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Ontology design for complex applications is quite a challenge. The quality of an ontology is highly depen-
dent upon the capabilities of designers, and the collaborative design process is hampered by the difficulty
of balancing the viewpoints of different designers. In this paper, we present a granular view of ontology:
ontologies are granular, ontologies are granular approximations of conceptualizations and conceptual-
relation granules of an ontology are ordered tuples. We then propose a corresponding granular ontology
design approach. In our granular ontology design approach, the unified granular cognition level and hier-
archies of sub-concepts are initialized before ontological terms are designed in detail, which reduces the
subjective effects of the capabilities of designers. Our approach also introduces the idea of optimization to
choose an optimal subset, which can best approximate the real concept domain, from the knowledge rule
set presented by different domain experts. The optimal subset is chosen on the basis of the principle of
granular ontology knowledge structure.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Ontology design is an important and essential technique in the
creation of knowledge-based applications (Bittner & Smith, 2003;
Guarino & Welty, 2002; Liu, Xu, Zhang, & Pan, 2008). Ontology de-
sign has been successfully applied in many areas, such as decom-
position of information systems (Wand & Weber, 1990), model
checking and semantic reasoning (DiPietro, Pagliarecci, & Spalazzi,
2012), and inconsistent detection in complex scene modeling (Liu,
Zhang, Jiang, & Zhao, 2012a, 2012b). However, ontology design is
still a great challenge for many knowledge-based applications,
especially when many complex concepts with fuzzy overlap are in-
volved with the target objects.

Generally speaking, there are two challenges in the designing of
an ontology. The first one is the subjective bias in ontology design.
It is well known that different designers produce different ontolo-
gies for the same target concepts, and the qualities of those ontol-
ogies rely greatly on the subjective cognition levels of designers.
We call the effect caused by the capabilities of designers subjective
bias. Currently, few works focus on removing or even reducing sub-
jective bias via objective ontology design approaches. The second
challenge is how to enable experts to design an ontology collabo-
ratively. In many cases of collaborative design, the crucial problem
becomes how to balance the viewpoints of different experts. Thus a
general ontology approach that can highlight experts’ conflicts
intuitively will simplify the ontology design greatly.

In this paper, we present three granular viewpoints on ontology
design: that an ontology is granular, that an ontology is a granular
approximation of a conceptualization, and that the conceptual
relationship between granules of an ontology are ordered tuples.
Based on the three basic granular viewpoints of ontology, we focus
on a general design approach for ontology. Our approach can help
address the vagueness, fuzzy and overlapped concepts, and poten-
tial need for collaboration between different domain experts that
make ontology design a challenge.

In our granular ontology design approach, the unified granular
cognition level and hierarchies of sub-concepts are initialized be-
fore the detailed designing of ontology terms, which reduces the
subjective bias in ontology design. Our approach also introduces
the idea of optimization to choose an optimal subset, which can
best approximate the real concept domain, from the knowledge
rule set presented by different domain experts. We present our
approach and demonstrate it with an ontology design process
for ancient Chinese architecture (Liu, Jiang, & Huang, 2010; Liu
et al., 2012a, 2012b), which contains complex sub-concepts and
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also requires the design input of multiple experts working
collaboratively.
Fig. 1. An example of the architecture instance, formed by many basic components,
v1; . . . ; v8, the instance can be represented as w ¼ ½½v1�Tv2�T½½v5�L½½½v4�Tv6�
T½v4v7v4�D�F½v8�R½½½v4�Tv6�T½v4v7v4�D�B�D. Here ½v1�Tv2 means v1 locates top of
v2, similarly, D refers down of, L refers left of, R refers right of, F refers front of, B
refers back of, then the house can be regarded as a sequence of the basic
components.
2. General ontology design process

The use of ‘‘ontology’’ in a design context was originally intro-
duced by Gruber (Gruber, 1993), who described ontology as an ex-
plicit specification of a conceptualization—an abstract, simplified
view of the ‘‘things’’ in a designer’s viewpoints (Sure Staab et al.,
2004). A general formal definition of an ontology is a quads
C ¼< D;W;R;V >, where D is the conceptual domain; V is a set
of related entities or sub-concepts involved in the ontology con-
ceptualization C, and W is a set of the conceptual instances. The
ontology contains possible states of affairs that correspond to mu-
tual arrangements of the above entities, and R is a set of concep-
tual relations (also called a knowledge set). The conceptual
relations are established between the entities and a specific do-
main’s instance in W, the conceptual relations may be referred as
a n-ary function Rn : W ! 2Vn

. For example, in our architecture
modeling case (Liu et al., 2008), the concept of southeast ancient
Chinese architecture C may include four sets:

(1) the hierarchical domain structure set D for the target
concept;

(2) the entity set V, which contains the basic architecture com-
ponents, such as gate, window, and roof;

(3) the instance set W, which contains all the possible instances
of the southeast ancient Chinese architecture domain, each
instance of which is formed by the components in V, an
example is shown in Fig. 1;

(4) the knowledge set R, which contains all the ‘‘correct’’ com-
bination and topology relations of the basic components.

