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ARTICLE INFO ABSTRACT

Keywords: Constructing virtual 3D historical scenes from literature and records is a very challenging problem due to
Scenes modeling the difficulty in incorporating different types of domain knowledge into the modeling system. The
Onto-draw

domain knowledge comes from different experts, including: architects, historians, rendering artists, user
interface designers and computer engineers. In this paper we investigate the problem of automatically
generating drawings of ancient scenes by ontologies extracted from these domains. We introduce a
framework called onto-draw to generate semantic models of desired scenes by constructing hierarchical
ontology concept domains. Inconsistencies among them are resolved via an iterative refinement algo-
rithm. We implement the onto-draw based ontology design approach and inconsistency removal tech-
nique in the virtual Jing-Hang Grand Canal construction project (Chen et al., 2010) and achieve

Semantically related
Consistent set of ontology
Designing complex ontology in
collaboration

encouraging results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Motivation

Visualizing the minds of different domain experts collabora-
tively on the same “thing” is the key idea of this paper. In many
collaborative designing cases, the crucial problem will always fall
into how to balance the viewpoints from different experts. Thus
if we can provide a general framework, which can automatically
visualize the “things” with all the viewpoints of experts and
highlight their conflicts intuitively, it will simplify the designing
greatly.

Based on such an idea, in this paper we address the problem of
collaboratively constructing 3D historical heritage scenes of the
Jing-Hang Grand Canal with semantic techniques. The task to con-
struct the virtual canal of ancient China with spatiality, appearance
and historical consistency is complicated. It is very hard for
computer modeling engineers to finish alone. The task needs dif-
ferent professional experts to work in collaboration. For example,
historians explain historical settings of the canal from related an-
cient literature, computer engineers build the auto-modeling tool-
kits etc. The normal approach may employ some manual modeling
software or procedural modeling toolkits which are consulted by
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several experts, e.g. the project of Rome Reborn (Dylla, Frischer,
Mueller, Ulmer, & Haegler, 2009). As to the Jing-Hang Grand Canal,
this approach may suffer from the following challenges due to the
complexity and incompleteness of the canal.

e The most challenging problem may be how to bridge the
gap between minds of participators and the real visitable
digital 3D scenes with semantic methods. The involved par-
ticipators normally can only present some features of the
scenes with description logic (DL), and obviously are not
able to construct those scenes automatically. On the other
hand, there are also many approaches (Deussen, Hanrahan,
Lintermann, Pharr, & Prusinkiewicz, 1998; Liu, Jiang, &
Huang, 2010; Miiller, Wonka, Haegler, Ulmer, & Van Gool,
2006) implementing first order logic (FOL) based grammar,
e.g CGA grammar in architecture (Miiller et al., 2006), L-
system in plants (Boudon, Prusinkiewicz, Federl, Godin, &
Karwowski, 2003; Deussen et al., 1998), to construct the
virtual environments, thus we approximate the challenge
of how to bridge those two logics in a general semantic
framework.

e Many of those heritages of the Canal are destroyed, experts
could only deduce the possible scenes with their own his-
torical and architectural backgrounds, so it contains many
controversies due to the incompleteness of the Grand
Canal. Then the second challenge is how to detect and
resolve the conflicts among different experts on the same
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visual 3D scenes with semantic methods. In a previous
similar Rome Reborn Project (Dylla et al., 2009), few works
are focused on that issue due to less participators and
plenty of objective information for targets. Thus, the solu-
tion of this challenge will improve collaboration among
varied domain experts greatly and even can be imple-
mented in archeology, e.g. the Virtual Catalhdyiik project
(Morgan, 2009)".

e The traditional approach normally needs that each expert
should be very familiar with the desired target and can
describe it systematically, consistently, which is quite a
high requirement for the involved designers. That is why
the Rome Reborn project needed world famous architects
as their consultants. So the third challenge is: with the help
of a special semantic framework or toolkit, whether we
could proceed with this kind of problem by ordinary
designers, who may be not able to provide perfect descrip-
tions for the target.

In order to provide a unified platform and interface to com-
bine different domain knowledge from different experts as well
as providing a visual feedback of their designing, we propose
an onto-draw based framework, which supports that multiple
participators design the ontology of a complex problem in visual
collaboration.

