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In this paper, we propose an efficient quick attribute reduct algorithm based on neighbor-
hood rough set model. In this algorithm we divide the objects (records) of the whole data
set into a series of buckets based on their Euclidean distances, and then iterate each record
by the sequence of buckets to calculate the positive region of neighborhood rough set
model. We also prove that each record’s h-neighborhood elements can only be contained
in its own bucket and its adjacent buckets, thus it can reduce the iterations greatly. Based
on the division of buckets, we then present a new fast algorithm to calculate the positive
region of neighborhood rough set model, which can achieve a complexity of OðmjUjÞ; m is
the number of attributes, jUj is the number of records containing in the data set. Further-
more, with the new fast positive region computation algorithm, we present a quick reduct
algorithm for neighborhood rough set model, and our algorithm can achieve a complexity
of Oðm2jUjÞ. At last, the efficiency of this quick reduct algorithm is proved by comparable
experiments, and especially this algorithm is more suitable for the reduction of big data.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Attribute reduct, originally presented by Pawlak’s in rough set theory [1,2], is a quite useful data preprocessing technique.
The core idea of attribute reduct is to obtain the sub attribute set (or feature set) which can keep the same discriminability
comparing with the full attribute set. It is also mentioned as a semantic-preserving dimension reduction [3,4], thus the attri-
bute reduct can be implemented in feature selection [5–11], data mining [12–14] and data compression [15], etc.

The classical attribute reduct algorithms are established on the equivalence approximate space and only compatible for
discrete data set. They need to scatter the records when processing continuous numerical data, denoted by numerical data in
the following paper, this will lead to losing of information (including the neighborhood structure information and order
structure information in real spaces) [3,16], so the reduct of the numerical data set are strongly related with the methods
of scatting. To overcome this drawback, many extensions of classical rough set theory and their corresponding definitions
on attribute reduct have been presented, such as fuzzy rough set [4,17–19], tolerance approximate models [20], similarity
rough approximate model [21], dominance approximation relation model [22], covering approximation model [23–26]
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and neighborhood granular model [27,28]. Among all the extensions, neighborhood rough set model [5,16,29,30] can be
regarded as a specified implementation of the neighborhood granular model. The neighborhood rough set model can process
both numerical and discrete data set via the h-neighborhood set,1 which will not break the neighborhood structure and order
structure of data set in real spaces. Although the attribute reduct of neighborhood rough set model has been successfully imple-
mented in many applications, e.g. feature selection [16], classifier [30], rule learning [31], etc., it still suffers from the low com-
putation efficiency of attribute reduct on neighborhood rough set model, especially in computing the neighborhood of each
record, which is a quite usual and inevitable operation in reduct algorithm of neighborhood rough set model.

In classical rough set model, it has been proved that finding the minimal attribute reduct is NP-hard [32], so most of the
reduct solutions are aimed to find a reasonable short redut. Generally speaking, there are two main kinds of attribute reduct
approaches, i.e. indiscernibility matrix based methods [32–35] and significant metric function based methods [3,10,36,37].
The indiscernibility matrix based methods need to build an indiscernibility matrix, whose elements in that matrix indicate
the different attributes between every two records with different decisions (labels), and then combine all the elements in
that matrix to obtain the reduct. However, these methods are hard to be extended to other approximation models, e.g. fuzzy
rough set model, neighborhood rough set model, etc., furthermore, their temporal and spacial computation costs are also
high; The significant metric based methods normally employ a monotonic significant metric, which is related with the po-
sitive region, to test whether current selected attribute set is a reduct. The significant metric functions used in reduct algo-
rithms can be positive region (dependency) [3,38], inconsistency [37], and entropy [39,40], etc. The candidate attribute
subsets constructing policies used in significant metric function based methods include greedy searching [38], heuristic
searching [10], evolutionary computation based searching [41], etc. Among all the policies, the greedy searching is com-
monly used due to its high efficiency. Especially the forward greedy searching can prefer to generate shorter reduct which
satisfies the ‘‘shortest bias’’ in classifier construction, thus it is widely used in machine learning cases. In those significant
metric function based methods, sorting methods are also widely adopted to decrease the computation complexities of the
attribute reduct algorithms, e.g., Nguyen proposed their attribute reduct algorithm [42] by sorting decision table, Liu pro-
posed their attribute reduct algorithm [43] by sorting the partitioning universe, Hu and Wang proposed their attribute
reduct algorithm [44] by quick sorting the two dimensional table. The significant metric function based methods are easy
to be implemented in those extended approximation models. However, the time-consuming of attribute reduct algorithms
on those extended models will increase significantly due to the promotion of computation complexity on differing the
approximation relations between records and attributes under the extended relation models, e.g fuzzy equivalence relation
model [45], h-neighborhood relation model [16].

In this paper, we present a quick reduct algorithm on neighborhood rough set model. As we know, the neighborhood
rough set model defines the neighborhood relationship between every two records with h-neighborhood relation, which
concerns the Euclidean distance between those two records less than h (h > 0). It needs to iterate whole the sample set
to obtain one record’s h-neighborhood set, thus the computation cost to obtain the h-neighborhood sets of every records will
be approximated to the square of the record number. This complexity will become unacceptable when the number of records
in data set increases to a large scale, which may be the core challenge in big data problems. Current attribute reduct algo-
rithms on the data sets with huge records focus on reducing the number of records involving in the calculation of the positive
region, such as the fast reduct algorithm (F2HARNRS) in [30]. Although this records reducing based approach can decrease
the records involving in the calculation of the positive region, its efficiency is highly sensitive to the distribution of the data
set.2 Thus we present a new quick attribute reduct algorithm on neighborhood rough set model, which tries to optimize the
computation of h-neighborhood on neighborhood rough set model. To the best of our knowledge, there are no attentions are
paid on reducing the computation complexity of reduction algorithm via increasing the efficiency of computing
h-neighborhood.