Thus the design of an ontology can be summarized as the pro-
cess by which a group of experts clarifies a set of entities V and
conceptual relations R with respect to a conceptualization C. An
obvious way to clarify the set of conceptual relations is to enumer-
ate all the mappings between the set W and V; however, this is
impossible when the W is infinite, so designers may introduce a
rule system R1 based on first-order logic (FOL) to represent how
the basic components V can constitute the instances in W. A typical
example is the grammar used in procedural modeling of architecture
(Liu et al., 2008; Müller, Wonka, Haegler, Ulmer, & Van Gool, 2006),
for which grammar rules2 such as the following present the combi-
nation sequence of each component in V:

r1ðroof ::¼ roof centerjroof bodyÞ
r2ðwindow wall ::¼ window walljshop walljcolumnÞ
r3ðwindow wall ::¼ shop walljbasejshop walljcolumnÞ
r4ðhouse ::

¼ housejroof jwindow walljshop walljwindow walljshop wallÞ

Here the terms on the left are internodes and the terms on the
right that do not appear on the left are terminal-nodes. An ontol-
ogy such as this one gives a machine to generate house instances
by replacing the internodes with the right parts according to the
1 The rules are also referred to as the knowledge set R in the ontology, although
they are an approximation of R in engineering practice.

2 In a real case, there would also be spatial control terms similar to Fig. 1 among the
components.
corresponding rules once or multiple times. For example, with
the rules above, a combination sequence for an instance of the
house might be:

house ¼ roof center; roof body; shop wall; column; shop wall;

shop wall; column; shop wall; column; shop wall

Unfortunately, the refinement of knowledge rules from complex
phenomena is a challenge, especially when the conceptual rela-
tions of those ‘‘things’’ that need to be conceptualized are hard to
describe in a way that is understandable to humans.

Theoretically, the conceptual relations in an ontology should be
complete, correct, clear and concise. However, ontologies are cre-
ated by humans and bias is inevitably introduced, especially when
experts from difference domains working on the ontology. The
quality of an ontology relies greatly on the experience and skills
of the designers, yet to the best of our knowledge, there is not
yet a stable data model or objective design pattern for creating
an ontology under complex conditions.

In the following article, we present a novel granular ontology
design approach, which is based on our three granular views of
ontology. In our granular approach, we try to establish a general
ontology design framework that is accurate, collaborative, efficient,
objective (or at least less subjective than standard ontologies), and
appreciable.
3. Granular views on ontology

Our granular views are based on the fact that knowledge tends
to be vague and the associated data is often incomplete when try-
ing to find new sub-concepts based on data linked to an ontology
(Keet, 2010a, 2010b). Our approach employs a rough methodology
that considers the interior, exterior and boundaries of the knowl-
edge in an ontology and is similar to the approach of Calegari
(Calegari & Ciucci, 2010). According to our methodology, we con-
struct a specific granular view of an ontology.

3.1. Ontologies are granular

In information science, an ontology can be regarded as an arti-
fact projection (or representation) of a real-world concept based on
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the designer’s cognition. An ontology is a reflection of real concep-
tualizations, which are naturally hierarchically. As the usual cogni-
tive pattern for a human is ‘‘divide and conquer’’, the same
conceptualization may be represented in different subjective sub-
concepts (partitions or granules) due to different designers or dif-
ferent applied fields. For instance, in the ontology for digital 3D
architecture models, artist designers might express their ontology
entity set V with several colorful geometries such as point, line, and
polygon. Architects might present another V 0 with architecture
components in semantics such as window, roof, and gate. For the
architects, the basic units in V or V 0 will draw together via the
objective restriction to form the concept of 3D architecture models.
By means of the different partitions of V and V 0, the ontology is
granular, and each basic element in the entity set is a granule.
We may here refer to the definition by Zadeh (1998) and Lin
(1997, 2009), that each granule is partitioned by an object, and that
each granule is drawn together via indistinguishability, similarity,
proximity, or functionality. Because the entity set V can reflect the
partitions of the concept to be described, we call it the granular
topology of ontology. There are various granular topologies for the
same concept, and each topology corresponds to a kind of partition
for the concept.

An ontology should be either a concept that can be partitioned
or the partitioned granule of a concept. For example, an ontology of
architecture may be partitioned into the combination of the enti-
ties of window, wall, roof, etc., and each of those entities may also
be defined as an ontology of corresponding conceptualization.

Here the ‘‘granular ontology’’ does not simply refer to an inven-
tory of entities in reality that all belong to a granular partition
(Bittner & Smith, 2003), but also to content the crisp or fuzzy con-
ditions of the granules, the topology structure of the granules, the
assembly relations among the granules, etc.

3.2. Ontology are granular approximations of conceptualizations

It is natural to consider ontologies only as approximations of
desired conceptualizations in information science (Sure Staab
et al., 2004). The instances deduced from the knowledge rules in
R may contain exceptions that do not belong to the corresponding
domain. For example, if the concept of ‘‘bird’’ is defined with the
two rules ‘‘it is an animal’’ and ‘‘ it can fly’’, there may be excep-
tions such as dragonfly. So the rule set may be fuzzy or rough with
respect to the domain. And the whole rule set R of an ontology can
be divided into three categories:

� The rules that present the essential features of the desired
domain.
� The rules that present the relevant non-essential features of the

desired domain.
� The rules that present the irrelevant features of the desired

domain3.

