com/ (30/04/2014)
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Figure 3. Simulation experiment results with increasing numbers of cameras. Gaussian noise ¢ = 0.5, for eight referenced points.
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Figure 8. Hardware(left) and software(right) of the multi-camera system used for real case experiments. In the right-hand figure, the
upper-left view shows the 3D pose of the multi-camera system in the virtual environment, while the lower views show the images from

the system and the upper-right view shows the detailed 6DOF poses.
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Figure 9. Localization experimental results in the ping-pong robot vision system with different methods - the x-coordinate is the ratio of

the distance error compared with the absolute distance

Figure 10. Left: the camera pose in our ping-pong robot system. Right: the trace obtained by our method (white) compared with the

true trace (blue).
4.3 Practical implementation in ping-pong robots

The method presented in this article was originally
motivated by our humanoid ping-pong robot project,
which uses a multiple camera system to guide the robot
arms during ping-pong games. We thus use the hardware
described in Section 4.2 as the on-board vision system
of the humanoid ping-pong robot. As concerns the
vision system in the ping-pong robot, there are two main
challenges in pose estimation due to the shaking of the
robot.  Firstly, there are few referenced points in this
system, and the referenced 3D points are all located in
the plane of the table. There are normally fewer than
10 correspondences, and so the vision system needs to

estimate its pose and calculate the coordinates of the balls
in the referenced point’s coordinates with high accuracy
using only a few coplanar points. Secondly, the vision
system can be deployed at any angle relative to the
ping-pong table, and so it may be placed in some locations
with small viewing angles, which will greatly affect the
accuracy of the pose estimation.

We implemented MAAMC in our humanoid ping-pong
robot system [31]. In contrast to other ping-pong ball
robots [32], we designed a 7DOF robot arm - which is very
similar to a human arm - to play ping-pong.

Yong Liu, Rong Xiong and Yi Li: Robust and Accurate Multiple-camera
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The two-camera system as described in Section 4.2 tracks
the ping-pong ball and generates its traces while playing.
Figure 10 (right) shows the accuracy of the trace estimated
by our method. The blue points show the true positions
in this trace, which were obtained using an additional
high-speed camera system with 500 frames/s working
offline, while the white points show the trace estimated by
our method in real-time 1°.

5. Conclusion

In this paper, we presented an efficient and robust pose
estimation algorithm for multi-camera systems which
can obtain 6DOF poses for all the cameras using only
a few coplanar points simultaneously.  Large-scale
simulation experiments have shown that this algorithm
can be more robust than the classical iterative pose
estimation algorithm in both small- and large-angle
viewing conditions. Practical experiments also showed
that this method is more accurate and robust.

Hence, our method is especially suitable for
implementation in tasks where there may be various
poses for the cameras, including ill-condition or relatively
small angles of viewing.
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