In our approach, we present a hash based method to divide those records into a series of sequenced buckets, and we also
prove that each record’s h-neighborhood elements can only exist in its own bucket and its adjacent buckets. Based on the
division of buckets, we then present a new fast algorithm, F-POS, to calculate the positive region of neighborhood rough
set model, which only needs to iterate the records in three buckets to obtain one record’s h-neighborhood and can achieve
a complexity of OðmjUjÞ; m and jUj are the number of attributes and records containing in the data set. Using the F-POS algo-
rithm to calculate the positive region of the neighborhood rough set model, we then present a quick neighborhood rough set
reduct algorithm, which can achieve a computation complexity of Oðm2jUjÞ.

The rest of the paper is organized as follows. Section 2 presents related concepts and definitions of the neighborhood
rough set model. Section 3 presents our quick attribute reduct algorithm on neighborhood rough set model. Experimental
analysis is given in Section 4. Conclusions come in Section 5.
2. Neighborhood rough set model

The core concept of neighborhood rough set model is to extend the equivalent approximation of classical rough set model
with neighborhood approximation, which enables it to support both numerical and discrete data types. This section will only
1 A record xi ’s h-neighborhood set includes all the records whose distances to xi are less than h.
2 Some bad distribution will lead to few records being reduced in each iteration.
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introduce several necessary concepts on neighborhood rough set model and its reduct, some further details can be found in
reference [16,30].

In general, a decision system can be denoted as hU;C
S

Di, where U ¼ fx1; x2; . . . ; xng is the set of records, C is the condi-
tional attribute set, C ¼ fa1; a2; . . . ; amg, and D is the set of decision attributes.

To illustrate the operations and concepts presented in neighborhood rough set model, an example data set (Table 1) will
be used. Here, the table consists of four conditional attributes (a; b; c; d), one decision attribute (e) and four records.

2.1. h-Neighborhood relation

The neighborhood rough set model is established on the h-neighborhood relation which uses a distance metric function
based neighborhood relation to replace the equivalence relation in classical rough set model.

Definition 1. To a nonempty set U ¼ fx1; x2; . . . ; xng, existing a metric function f satisfying:
(1) Non-negative: f ðxi; xjÞP 0, if xi ¼ xj, then f ðxi; xjÞ ¼ 0;
(2) Symmetry: f ðxi; xjÞ ¼ f ðxj; xiÞ;
(3) Triangle inequality: f ðxi; xjÞ 6 f ðxi; xkÞ þ f ðxj; xkÞ.

We then note f as the metric function (or distance function) of U, and hU; f i is the tolerance space. Normally, distance func-
tion f can be implemented with p-norm, Frobenius norm, etc.

Definition 2. Assuming hU; f i is the tolerance space, 8xi 2 U; h P 0, having
hðxiÞ ¼ fxjf ðxi; xÞ 6 h; x 2 Ug
We then note hðxiÞ as the h-neighborhood set of xi, and it also denoted as the hypersphere with center xi and radius h.

Example 1. Considering the decision system in Table 1, assuming 2-norm is used for the metric function f ðx; xiÞ, we have:
f ðx1; x2Þ ¼ 0:1175; f ðx1; x3Þ ¼ 0:2423; f ðx1; x4Þ ¼ 0:3813
f ðx2; x3Þ ¼ 0:2644; f ðx2; x4Þ ¼ 0:3289; f ðx3; x4Þ ¼ 0:2555
Assuming h ¼ 0:2, then the h-neighborhood set of xi can be given as follow:
hðx1Þ ¼ fx1; x2g; hðx2Þ ¼ fx1; x2g; hðx3Þ ¼ fx3g; hðx4Þ ¼ fx4g
Based on the above definitions, we can obtain the following characteristics:

(1) hðxiÞ – ;, for xi 2 hðxiÞ;
(2) xj 2 hðxiÞ ) xi 2 hðxjÞ;
(3)

Sn
i¼1hðxiÞ ¼ U.

From the set fhðxiÞj i ¼ 1;2; . . . ;ng, we can obtain the h-neighborhood relationship N on U, which can be presented as a
symmetrical matrix MðNÞ ¼ ðrijÞn�n, if xj 2 hðxiÞ then rij ¼ 1 otherwise rij ¼ 0.

The h-neighborhood relation is a specific neighborhood relation, which satisfy the properties of reflexivity and symmetry.
And it draws the objects together with similarity or indistinguishability in terms of distances and the samples in the same
neighborhood granule are close to each other.

2.2. Neighborhood decision systems (NDS)

In the decision system hU;C
S

Di; U is the set of records (object space), C is the conditional attribute set, D is the decision
attribute set, a certain hðh > 0Þ and C will generate a h-neighborhood relationship N. We then call this system h-neighbor-
Table 1
An example data set.

xi 2 U a b c d )e

x1 0.10 0.20 0.61 0.20 Y
x2 0.13 0.22 0.56 0.10 Y
x3 0.14 0.23 0.40 0.31 N
x4 0.16 0.41 0.30 0.16 N
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hood decision system (we will also call it neighborhood decision system (NDS) in the following sections of this article), de-
noted as NDS ¼ hU; C

S
D; hi. Then the lower and upper approximation for the neighborhood decision system can be

presented as follow:

Definition 3. In a neighborhood decision system NDS ¼ hU;C
S

D; hi; B is a subset of CðB # CÞ, for arbitrary X # U, two sets of
records, called lower and upper approximations of X in terms of relation N with respect to B, are defined as [30]:
NBX ¼ fxijhBðxiÞ# X; xi 2 Ug
NBX ¼ fxijhBðxiÞ \ X – ;; xi 2 Ug
Here hBðxiÞ is calculated as follow:
hBðxiÞ ¼ fxjf ðBðxiÞ; BðxÞÞ 6 h; x 2 Ug
And BðxÞ is a function to extract the sub vector from x, only the dimensions whose attributes are contained in the attribute
set B will be chosen. That is BðxÞ ¼ faðxÞj8a 2 Bg.