Similarly, each rule in R can also be viewed as one granule in a
granule set that can approximate the real knowledge relation R,
Fig. 2 demonstrates the granular knowledge structure for the con-
ceptual relations in ontology. We have implemented this structure
in our previous work (Liu et al., 2008). Because the essential fea-
tures are necessary for the corresponding domain, from the view-
point of granular ontology, the essential features are the core of the
knowledge structure of the domain. These features, therefore,
make up the internal granule set of R. The relevant non-essential
features are the external granules of R, and the irrelevant features
3 In practice, designers may introduce some rules that are not correlated with the
desired conceptualization or the sub-conceptualizations to form the desired concep-
tualization, especially when the destination is indistinguishable.
are unrelated granules of R. As shown in Fig. 2, internal granules
are located absolutely within the boundary of R. External granules
cross the irregular boundary of R, which means they identify both
instances that are belong to the desired domain and instances that
do not belonged to the desired domain. Unrelated granules are lo-
cated entirely outside the boundary of R.

A typical example of a relation set is shown in Fig. 2(b). The con-
cept of ‘‘bird’’ consists of two rules, which are both external gran-
ules of the domain, and those two rules can approximate a concept
domain of ‘‘bird’’, although the granules overflow the real concep-
tual relation set R. The granularity of ontology also means that the
same concept may be expressed by different ontologies with differ-
ent granular knowledge structures. Fig. 2(c) also depicts the rela-
tion set of ‘‘bird’’, but with different rule granules, such as the
basic component of a bird: beak, head, wing, etc. The concept of
‘‘bird’’ in both Fig. 2(b) and (c) is the same—they have the same
conceptual relation mapping set R—but the real ontology domain
may be vary due to their different granular knowledge structures.

Furthermore, the granular structure of the knowledge set in
ontology is determined by its granular topology, i.e., the entity
set V of ontology. So the entity set of ontology is the key point of
the granular level in ontology, the basic components in granular
topology may reflect the ontology’s cognition level, which is obvi-
ously granular and hierarchical.

As shown in Fig. 2(b), the ontology rule set R may include only
external granules. In this case, the desired concept is approximated
by several related rules. Fig. 2(c) represents the boundary of the
real concept more accurately than Fig. 2(b).4 We can conclude that
the size of the granule (or granular level) in cognition affects the
accuracy of ontology representation; normally, the smaller the gran-
ules, the higher the accuracy.

Note also that in Zadeh’s definition, granules may be natural
crisp or fuzzy. Because the external granules in a rule set may lead
to instances that do not belonged to the specific target domain,
they are also called fuzzy granules. Both the internal granules
and unrelated granules are called crisp granules.
3.3. Rule granules are tuples

Because rule granules represent relations among the entities in
a granular topology and form target concepts, they should not be
treated individually. The capability of a knowledge rule set should
be evaluated as a whole, instead of each rule evaluated one by
one. This is particularly true when the desired concepts are com-
plex enough to implement with a description logic (DL) language.
A typical sample is the ontology for 3D architecture models in
Fig. 1—the spatial and combination sequences among the entities
are quite difficult to represent with DL language alone, so FOL-
based rules—e.g., r1 � r4 in Section 2 – are required. Thus rule
granules are sequence-sensitive and are also tuples (i.e., ordered
sets).

In the architecture ontology, although r2 and r3 are quite simi-
lar, if we use two different rule sets R1 ¼ fr1; r2; r4g and
R2 ¼ fr1; r2; r3; r4g, the corresponding instance spaces will be quite
different. Thus they may lead to two approximate ontologies with
respect to the desired conceptualization. In practice, the result of
approximating the digital architecture domain of R1 may be better
than R2. So we can conclude that not all external rule granules are
necessary for a desired ontology, only the proper tuple (sequenced
rule set) of those rules will best fit the desired concept. This is why
we need to optimize the rule set in our following granular ontology
approach.
4 If rule granules are small enough, there must be a rule set to fit the boundary of a
real concept precisely.



Fig. 2. Knowledge structure of a conceptual-relation set in a granular view. In figure (b), these two rules cannot cover all the category of ‘‘birds’’, for example, the penguins
and ostriches are birds, but they cannot fly.
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4. General approaches for granular ontology design

There are four steps in our approach of ontology design. The
four steps are as follows:
4.1. Initialization

In the initialization phase, we mainly perform three preparatory
tasks on the desired ontology domain: specifying the granular
topology on which the ontology will be established, confirming
the boundary of the ontology domain, and designing the evaluation
standard for the instances of the specific ontology domain.

The choice of granular topology is the most important task in
granular ontology design, and the proper granular partition will
simplify the ontology design and reduce the vagueness of the
ontology terms significantly. The specification of a granular topol-
ogy is a complicated task, which may concern factors such as the
complexity of the target, the hierarchical structure of the target,
and methods adopted for construction of the ontology.

As mentioned above, using smaller granules for an ontology will
approximate the real concept more accurately. So the question
arises: Should we design the ontology with granules as small as
possible? The answer is obviously no. Representing an ontology
with very small granules will lead to problem due to the intracta-
bility of the inter-relationships among tiny granules. Thus the cost
of ontology design will increase significantly. For example, to de-
scribe ‘‘bird’’ using DNA sequences will likely be excessively diffi-
cult. A simple choice of granular topology for a desired domain
may be addressed using the natural semantic partitions of the tar-
get in human cognition. For example, in our digital architecture
ontology design, we use the basic architectural terminologies
v1; . . . ;v8, in Fig. 1.

The boundary of the ontology domain is established on the
granular topology. With a clear granular topology for the ontology
domain, we can specify the target boundary both on the macro-
scopic (or parent) conceptualization level and the microscopic (or
children) granular level. This granular topology will improve the
descriptions of the boundary.

Evaluation standards are also concerned with granular level—
they reflect the granules as a complete instance in a certain gran-
ular topology. Note also that evaluation standards only focus on
the features of the instances in desired domains, rather than con-
ceptual relations. In this task, the evaluation items for an instance
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we selected should be objective, correct, common, clear, and feasi-
ble. These items are important evaluation criteria in the following
ontology optimization phase.

After we complete the three operations in the initialization step,
the design of an ontology will be constrained within certain
boundaries and the granules and granular topology structures used
in the ontology will also be confirmed, thus the subjective bias will
be reduced greatly.
4.2. Extension

In this phase, we produce the primary ontology based on the
granular topology and then extend the terms of the primary ontol-
ogy. The representation of the ontology may be DL (e.g., ‘‘has_va-
lue’’,), FOL (e.g., the procedural rules in Section 2) or a synthesis
of both DL and FOL. We enumerate the entities involved in the
ontology domain following the above granular topology, and then
generate the corresponding conceptual relations for those entities.
As the conceptualizing processing may introduce new entities, we
extend these new entities into the entity set V, and then generate
the corresponding conceptual relations iteratively until there are
no more related entities. To avoid unlimited extension for the
entities and conceptual relations, a proper pruning with the
restrictions from the ontology domain boundary and the size of
granules is needed. For example, a designer may present a rule
‘‘the roof is wooden’’, but this rule will be pruned because it is
unrelated to the ontology target boundary presented in the previ-
ous section.

In this phase, there may be multiple participants, and the
granular partition for the ontology domain can naturally support
multiple designers working in collaboration.

The primary ontology domain can also be constructed with
traditional methods, such as an inspirational approach, inductive
approach, deductive approach, or collaborative approach
(Holsapple & Joshi, 2002), according to the predetermined granular
topology. Then the entities and corresponding conceptual relations
can be extended.
5 This is especially true, when there are many grammar rules implemented with
FOL.

6 With FOL-based rules to describe the combinations of basic components in V, a
knowledge system can produce corresponding instances by enumerating the
combinations of those rules, and this may be implemented by software toolkits or
computer programs.
4.3. Inconsistency reduction

Because the primary ontology may be designed by multiple
participants with different understanding of the same ontology do-
main, designers may confuse and mismatch the granular topolo-
gies. Therefore, we must reduce the number of inconsistencies in
the primary ontology.

Two types of inconsistencies should be removed—inconsisten-
cies introduced because of differences in participant cognition
and inconsistencies caused by conflicts among rules represented
by non-monotonic DL. The former is a typical synthesis problem
for multiple persons’ viewpoints in collaborative ontology design.
Our multilevel-projection design approach (Liu, Xu, Zhang, & Pan,
2006b; Liu et al., 2008) can process this condition comprehen-
sively. The latter problem may be more covert and harder to
reduce.

For the former inconsistency, we first mark all the entities and
conceptual relations that are referred by more than one participant
from the primary ontology. Considering that the participants may
come from different fields and their views on the same domain
may not agree, for each commonly marked pair of entities, we pro-
ject the entities into the same cognition level with the predeter-
mined granular partition, and check whether conflicts occur.
Because the inconsistency may only appear at a certain cognition
level, the projections for marked pairs should be performed at all
the participants’ cognition levels that involve in the pair. After con-
flicts are detected, we revise the corresponding ontology terms and
then repeat the projection and check iteratively until we reach a
consensus.
4.4. Optimization in granular cognition

For inconsistencies that arise from conflicts among rules repre-
sented by non-monotonic DL, the origin of the inconsistencies may
be that humans always understand the real world using non-
monotonic logic, so the designed ontology is only an approxima-
tion of human cognition with non-monotonic logic. Although
various methods (Ensan & Du, 2008; Pührer, Heymans, & Eiter,
2010) can be used, and a clear granular topology for the desired
concept (such as in Fig. 3) will reduce the number of inconsisten-
cies, not all potential inconsistencies of DL implementation can
be removed or even detected, so we must process those in the next
optimization phase—optimization of the knowledge rule set by
selecting a proper subsets without redundancies.

The task of designing a good ontology for complex problems
from a granular level can also be divided into two phases: the first
one is to design the knowledge relation set under a perfect granu-
lar structure. The second is to present a primitive, integrated,
redundant and approximate knowledge rule set under a tolerable
ontology granular topology and then select a suitable subset that
can fit the desired concept mostly, according to a certain evalua-
tion method. From the granular viewpoint of ontology, we realize
that it is quite difficult to design an ontology in a perfect granular
topology that can represent all of the granules of knowledge cris-
ply. So the task for ontology design always becomes a compromise
between human cognition and practice implementation. The aim
of this phase is to select the proper knowledge rule subset with re-
spect to the specific concept. Optimization is different from incon-
sistency reduction—in the optimization phase, we do not revise the
entities or conceptual relations, we only construct the optimal rule
subset from the redundant raw set. The inconsistency reduction
phase focuses on removing logical conflicts due to subjective bias
in ontology design.

In the optimization phase, before optimal relation subset selec-
tion, we first classify the original knowledge rules into internal
granules and external granules. This process is evaluated by several
experts who come from different background and they discuss and
confirm whether the conceptual relation is certain or marginal for
the desired ontology domain.