And the lower and upper approximations of the partitions of decision attribute D can be defined as follow:

Definition 4. In a neighborhood decision system NDS ¼ hU;C
S

D; hi; D1;D2; . . . ;Dn are the record subsets with decisions 1
to n; hBðxiÞ is the neighborhood information granules including xi and generated by attribute set B; B # C, Then the lower and
upper approximations of the decision D with respect to attribute set B are defined as [30]:
NBD ¼
[n

i¼1

NBDi ¼ POSBðDÞ

NBD ¼
[n

i¼1

NBDi
where
NBDi ¼ fxijhBðxiÞ# Di; xi 2 Ug
NBDi ¼ fxijhBðxiÞ \ Di – ;; xi 2 Ug
Similar with the definition in rough set [1], the lower approximation of the decision is defined as the union of the lower
approximation of each decision class. The lower approximation of the decision is also called the positive region of the deci-
sion, denoted by POSBðDÞ, which is the subset of records whose neighborhoods consistently belong to one of the decision
classes.

Then we can present the definition of dependency.

Definition 5. In a neighborhood decision system [30]:

NDS ¼ hU;C
S

D; hi;B is a subset of C; B # C, the dependency degree of D to B is defined as the ratio of consistent records:
cBðDÞ ¼
jPOSBðDÞj
jUj
Obviously, the dependency degree cBðDÞ 2 ½0;1�.
Here, we will use Example 2 to demonstrate the above concepts in neighborhood rough set model.

Example 2. The decision attribute (e) in Table 1 will divide the whole universal into two partitions, that is
U=D ¼ fD1;D2g ¼ ffx1; x2g; fx3; x4gg, assuming h ¼ 0:2 and 2-norm metric function is used, then based on the
h-neighborhood results in Example 1, the lower and upper approximations of D1 with respect to attribute set C is:
NCD1 ¼ fx1; x2g; NCD1 ¼ fx1; x2g
and the lower and upper approximations of D2 with respect to attribute set C is:
NCD2 ¼ fx3; x4g; NCD2 ¼ fx3; x4g
Thus the positive region of decision can be obtained:
POSCðDÞ ¼ NCD ¼ NCD1 [ NCD2 ¼ fx1; x2; x3; x4g
and then cCðDÞ ¼ 1:
In the neighborhood decision system NDS ¼ hU;C

S
D; hi; B # C; 8a 2 B, if the dependency degree cB�aðDÞ < cBðDÞ, then

the attribute a is indispensably to the set B, otherwise a is redundant to B, that it can be removed from B. Then we can present
the definition of reduct in neighborhood decision system similar with classical rough set model.
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Definition 6. In a neighborhood decision system NDS ¼ hU;C
S

D; hi; B # C, we say attribute subset B is a relative reduct if

(1) c ðDÞ ¼ c ðDÞ;
B C

(2) 8a 2 B; cB�aðDÞ < cBðDÞ.

From the above definitions, we can conclude two useful theorems, which can be used to decrease computation costs of
reduct algorithms in neighborhood decision system.

Theorem 1. In a neighborhood decision system NDS ¼ hU;C
S

D; hi; B1; B2 # C; B1 # B2, with the same metric function f and
threshold h in computing neighborhoods, we have

(1) 8X # U; NB X # NB X;
1 2

(2) POSB1 ðDÞ# POSB2 ðDÞ; cB1
ðDÞ 6 cB2

ðDÞ.

The proof of Theorem 1 can be found in [16], and it shows adding a new attribute to the attribute subset at least does not
decrease the dependency. This property can be used to guarantee the greedy searching policy in attribute selection (reduct)
algorithm in [16]. When adding any new attribute into the existing subset in the greedy searching policy, it does not lead to a
decrease of the significance of the new subset.

Theorem 2. In a neighborhood decision system NDS ¼ hU;C
S

D; hi, if A1; A2 # C; A1 # A2, then 8x 2 U; x 2 POSA1 ðDÞ )
x 2 POSA2 ðDÞ.

The proof of Theorem 2 can be easily obtained from Theorem 1. It can guarantee that the records belongs to the positive
region of A1 will also belongs to the positive region of A2, when A1 # A2. This characteristic may be quite useful when using
forward greedy searching to calculate the reduct. Forward greedy reduct algorithms add one attribute with most significant
into the reduct candidate set in each iteration. Then those forward greedy reduct algorithms can ignore those records
belonging to positive region in the previous iteration with Theorem 2, for those records will always belong to the positive
region regardless of which attribute is added to the reduct candidate set. Theorem 2 is also the theoretical base of the fast
reduct algorithm (F2HARNRS) in [16].
3. Quick reduct algorithm for NDS

As the reduct defined in NDS is similar with the classical rough set theory, many classical quick reduct approaches can
also be implemented into the reduct of NRS, such as greedy search based approaches [3] guaranteed by the monotonic The-
orem 1 of the NDS [16]. Inspired by the Occam’s razor theory, the forward greedy searching policy is adopted in Hu’s NDS
reduct algorithms [16], which will prefer to produce shorter reduct for NDS and may provide a better performance in gen-
eralized learning algorithms with those attributes after reduction. With the guarantee of Theorem 2, Hu et al. [16] presented
their F2HARNRS algorithm, which constructs the reduct from empty set, adds attributes one by one into the reduct with for-
ward greedy searching policy, and removes the records that are obtained in last iteration and already in positive region to
reduce the computation cost. Their experiments also show that their approach can reduce the computation cost significantly
comparing with the other approach which does not remove records that are belonged to positive region in the last attribute
selection iteration.