Secondly, we should provide several optional rule sets for
further evaluation. As the tuple-structure granules of conceptual
relation may be order-related, which also implies different combi-
nations of knowledge rules will produce varied extensions, it also
should be noted that the knowledge set covered with all the redun-
dancy and fuzzy granules (such as the internal granules and the
external granules in Fig. 2) is not always optimal.5 So those optional
sets should be considered as a whole carefully. Each candidate
should include all the internal granules and several elements from
the external granule set. Designers should make a deliberate choice
for those from external granules; a typical guide specification is to
put fuzzy rules that may relate the same objects to a different can-
didate set, and this is addressed on that the knowledge in primitive
ontology is redundant and we should evaluate which representation
for the same object is better.

Thirdly, we use different knowledge rule candidate sets to gen-
erate a mount of instances,6 evaluate those generated instances
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with the predetermined standards and criteria defined in the initial-
ization phase, and choose the subset with the highest correct ratio as
the optimal result. As there are many instances concerned in this
step and most of the predetermined standards are subjective and
can be represented in computers easily, we use a hybrid method
for the evaluation of the instances. That is, most of the instances
are automatically verified by some software toolkits, and some com-
plex instances may be evaluated by experts to decide whether each
instance belongs to the desired ontology domain. Obviously, the
optimization result highly relies on the number of instances, and
we cannot enumerate all the possible instances generalized by the
optional conceptual relations sets, so the final result is only an opti-
mal approximation, which is a compromise between accuracy and
cost.

5. A case study that uses the granular ontology design approach

In this section, we use a real case to demonstrate the proposed
granular ontology approach. The process is shown in Fig. 4. We de-
sign an ontology for modeling architecture with specific styles (Liu
et al., 2006b, 2008, 2010), such as ancient Chinese architectural
style. This case involves multiple fields and participants, such as
computer programmers, architects, rendering artists, historians,
and UI designers. The task is to design an ontology for digitally
modeling the ancient Chinese architectural styles. In the following
section we use C ¼< D;W;R;V > to denote the desired ontology,
where R is an approximate of the conceptual relations R, and V
is a sub-concept (or sub-ontology) set involves in the domain of
the ancient Chinese architecture.

We also use an example that contains two instances of ancient
Chinese architecture to demonstrate the ontology design process-
ing, shown in Fig. 5.

5.1. Initialization and extension

In the initial phase, we establish the architecture ontology on
the semantic granular topology, which conceptualizes the ontology
Fig. 3. Granular topology in an ontology of digital 3D architecture.
in natural semantic partitions (division into house, window, wall,
etc.) and is easy to communicate for the different designers. Part
of the topology is shown in Fig. 3. The sub-concepts in that granu-
lar topology consist of the V set in our designed ontology. Each sub-
concept in V can also be regarded as a new ontology that is denoted
as v i ¼< Dv i

;Wv i
;Rv i

;Vv i
>. For example, the V set of the ontology

of ‘‘urban’’ in Fig. 3 contains two elements, ‘‘block’’ and ‘‘vegeta-
tion’’, which can also be regarded as ontologies.

As we cannot enumerate all of the conceptual relations (also
called knowledge) in R, we use some FOL rules and DL rules to
approximate the conceptual relation set. We use L-system-based
grammar as the knowledge rule, e.g., r1 � r4 in Section 2, which
uses recursive grammar to generate different architecture in-
stances (Liu, Xu, Pan, & Pan, 2006a; Müller et al., 2006). The subjec-
tive evaluation features and boundary are also presented by those
experts carefully with DL rules based on their observations of the
instances of the desired domain. Once the granular topology is
confirmed by experts from different domains, the boundary of
our ancient Chinese architecture ontology can be clarified with
the hierarchical granular topology, and the evaluation standards
for the desired concept or involved sub-concepts can be generally
presented by those experts who only need to focus on one of the
sub-concepts with DL rules. For example, the experts from archi-
tecture may present some combinations of the windows and walls
that belongs to the type of ancient Chinese architectures, while the
experts from arts may focus on the color feature of the windows,
walls, or roofs. All these DL rules from different experts consist of
the initial evaluation standards.

With a granular topology, the ontology can be designed collab-
oratively, thus each designer may only focus on a certain sub-con-
cept, such as windows or walls, that are involved in the ancient
Chinese architecture concept. Then the extension phase in our
granular ontology design process may be parallel and independent.

In our example of Fig. 5, each participant presents an ontology
for ancient Chinese architecture. The architect will present a sam-
ple ontology CaðDa;Wa;Va;RaÞ to define the vernacular house in an-
cient Southeast China. The example only contains two instances of
the Southeast vernacular houses (w1 and w2),7 and two combina-
tion rules with DL for the domain8; The programmer uses FOL-based
grammar, which could also support the quantitative control terms
and spatial control terms. In our approach, we use the procedural
modeling engine (Müller et al., 2006) to randomly select the rules,
such as the programmers’ rules, Rp in Fig. 5, and recurs those selected
rules to generate semantic scene instances; The ontology presented
by historians will focus on the detailed features of the components,
such as the roof body (v2) in Southeast ancient Chinese architecture,
the roof body is gray or black color, based on historic literatures, the
example is given in Rh of Fig. 5; The ontology of rendering artists nor-
mally presents the basic geometry of components and some complex
components such as the roof body, which may be represented by the
point-mesh files, such as the ‘‘roof.obj’’ in the example; UI designers
design the annotations with the different requests of end users. The
scene for historical users may focus on the annotation of the typical
events and backgrounds, while the scene for architectural users may
focus on the annotations of the layout and combination of each com-
ponents. As shown in Fig. 5, rule one of the UI designer, all the com-
binations of (v1;v2) will be linked with the annotations defined in
that rules automatically, when the huge scene is generated. Then
7 In a real case, there may be many more instances in the instance set W or even
innumerable instances

8 Both rules in the example describe the combination of houses. In practical
implementation, it may contain the combination for a group of the components in V
or some attribute description for the components similar with the example of a
historian’s ontology.