Although the F2HARNRS algorithm has noticed to decrease the computation cost by reducing the number of object space
(jUj), the temporal computation cost for the positive region of NDS is still heavy burden. To calculate the positive region of
NDS, it needs to iterate each record in U (or U0 in reduced object space), thus it will cost a complexity of OðmjUj2Þ to obtain
the neighborhood set for each record.3

In this section, we will present a bucket based fast algorithm to calculate the positive region of NDS. The calculation for
the positive region is the most frequent operation in NDS reduction. We then present our quick reduct algorithm for NDS
which also implements both the forward greedy searching policy (based on Theorem 1) and record reducing policy (based
on Theorem 2) to construct the reduct of NDS.

With our bucket model for NDS, the temporal complexity for the positive region of NDS can be reduce to OðmjUjÞ. And the
corresponding temporal complexity of reduct algorithm for NDS can be reduced to Oðm2jUjÞ at the worst condition.

3.1. Buckets model for NDS

Before we present our quick reduct algorithm for NDS, the buckets model used in our approach should be presented
firstly.
3 In NDS, the calculation for positive region with single attribute can be reduced to OðjUjlogjUjÞ with the sorting based approach, however, the calculation of
positive region with multiple attributes will still be OðmjUj2Þ; m is the number of attributes.
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Definition 7. In a neighborhood decision system NDS ¼ hU;C
S

D; hi; x0 is a special record constructed from U, where
8a 2 C; aðx0Þ ¼min½aðxiÞ�; xi 2 U. Then the records in U can be divided into finite buckets, B0; . . . ;Bk:
Bk ¼ fxijxi 2 U and df ðx0; xiÞ=he ¼ kg
The bucket can be regarded as a hash function mapping with the distance from xi to x0, and the distribution can be illus-
trated in Fig. 1. Here, if x0 2 U, then B0 ¼ fx0g, otherwise B0 ¼ ;.

Example 3. we can construct the x0 for the NDS date set in Table 1 as follow:
x0 : a ¼ 0:10; b ¼ 0:20; c ¼ 0:30; d ¼ 0:10
Then U in Table 1 can be divided into the following buckets (using 2-norm metric function and h ¼ 0:08):
B0 ¼ B1 ¼ B2 ¼ ;; B3 ¼ fx3; x4g; B4 ¼ fx2g; B5 ¼ fx1g:
Based on the definition of buckets dividing in NDS, we can present the following theorem, which can reduce the searching
space when calculating the positive region of NDS.

Theorem 3. In a neighborhood decision system NDS ¼ hU;C
S

D; hi; B0; . . . ;Bk is the buckets, then 8xi 2 Bq ðq ¼ 1;2;3::; k� 1Þ,
the h-neighborhood elements of xi are only contained in Bq�1; Bq; Bqþ1. If xi 2 B0, then the h-neighborhood elements of xi are only
contained in B0; B1. If xi 2 Bk, then the h-neighborhood elements of xi are only contained in Bk�1; Bk.
Proof. From Definition 7, xi 2 Bq ! ðq� 1Þh < f ðxi; x0Þ 6 qh. Assuming x0 is a record lying in Bqþ2, then
ðqþ 1Þh < f ðx0; x0Þ 6 ðqþ 2Þh. Combing the above two inequalities, we have f ðx0; x0Þ � f ðxi; x0Þ > h. Based on the triangle
inequality in Definition 1, we have f ðxi; x0Þ > f ðx0; x0Þ � f ðxi; x0Þ, thus f ðxi; x0Þ > h, so x0 is not the h-neighborhood element of
xi. Similarly, we can also proof that the record x0 2 Bq�2 is not the h-neighborhood element of xi, and the proofs for
x0 2 Bq�j; j ¼ 3;4;5 . . .are also similar. The proofs for the conditions that xi 2 B0 and xi 2 Bk are also similar. h

Theorem 3 can also be easily understood based on Fig. 1. Each record in U are assigned into the quarter-circled region
with its distance to x0. The h-neighborhood set of xi can be viewed as a hypersphere, which uses xi as the center and with
the radius of h. We can conclude from Fig. 1, that if xi 2 Bq; xi’s h-neighborhood set elements can only exist in
Bq�1 [ Bq [ Bqþ1. Furthermore, if all the elements in xi’s h-neighborhood set have the same decision attribute, then xi is an ele-
ment of positive region.

3.2. Fast positive region computation algorithm

Based on Theorem 3, we can present our fast positive region computation algorithm (F-POS, Algorithm 1).
Fig. 1. The distribution of the buckets.
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Algorithm 1. F� POSðU; P;D; hÞ
Input: U; P; D; h
Output: F ¼ fF1; F2; . . . ; F jUjg
1 Fi  0; i ¼ 1; . . . ; jUj;
2 for each xi 2 U do
3 Hash (PðxiÞ;Bk);
4 end
5 for each xi 2 Uðxi 2 BkÞ do
6 flag  0;
7 for each xj 2 Bk�1 [ Bk [ Bkþ1 do
8 if f ðPðxiÞ; PðxjÞÞ 6 handDðxjÞ – DðxiÞ then
9 flag  1;//find a neighbor with different decision values, set flag
10 break;
11 end
12 end
13 if flag – 1 then
14 Fi  1; then
15 end
16 end
In our F-POS algorithm, the input parameters are U; PðP # CÞ; D and h of current decision system, and the output is a
boolean sequence, F, with the length of jUj, each Fi in F indicates whether the xi in jUj is an element of POSPðDÞ. If Fi equals
to 1, it represents xi is an element of POSPðDÞ, and when Fi equals 0, it represents xi is not an element of POSPðDÞ. Hash
ðPðxiÞ;BkÞ in step 3 is a hash function to map each xi into its corresponding bucket Bk, and the mapping function is
Bk ¼ fxij8xi 2 U; df ðPðx0Þ; PðxiÞÞ=he ¼ kg:
Here PðxiÞ is a function to obtain xi’s values of those attributes belonging to attribute set P. DðxiÞ is a function to obtain the
decision values of xi. Based on Theorem 3, we only need to search the items in the buckets Bq�1;Bq;Bqþ1; ðq ¼ 1;2; . . . ; k� 1Þ
when calculating the neighborhood of xiðxi 2 BqÞ. Assumed there are k buckets and the records are averagely divided into the
buckets, then the computation complexity is Oðm jUj2