Fig. 4. A granular ontology design approach to architecture modeling.
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the modeling engine will automatically check the scene and attach
these annotations when outputting the final results.

5.2. Inconsistency reduction

A hierarchical granular topology can simplify the design of a
complex ontology. However it may introduce inconsistencies, be-
cause ontologies created by different domain experts may have
conflicts. Inconsistency reduction can identify and resolve these
inconsistencies. Several key operations used in our approach are
as follows:

5.2.1. Mapping
Inconsistencies among ontologies mostly occur in correspond-

ing domains that describe the same concept. We call the relation-
ship between corresponding concept domains ‘‘mapping’’. If
ontology C1 is in a mapping relationship with ontology C2, denoted
as mapsðC1; C2Þ, then

mapsðC1;C2Þ ! 9CðD;W ;R;VÞ;v ¼ C1 [ C2;v 2 V

This definition states that if C1 and C2 are in a mapping relation-
ship with each other, the union concept of C1 and C2 can be viewed
as a sub-concept element in a higher level ontology C. For example,
in Fig. 6, house in the street and architecture ontologies, roof in the
house and architecture ontologies, and gate in the house and archi-
tecture ontologies are in mapping relationships.

If C1 is mapping with C2;w is an instance of ontology
C1ðw 2W1Þ, then we call instance w semantically related to ontol-
ogy C2.

mapsðC1;C2Þ; w 2W1 ! w is semantically related to C2
5.2.2. Part-of and consistency
When using FOL rules to generate ontology instances, the sub-

concepts (vocabularies) will first generate their own instances
and then they can be combined into instances of parent concepts
using the domain knowledge R. Before detecting inconsistencies
between ontologies, we define the operation of decomposing an in-
stance. This is the Part-of operation.

Let CkðDk;Wk;Rk;VkÞ be a sub-concept of Ontology CðD;W;R;VÞ,
where w 2W;Ck 2 V , Part-of ðwÞCk

is defined as

Part-of ðwÞCk
¼ fv1;v2; . . . ;v ig;v i 2 w;v i 2Wk

Here Ck is a sub-concept of the C, so v i should belong to both the
instance w and Ck’s instance set Wk. If Ck is not a sub-concept of C,

Part-of ðwÞCk
¼ f[ Part-of ðwÞCj

jCj 2 V ; mapsðCj;CkÞg

Obviously, if Ck is a concept that contains C, or it cannot find any
sub-concept mapping with Ck in V, Part-ofðwÞCk

¼ /.
We introduce the concept of consistent set and conflict set (Chen,

Chen, & Zhang, 2007) to distinguish between the types of inconsis-
tencies among ontologies presented by different experts.

Let w be an instance of CðD;W;R;VÞ. To an ontology
C0ðD0;W 0;R0;V 0Þ, w’s consistent set with respect to C0 is defined as

consistentðwÞC0 ¼ fbjb 2 Part-of ðwÞC0 ; 8r 2 R0; b satisfy rg

And w’s conflict set with respect to C0 is defined as

conflictðwÞC0 ¼ fbjb 2 Part-of ðwÞC0 ; 9r 2 R0;b unsatisfy rg

b satisfy r means that the component b can fit the domain
knowledge r. And there are two unsatisfy conditions in our ancient
Chinese ontology design case:

� Attribute inconsistency, which means that the attributes gener-
ated in instances are in conflict with the corresponding knowl-
edge rules. For example, the rule rðroof :has shape ¼ corniceÞwill
be in conflict with an instance of roof :shape ¼ plane.
� Combination inconsistency, which means that the combinations

generated for instances conflict with the corresponding knowl-
edge rules, e.g., the combination rule rðP ¼ v1;v2;v3Þ conflicts
with the combination in instance P0 ¼ v3;v3;v1.



Fig. 5. Ontology examples from multiple domain experts. Here, the means of v1; v2; . . . ;v8 are shown in the left-top figure, and v9 is the window wall component, v10 is the
roof component, v11 is the house (which also maps with the instances w1 and w2 in the ontology of architect), v12 is the urban block. Sample ontology of architect presents a
southeast ancient Chinese architecture domain with only two rules, which indicate two styles of houses shown in the top of this figure. The hierarchical concept domains
should be established by the participants earlier. The inconsistency reduction phase could proceed the mapping relationships between the instances and ontologies
automatically, detect and reduce the inconsistencies (Liu et al., 2012b).
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If conflictðwÞC0 ¼ /;w is consistent with ontology C0, otherwise
w is inconsistent with ontology C0.

In our ancient Chinese architecture ontology design problem,
we aim to reconstruct 3D architectural scenes of ancient China.
We can reduce inconsistencies by minimizing conflicts among con-
cepts and sub-concepts designed by different experts. In our design
approach, we use the FOL rules and DL rules in each sub-concept to
generate a number of instances and then input the sub-ontologies
(or sub-concepts) C1;C2; . . ., designed by different experts, to test
whether the generated instance w is in conflict with the
sub-concepts. By this method, we can remove the inconsistencies
among the ontology concepts designed by different experts
semi-automatically—our system can automatically generate the
instances and locate the conflict rules, then revise the rules or
remove the rules manually (Liu et al., 2012b).

5.3. Optimization in granular cognition

In the processing of real architecture modeling, the FOL rules
will generate arbitrary combinations of architecture instances.



Fig. 6. Hierarchical ontology mapping with multiple sub-concepts (Liu et al., 2012b).
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They cannot match the conceptual relations of the ontology very
well. The real knowledge set of a specific domain will lie in an
irregular shape, like the one in Fig. 2. Each grid represents a FOL
rule in the approximate rule set R, and we denote all the FOL rules
as a set U. The real knowledge set will cross some grids, which
means that those crossed rules will be classified either as that
knowledge set or some other knowledge set, and within vague
boundaries in the rule based granule. According to the figure, we
can see that none of the rule subsets of U can match the boundary
of the real knowledge set exactly. However, R can be approxi-
mated by choosing the best-matched subset in U. That is the core
idea of our optimization phase in the granular ontology design
approach.

P is a subset of U: it contains rules that may not match well with
the boundary of the knowledge set R.

Though R in C ¼ ðD;W;R;VÞ cannot be enumerated directly, a
small rule set K in R can be determined manually. In the imple-
mentation, K is initialized by several basic architecture modeling
rules that are necessary for generating architecture. Those rules
in K are decided upon by all the experts involved in the design of
the ontology. Then, one rule at a time, we tests whether a rule r
in P can be mapped by FK[frgðVÞ into an instance w 2W . By this
method, we can find the upper and lower approximations of P with
respect to the ontology domain D. Similarly, NPD and NPD can also
be defined by testing the rule r not in P (that is r 2 U � P) whether
w ¼ FK[frgðVÞ belongs to the instances set W. We proceed as
follows:

Let the universe UðU � RÞ be the whole FOL rule library (knowl-
edge) in our auto-modeling system (Liu et al., 2006a). Let P be a
subset of U, then approximate sets within the context of
C ¼< D;W;R;V > is9:

PD¼
[

r j 9w; having w2W; w¼ FK[frgðVÞ; and r2 P;K #R
� �

ð1Þ

The lower approximation of P is

PD¼
[

r j 8w; having w2W; w¼ FK[frgðVÞ; and r 2 P;K #R
� �

ð2Þ
9 8w 2W can be determined by enumerating a large number N of instances. We
believe the negative condition will occur when N is large enough. Note that K is a
small rule set in R.
Here, FK[frgðVÞ is the architecture instance function of the ontol-
ogy domain C ¼< D;W;R;V >. In our modeling system, the
architecture instance function refers to the process of using the
rule set K [ frg to combine the vocabularies (sub-concepts) V into
a single architecture instance.

An intuitive explanation for the upper and lower approxima-
tions can be found in Fig. 2. The upper approximation R consists
of all of the granules related to R (the external granule set of R),
and the lower R consists of all of the granules that are all strictly
within R (the internal granule set of R).

Similarly, we can also define the approximate sets of the knowl-
edge set P (P ¼ U � P) with respect to the concept domain D.

The knowledge set P’s upper approximate set with respect to
the concept domain D is

NPD¼
[

r j 9w; having w2W; w¼ FK[frgðVÞ; and r 2U�P; K #R
� �

ð3Þ

The knowledge set P’s lower approximate set with respect to
the concept domain D is

NPD¼
[

r j 8w; having w2W; w¼ FK[frgðVÞ; and r 2U�P; K #R
� �

ð4Þ

Though the notion of roughness (Pawlak, 1991) is a rough set
notion, it is easy to generalize to granular computing. The rough-
ness of the knowledge set P with respect to the domain D can be
calculated as

vPD
¼ jPDj � jPDj

jPDj
ð5Þ

The corresponding roughness of knowledge set P with respect
to the domain D can be calculated as

vNPD
¼ jNPDj � jNPDj

jNPDj
ð6Þ
5.3.1. Measurement on minimal knowledge boundary
After defining the upper and lower approximations and the

roughness of the rule set P with respect to a certain ontology
domain C ¼< D;W;R;V >, we need to select the best FOL rule set
for the ontology domain. That is we must find the rule set P that
is closest to the knowledge set R in the ontology domain. To



Table 1
User study results.

Input set Average score Standard deviation

U 6.95 2.85
P 7.32 1.40
T 3.31 1.03
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determine the closeness between the rule set P and the knowledge
set R in an ontology domain, we need a critical metric for close-
ness. The measurement should be able to determine the fitness of
the rule set P with respect to the real domain knowledge R.