k Þ, and mostly, k will be closed to jUj and then the computation complex-
ity of Algorithm 1 can be approximately approached to OðmjUjÞ.

Here we will use an example to demonstrate the working process of F-POS algorithm and explain why it can be more effi-
cient than the traditional approaches.

Example 4. Considering the example from the data set of Table 1. Assuming P ¼ fa; bg; h ¼ 0:08, and the 2-norm metric
function is used, thus Pðx0Þ ¼ fa ¼ 0:10; b ¼ 0:20g. Firstly, we will initialize the flags as F1 ¼ F2 ¼ F3 ¼ F4 ¼ 0 (step1). Based
on the definition of bucket model in NDS, we then can obtain the buckets as follows (steps 2–4), shown in Fig. 2:
B0 ¼ fx1g; B1 ¼ fx2; x3g; B2 ¼ ;; B3 ¼ fx4g
Then the algorithm will iterate each record in U, and test whether the records close to itself are also having the same deci-
sion values. Based on the definition of the lower approximation of NDS, if any of the records located within the hypersphere
of xi has different decision value, xi will not be the element of POSPðDÞ. So in step 8, our algorithm will test both the neigh-
borhood relationship and decision relationship. And using step 13–15 to set flag for the record in positive region, whose ele-
ments in h-neighborhood all have the same decisions.

The calculation for the h-neighborhood of each record can be shown in Fig. 3. Based on Theorem 3, only the elements in
neighbor buckets need to be concerned when computing the h-neighborhood set. As B3 only contain one record x4, and its
neighbor bucket B2 is empty, Fig. 3 does not include the calculating processing of x4. The Fig. 3(a) shows, both Pðx2Þ and Pðx3Þ
are the h-neighborhood of Pðx1Þ, however, their values of decision attribute are different, then Pðx1Þ is not the element of
POSPD. Similarly, we can also obtain that x2; x3 are also not the elements of POSPD, only x4 is the element of POSPD. Thus
the output is F1 ¼ F2 ¼ F3 ¼ 0; F4 ¼ 1, that is POSPðDÞ ¼ fx4g.

From Fig. 3, we also can find that the F-POS algorithm only needs to compute the metric function 7 times to obtain the
positive region, while the traditional approaches need to compute the metric function 12 times (each record needs to com-
pare with the other three records).

3.3. Fast hash attribute reduct algorithm for NDS

With the fast positive region computation algorithm, we then can present our Fast Hash Attribute Reduct Algorithm
(FHARA, Algorithm 2). This algorithm constructs the reduct of NDS with greedy forward searching policy. The output variable



Fig. 2. Bucket distribution of Example 4. We use different color to represent different values of decision attributes.The horizonal coordinate is the value of
attribute a, and the vertical coordinate is the value of attribute b, the origin of the coordinates is x0 ¼ ð0:1;0:2Þ, thus x1 is located at origin and belongs to B0.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Positive region computing processing for each record in U. As B2 is empty, we do not draw it in (b and c).
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reduct starts from empty set, in each iteration, the positive region of reduct [ fag is calculated with Algorithm 1, only the
attribute a with maximal positive region on reduct [ fag can be added to the output set (step 13). Based on Theorem 2, those
records that have belonged to the positive region of current reduct candidate set will also belong to the superset of current
reduct candidate set, thus our algorithm will reduce the record set Q in step 14. There are two terminal conditions for Algo-
rithm 2, the first one is that Q is reduced to empty (step 2), which means all the records have been discriminated (belonged
to the positive region) with current selected attributes (those attributes construct a reduct set of NDS); the second terminal
condition is that no more attribute can increase the positive region of output set reduct (max Pos ¼ 0 in step 12). And here in
step 6, we construct the positive region from the output of Algorithm 1, such as F ¼ f1;0;1; 0g, we can obtain the positive
region is Pos ¼ fx1; x3g.

Example 5. Considering the NDS in Table 1, assuming h ¼ 0:2 and 2-norm metric function is used. The example for the
Algorithm 2 is shown in Fig. 4. In the beginning, the candidate set reduct is empty, and record space Q ¼ U ¼ fx1; x2; x3; x4g. In
the first round of iteration, each positive region of reduct [ fagða 2 C � reductÞ is calculated, the results are
POSfag ¼ POSfbg ¼ POSfdg ¼ f;g; POSfcg ¼ fx1; x4g. Then the attribute c, which has maximal positive region
(max Pos ¼ fx1; x4g), is added to the reduct. The algorithm also reduce the record space with Q  Q �max Pos, then
Q ¼ fx2; x3g. In the second round of iteration, the results of positive region in the new record space Q ¼ fx2; x3g are
POSfa;cg ¼ POSfb;cg ¼ f;g; POSfd;cg ¼ fx2; x3g. Thus the attribute d is added to reduct. After reduce the record set Q, it become
empty, the algorithm exits and output the reduct fc; dg.