In our solution, we adopt a roughness-function-based metric to
identify the minimal knowledge boundary between the selected
rule set P and the ontology domain knowledge R. Intuitively, the
roughness function definition can be understood as the selected
rule set P containing at most the true knowledge (represented by
vPD

) and U � P containing at least the true knowledge (represented
by vN PD

).
In this article, we need a roughness function metric that can

minimize the roughness of the knowledge set P with respect to
the desired ontology domain and maximize the roughness of
knowledge set P with respect to the desired ontology domain.
The roughness function measurement is defined as

EPD ¼ vN PD
� vPD

ð7Þ
<Urban name = "Southeast_Urban_near_Canal">
< Block>

<hasTopology rdf:resource = "Topology
<hasRoad rdf:resource = "Road.owl#roa

<House name= "Southeast_House_1023

<hasCombination>
                         <!---To identify the combination 
                         <!---we use the symbols in the on
                         <!---that is "[[v1] Tv2]T[[v4]F

<Component Layout="Top">
<Component Layout="Top">
<Component >Roof_body_3

</Component>
…

<Component Layout="Left"> C
<Component Layout="Right">

…
</hasCombination>

…
<Roof_Center name="Roof_Cent

…
</Roof_Center>
<Conjunct_wall name="Conjunct
     <hasRender rdf:resource="Ren
     <hasBoundary>
         <BoundaryType>Box</Bou
         <BoundaryWidth>3.2</Bou
         <BoundaryHeight>7.5</Bou
         <BoundaryThickness>0.3<B
     </hasBoundary>
     <hasColor>
           <BodyColor>Red</BodyC
     </hasColor>

</Conjunct_wall>
</House>
…

</Block>
</Urban>

Fig. 7. Sample semantic description of a scene instance (here limited to a page). W
Then the task of finding the most suitable knowledge set with
respect to the ontology domain is equivalent to calculating each
knowledge rule set’s roughness function measurement and choos-
ing the knowledge set with the maximum roughness function
measurement as the best domain knowledge set. The appropriate
knowledge set P with respect to the ontology domain D can be cal-
culated by the following formula:

P� ¼ arg max ðEPD Þ ð8Þ

Then the optimization can be regarded to select a proper FOL
rule subset P that can maximize EPD (Liu et al., 2010).
.owl#block_southeast"/>
d_in_block_southeast"/>

">

more clearer, -------------->
tology example, ---------->
[v5]R[v4v7v4] B[v5]L]D " -->

Roof_Center_2131</Component>
207</Component>

onjunct_wall_1124</Component >
 Conjunct_wall_1124</Component >

er_2131">

_wall_1124">
der.owl#cw_southeast"/>

ndaryType>
ndaryWidth>
ndaryHeight>
oundaryThickness>

olor>

e have omitted the complex control tags for the components (Liu et al., 2010).
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5.3.2. Results analysis on optimization
In our ancient Chinese architecture ontology design, there are a

totally of 224 FOL-based knowledge rules, which are similar with
the r1 in Section 2, after the extension. As there may be inconsis-
tencies among the rules presented by multiple experts, inconsis-
tency reduction is also carried out for the DL-based knowledge
rules both with manual checks and automatic detection.

During the optimization phase, shown in Fig. 4, we must evalu-
ate the FOL-based rule set by instance, so the computer expert
implements an instance-generation toolkit (Liu et al., 2010) that
can randomly choose rules from the rule subset that needs to be
evaluated and generate corresponding architecture instances. The
instances are represented in XML format. A sample is shown in
Fig. 7, and our team also implement a toolkit to render the in-
stances of architecture models. Then the evaluation of instances
is first executed automatically by matching the DL-based rules
and XML-based instances. Experts review some of the intractable
instances using the visualization toolkit.

In the optimization phase, we generate a total of 2000 instances
and record the domain hit ratio of each candidate rule subset. The
domain hit ratio is calculated as the number of instances that cor-
rectly belongs to the desired domain divided by the total number
of instances (Liu et al., 2010). The rule subset with the highest do-
main hit ratio is our optimal result. Finally, we obtain a subset with
105 FOL based rules.

To evaluate the effectiveness of our result, we invited 40 grad-
uated students from different background to evaluate the instances
generated by different knowledge rule subsets, which are the full
rule set U with 224 rules, the optimal rule set P with 105 rules,
and a rule subset T with 93 rules, which is randomly drawn from
U. Each rule sets is used to generate 29 instances by the instance
generation toolkit, and the 87 instances are randomly presented
to the testers and the testers grade the quality of the instances with
respect to the desired concept, using the following scores: 0 for
totaly wrong, 5 for moderate, 10 for perfectly right. Value between
0 and 5 are for less correct and values between 5 and 10 are for
more correct. The average scores of every sets are shown in Table 1.
From the table, we can conclude that the optimization result can
achieve the best performance.

6. Conclusion

We have presented three views of granular ontology observa-
tion from the real world, and a corresponding granular ontology
design approach based on the three views. This granular approach
can be applied to generate ontologies for various applications, such
as the Semantic Web, information classification, service discovery,
and other complex phenomena.

The granular ontology design approach integrates the inductive
and deductive methods and the granular partition in our approach
will help multiple participants to design the ontologies collabora-
tively. Although ontology design is subject to much subjective bias,
the granular approach provides a framework that can enable more
objective ontology design—with both less subjectivity and more
unique results.

In the granular approach, we introduce the concept of a fuzzy
granule, which can provide a wide tolerance for the representation
of an ontology domain. Fuzzy granules promote the flexibility and
adaptation of the designed ontology.

Because the design pattern in the granular approach is general,
it can be implemented in most ontology designs. The optimal
framework can enable designers to implement quantitative evalu-
ation criteria and use computers to aid the optimal process auto-
matically. Thus, our ontology design approach reduces the cost of
creating ontologies and at the same time increases the efficiency
of those ontologies.
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