Assumed that there are jUj records in a decision table and k attributes are finally selected as the reduct among all the m
attributes, and selecting an attribute averagely leads to jUj=k samples added into the positive region, the computational
times of reduct is
mjUj þ ðm� 1ÞjUj k� 1
k
þ � � � þ ðm� kÞjUj1

k
<

mjUjð1þ; . . . ;þkÞ
k

¼ mjUjðkþ 1Þ
2

And then the average computation complexity of Algorithm 2 is OðmjUjkÞ, in the worst case, the computational complex-
ity of Algorithm 2 is Oðm2jUjÞ.



Fig. 4. Executing process for Algorithm 2 in the sample data set of Table 1, h ¼ 0:2 and 2-norm metric function is used. The red arrow represents that the
path is taken in current iteration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Algorithm 2. QuickReduct (Fast Hash Attribute Reduct Algorithm, FHARA)

Input: U; C; D; h
Output: reduct
1 reduct  /;Q  U
2 while Q – / do
3 max Pos /;max /; // set max Pos and max as empty in each beginning of the ‘while’ iteration
4 for each a 2 C � reduct do
5 F ¼ F� POSðQ ; reduct [ fag;D; hÞ;
6 Pos ¼ fxijFi ¼ 1g; // construct the positive region set based on the output of Algorithm 1.
7 if jmax Posj < jPosj then
8 max Pos Pos; // keep the current maximal positive region set.
9 max a; // keep the candidate attribute with maximal positive region set.
10 end
11 end
12 if jmax Posj > 0 then
13 reduct  reduct [ fmaxg;// add attribute with maximal positive region into reduct.
14 Q  Q �max Pos; // reduce the record set.
15 end
16 else
17 break; // no more attribute can increase the positive region of reduct, exit the iteration (while).
18 end
19 end
4. Experiments

In this section, we empirically evaluate our approach with other current state-of-art methods. We carry out the compa-
rable experiments to evaluate the efficiency and correctness of our quick reduct algorithm on NDS. We use 16 data sets from
UCI,4 the details of the data set are shown in Table 2.

In our experiments, we compare with the F2HARNRS (Fast forward heterogeneous attribute reduct based on neighbor-
hood rough sets) and NFARNRS (Naive Forward Attribute Reduct Based on Neighborhood Rough Set model), which were pro-
posed by Hu et al. [16]. All the three algorithms employed in our experiments are using the 2-norm metric functions.

All the algorithms are running on the same software and hardware platforms (CPU:Intel (R) core (TM)2 Quad Q8300 @
2.50 Hz; RAM: 3.00 GB; Windows XP SP3; Python 2.6.2), and we execute the same algorithm on the same input data set over
200 times and calculate the average executing time.5

4.1. Correctness evaluation experiment

In the first experiment, we will evaluate the correctness of our algorithm comparing with F2HARNRS and NFARNRS. And
we will compare the reduct results of our FHARA and F2HARNRS with the same h on the same data set. For each data set, the
4 http://archive.ics.uci.edu/ml/datasets.html.
5 We execute 10 times for the shuttle data set and execute 5 times for the data set of skin, as the NFARNRS executing on full skin data set will cost about 50 h

each time, and on full shuttle data set will cost about 5 h each time.

http://archive.ics.uci.edu/ml/datasets.html


Table 2
Data sets used in experiments.

Data set Record number Attribute number Classies

1 Mushroom 8124 22 2
2 Letter 20,000 16 26
3 Pendigits 10,992 17 10
4 Abalone 4177 7 29
5 Libras movement 360 90 15
6 Voting 435 16 2
7 Wpbc 198 33 2
8 Wdbc 569 31 2
9 Soybean (large) 307 35 19

10 Page blocks 5473 10 54
11 German 1000 20 2
12 Australian 690 14 2
13 Cmc 1473 9 3
14 Segmentation 2310 19 7
15 Shuttle (training set) 43,500 9 5
16 Skin 245,057 3 2
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h is randomly chosen, and the results are shown in Table 3. According to Hu’s work [16], the reduct results of NFARNRS and
F2HARNRS will be exactly same, so we only compare our FHARAR with F2HARNRS in this experiment. The results show that
our algorithm will output exactly the same reduct results as the F2HARNRS.
4.2. Computation efficiency evaluation experiments

In the efficiency evaluation experiments, we will use comparable experiments on those 16 UCI data sets to evaluate the
computation performance on our approach, NFARNRS, and F2HARNRS. In our experiments, we will set the h within the inter-
val of ð0;0:3�, which is suggested in [16]. For the h will control the granularity levels of NDS, which will lead to selecting dif-
ferent attributes as reduct, thus vary the classification performance. In Hu et al.’s work [16], they have experimental proved
that [0.1, 0.3] is an optimal candidate interval for h, where most of the classifiers can get good classification performance.

In the first efficiency evaluation experiment, we will evaluate the NDS positive region computation time on different algo-
rithms (our Algorithm 1 and positive region calculation method in F2HARNRS and NFARNRS). As NFARNRS and F2HARNRS
use the same method to compute the positive region, we will only compare our approach with the F2HARNRS on the exe-
cuting time of computing NDS positive region in this experiment. We choose 12 data sets from Table 2, calculate their aver-
age executing time on computing NDS positive region, the results are shown in Figs. 5 and 6. The results show our algorithm
(Algorithm 1) will achieve better performance on all the 12 data sets concerning the average calculation time of computing
positive region. The results also suggest that our Algorithm 1 will save much more computation time in larger data set, such
as the results on the data set of page blocks, segmentation, shuttle, and skin. In Fig. 6, we also compare the computation time
under different setting of h on the data sets of shuttle and skin, it also shows that our approach can always achieve better
performance than the method used in F2HARNRS and NFARNRS under varied setting of h. The results show in Fig. 6 also indi-
cate that the computation on reduct may be sensitive to the setting of h, we will carry out experiments in the later section for
a further discussion.
Table 3
Attributes selected by two reduct algorithms, the attribute sequence number is based on the UCI data descriptions.

Data set h F2HARNRS FHARA

Mushroom h ¼ 0:17 5, 10, 11, 20, 2, 19 5, 10, 11, 20, 2, 19
Letter h ¼ 0:17 9, 10, 11, 8, 7, 4, 15, 12, 13, 3, 16, 5, 14, 1, 6, 2 9, 10, 11, 8, 7, 4, 15, 12, 13, 3, 16, 5, 14, 1, 6, 2
Pendigits h ¼ 0:01 4, 10, 3, 9, 1 4, 10, 3, 9, 1
Abalone h ¼ 0:1 4, 3, 5, 1, 6, 8, 7, 2 4, 3, 5, 1, 6, 8, 7, 2
Libras movement h ¼ 0:11 56, 18, 1 56, 18, 1
Voting h ¼ 0:11 4, 7, 2, 3, 15, 1 4, 7, 2, 3, 15, 1
Wpbc h ¼ 0:18 1, 23, 3 1, 23, 3
Wdbc h ¼ 0:05 28, 2 28, 2
Soybean (large) h ¼ 0:12 26, 28, 15, 22, 23, 31, 1, 3, 6, 10, 7, 4, 16 26, 28, 15, 22, 23, 31, 1, 3, 6, 10, 7, 4, 16
German h ¼ 0:05 4, 10, 2, 7, 16 4, 10, 2, 7, 16
Australian h ¼ 0:3 14, 13, 5, 9, 8, 1, 2, 11, 6, 4, 12, 3, 10, 7 14, 13, 5, 9, 8, 1, 2, 11, 6, 4, 12, 3, 10, 7
Cmc h ¼ 0:06 4, 3, 1, 8, 2, 7, 6, 5, 9 4, 3, 1, 8, 2, 7, 6, 5, 9
Segmentation h ¼ 0:01 18, 1, 2 18, 1, 2
Shuttle h ¼ 0:14 9, 1, 3, 8, 2 9, 1, 3, 8, 2
Skin h ¼ 0:2 3, 1 3, 1



Fig. 5. Average positive region calculation time of FHARA and F2HARNRS on ten UCI data sets. The axis of Y is computation time (S).

Fig. 6. Average positive region calculation time of FHARA and F2HARNRS on shuttle and skin data sets. The axis of Y is computation time (S). As the
computation time scales of these two data sets are much larger than the other ten data sets, we use separated figure to display their computation time, and
here ‘FHARA-XX’ means the average positive region computation time of the FHARA with h ¼ XX.

L. Yong et al. / Information Sciences 271 (2014) 65–81 75
In the second efficiency evaluation experiment, we will evaluate the average reduct time on these three algorithms. We
also choose 12 data sets and increase the number of records used in the reduction and compare the variation of computa-
tional time with different reduction algorithms. The results are shown in Fig. 7. According to the results in Fig. 7, the com-
putation time of our FHARA algorithm will always perform better than the other two algorithms’ under all the 12 data sets, in
particular, FHARA performs significant efficiently than the other two algorithms in the data sets of shuttle, skin, cmc, and
pageblocks, etc. In this experiment, the results of FHARA and F2HARNRS on several data sets, such as segmentation, soybean,
wpbc, voting and libras movement, look like indistinguishable, this is because that the NFARNRS costs much more compu-
tation time and causes the scale of the coordinates to hide the performance difference between FHARA and F2HARNRS when
these three algorithms are shown in the same coordinates. So we present the detailed average computation time of the three
algorithms on the data sets of libras movement (Table 4), soybean (Table 5), wpbc (Table 6), voting (Table 7) and segmen-
tation (Table 8). Those results on Tables 4–8 show that our algorithm will always performance better than the other two
algorithms and the time cost of our FHARA is much less than the other two algorithms, e.g. in the data set of segmentation
with 2310 records, the time cost of our FHARA is only 1/400 of the NFARNRS’s, and 1/20 of the F2HARNRS’s, in the data set of
voting with 435 records, the time cost of our FHARA is only 1/604 of the NFARNRS’s, and 1/32 of the F2HARNRS’s. So the
experimental results on Fig. 7 and Tables 4–8 also show that, with the increment of data number, the computation time
of F2HARNRS and NFARNRS will increase significantly, while the reduction computation time of our FHARA algorithm in-
creases extremely slowly.

The previous two efficiency evaluation experiments are only sampling h sparsely, which concerns the algorithms’ compu-
tation efficiencies under varied record numbers with several sparse sampling of h. The experiments also show that the reduct
algorithms may be sensitive to the setting of h, so we design the third efficiency evaluation experiment, which will concern the
comparison results of different algorithms’ reduction time under varied record numbers with dense sampling of h.

In the third efficiency evaluation experiment, we will evaluate the reduction computation performances of FHARA and
F2HARNRS on dense sampling of h under varied record numbers. We first choose four data sets (mushroom, letter, pendigits,



Fig. 7. Average reduct calculation time of FHARA, NFARNRS and F2HARNRS on 12 UCI data sets. The axis of Y is computation time (S), the axis of X is the
number of the data records.
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Fig. 7 (continued)

Table 4
Average reduct calculation time of FHARA, NFARNRS and F2HARNRS on the data set of libras movement. The time unit of
each computation algorithm is second in this table.

Instance numbers NFARNRS (S) F2HARNRS (S) FHARA (S)

36 0.579698544 0.11735334 0.042481741
72 4.842059888 0.523103809 0.123771512

108 7.373427858 0.9355347 0.488945968
144 185.3370565 2.831223393 0.620579746
180 280.5722476 3.974187676 1.055898955
216 412.7207691 5.906941853 1.782873367
252 474.0606134 8.291753344 2.330809774
288 607.4953318 12.00184737 2.967219152
324 780.8056254 15.35826235 3.687163775
360 1051.08904 19.00440763 4.076125301

Table 5
Average reduct calculation time of FHARA, NFARNRS and F2HARNRS on the data set of soybean. The time unit of each
computation algorithm is second in this table.

Instance numbers NFARNRS (S) F2HARNRS (S) FHARA (S)

30 0.012783284 0.015936726 0.006542877
61 0.129496368 0.049984568 0.014181613
92 0.670683145 0.11323452 0.039792752

122 1.258890871 0.207719985 0.082658317
153 1.707858241 0.374452716 0.124582039
184 8.667314465 0.936840435 0.233639406
214 9.189168811 1.142132898 0.500788084
245 12.73234688 1.491223766 0.594867788
276 31.36246836 3.773532087 1.129698088
307 44.26507174 3.773137466 1.021072137

Table 6
Average reduct calculation time of FHARA, NFARNRS and F2HARNRS on the data set of
Wpbc. The time unit of each computation algorithm is second in this table.

Instance numbers NFARNRS (S) F2HARNRS (S) FHARA (S)

19 0.048943764 0.011553621 0.009396741
39 0.20043664 0.03996785 0.019678915
59 0.747016297 0.096125821 0.051711655
79 1.226693457 0.160700166 0.061534724
99 2.486746936 0.309933309 0.125223952

118 4.401155741 0.490474933 0.158511302
138 11.31393973 0.807055187 0.194374218
158 14.2926557 0.93857374 0.27093441
178 18.27321524 1.333048243 0.318311395
198 22.89722531 1.586228854 0.431918194
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and abalone) from Table 2, and then vary their record numbers and the h is also varied in our experiments from 0 to 0:3. We
executed both algorithms (our approach and F2HARNRS) with the same data sets on the same software and hardware plat-
form. Each algorithm in each number of data is executed 200 times and the average computation time, TFHARA and TF2HARNRS,
are obtained. We then calculate the value delta� T as:



Table 7
Average reduct calculation time of FHARA, NFARNRS and F2HARNRS on the data set of
voting. The time unit of each computation algorithm is second in this table.

Instance numbers NFARNRS (S) F2HARNRS (S) FHARA (S)

43 0.045459162 0.02315404 0.005708196
87 0.531415689 0.122049632 0.026565082

130 1.424999305 0.228907869 0.034180377
174 2.079485583 0.46908221 0.041541996
217 4.393870453 0.650496944 0.075839773
261 7.4129489 0.358427023 0.018202335
304 9.520492514 0.485062363 0.021292655
348 11.72057474 0.639863824 0.029692088
391 14.90349265 0.777922696 0.030347262
435 18.11321985 0.956872458 0.031455327

Table 8
Average reduct calculation time of FHARA, NFARNRS and F2HARNRS on the data set of
segmentation. The time unit of each computation algorithm is second in this table.

Instance numbers NFARNRS (S) F2HARNRS (S) FHARA (S)

231 12.5507437 0.777636476 0.145922016
462 59.62445105 3.074984451 0.328288336
693 129.7941908 12.68498754 0.762090387
924 229.2793388 14.70641508 1.108778339

1155 406.6787214 18.5959915 1.230106095
1386 532.1880954 28.04397641 1.849015551
1617 838.7946082 38.82496652 2.807765934
1848 713.4534404 38.70158985 2.402179153
2079 1109.017058 60.65118051 4.86389887
2310 1418.995865 72.97050759 3.583880209
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delta� T ¼ TF2HARNRS � TFHARA
Then the number of data, h, and delta� T can represent a performance curved surface on those two algorithms. A larger
delta� T will represent a better performance on FHARA algorithm. The visualized results are shown in Figs. 8–11. In these
figures, if the curve surface locates in the plane of (h, number), it will represent that the temporal performance of FHARA is
equal to the performance of F2HARNRS. Then if FHARA performances better than F2HARNRS, the curve surface will be far
away upon the plane of (h, number). The results on Figs. 8–11 show almost all the areas of the curve surfaces are far away
upon the (h, number) plane, thus FHARA performance better than F2HARNRS in almost all the sampling space. In these fig-
ures, we also use different colors to represent the values of delta� T . The colorful results also show that the proposed method
can be more efficient than F2HARNRS under varied h and record numbers.
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5. Conclusion

The neighborhood rough set model and its reduct have been proved useful in many machine learning, data mining appli-
cations. As the big data processing has became the popular trend in machine learning and data mining, an efficient attribute
reduct algorithm for neighborhood rough set model is desired. In this paper, we propose a quick attribute reduct algorithm
for neighborhood rough set model. We present a new approach to divide all the records into a sequent bucket set, and we
also prove that each record’s h-neighborhood elements can only exist in its own bucket and its adjacent buckets. Based on
the division of buckets, we then present a new fast algorithm to calculate the positive region of neighborhood rough set mod-
el, which can achieve a complexity of OðmjUjÞ. With that new fast positive region computation algorithm, we present a quick
reduct algorithm for neighborhood rough set model, and our algorithm can achieve a computation complexity of Oðm2jUjÞ at
the worst condition. The comparable experimental results show the better efficiency of our approach.

As the reduct algorithms on extended rough set models are much more complex than classical rough set models due to
the promotion on the computation of new relation models, many of the traditional approaches on classical rough set reduct
cannot be applied into the new models directly. In the future work, we will try to implement our bucket based quick reduct
algorithm into other rough set relation models, and try to present a unified attribute reduct solution for multiple-relation
models.
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