1.2. Contributions

In this work, we address the research challenges listed above,
and make the following contributions:

e We have introduced a novel approach with a hybrid FOL
and DL based semantic knowledge system in our onto-
draw, by which we can bridge the gap between the minds
of participators and digital 3D scenes, then construct heri-
tage scenes automatically. It provides a unified representa-
tion for both featured and geometrical knowledge
presented by different domain experts, and can depict
how those concepts combine in spacial topology, e.g. the
spacial combination of architecture components to form
an ancient south-east house near the Grand Canal.

e Exploring the semantic relations provided by the above
hybrid FOL and DL based semantic knowledge system, we
have proposed a formal quantitative definition for the con-
flict among multiple participators concerning geometrical
relations, and we also present the corresponding solution
to automatically detect and remove those conflicts under
the framework of onto-draw. The presentation of quantita-
tive concepts also provides a beneficial try to evaluate the
knowledge set in computable semantic approach.

e We have maintained a scalable ontology design framework
which could integrate and improve the designing of desired
complex concepts in increments. Thus it will reduce skillful
requirements for designers, and enable a stepwise-refine-
ment based design process with the help of a framework.

e We have conducted an empirical user study to evaluate the
validity of the onto-draw framework. The results show that
onto-draw may be superior to other manual based
approaches.

The proposed framework is very general for any task that needs

to combine different domain knowledge from different experts. We
apply the framework to our specific task of constructing the virtual

1 http://www.catalhoyuk.com/.
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Jing-Hang Grand Canal that contains as few historical and regional
inconsistencies as possible.

1.3. Structure of the paper

The paper is organized as follows. After presenting the back-
ground the of digital Jing-Hang Grand Canal and the shape gram-
mar used in our approach in Section 2, related works are given in
Section 3, then we present the onto-draw framework, including
the definition and general approach in Section 4. Detailed imple-
mentation of our onto-draw approach in constructing the Canal
is given in Section 5. A quantitative evaluation of our onto-draw
engine is presented in Section 6. Some results and analysis of the
virtual Jing-Hang Grand Canal are described in Section 7, followed
by conclusions and a discussion of future work.

2. Background and primitive knowledge
2.1. Digital Jing-Hang Grand Canal project

Visualizing the destroyed heritages is a challenging task, e.g. the
visual Catalhdyiik project (Morgan, 2009) takes about ten years of
collaborative work by many experts from different fields, they
need to collect the clues regarding heritages and deduce the possi-
ble states of destroyed heritages and discuss to resolve their differ-
ence of opinion. More recently, the procedural modeling technique
was introduced in that task to improve the efficiency of construc-
tion, and archived significant results such as the Rome Reborn Pro-
ject (Dylla et al., 2009). However, a general efficient semantic
framework for those heritages virtual recovering is still an un-
touched research field.

There are many ancient heritages which are damaged or lost in
the long history of China. As these heritages are not well preserved
(some even have been destroyed completely), traditional modeling
approaches such as 3D scanning or image based modeling cannot
be used. However, there will be significant research and social im-
pact if these ancient scenes can be realistically “drawn” to us. This
“drawing” process includes not only reconstruction of realistic
scenes in 3D but also the rendering of scenes to the user. This
seems an impossible task, fortunately there are many historical lit-
eratures describing those heritages, and the existing heritages
could also provide many clues regarding those destroyed. This
paper investigates whether it is possible and how to “draw” these
heritages using varied domain knowledge from multiple experts.

In our heritage preservation project, we construct the virtual
Jing-Hang Grand Canal both with the 3D models and historical
annotations. The Jing-Hang Grand Canal, shown in Fig. 1, is the lon-
gest ancient man-made canal in the world. It starts from Hangzhou
and ends in Beijing with a total length of roughly 1100 miles. The
oldest parts of the canal date back to the 5th century BC, different
parts of it were finally connected during the Sui Dynasty. The
Grand Canal system represents a remarkable achievement of impe-
rial Chinese hydraulic engineering. It connects the political center
of the empire in the north with the economic and agricultural cen-
ters of central and southern China.

The Jing-Hang Grand Canal passes through almost half of China
from north to east. The environment (including architecture and
culture) along the canal varies a lot due to regional differences.
The virtual canal that we build should obey the spatial consistency,
appearance similarity as well as historical consistency with the lit-
erature. In other words, scenes and settings of the virtual canal
generated by a computer system should match and be compatible
with its corresponding time and regional characteristics.
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Fig. 1. The map of Jing-Hang Grand Canal with typical heritages in nearby cities, which are symbols of some ancient dynasty. The culture, architecture, commerce, and even

the legend of the cities near the Canal are strongly related with the Canal.

2.2. Shape grammar and FOL in our approach

Before presenting the ontologies in our Canal project, we will
first introduce the basic shape grammar implemented in our
approach. All the geometry objects in our shape grammar are with-
in a boundary box shown in Fig. 2, and we also define six spacial
relationships for the combinations, that are “Top (T) of the object”,
“Down (D) of the object”, “Left (L) of the object”, “Right (R) of the
object”, “Front (F) of the object” and “Back (B) of the object”. With
these spacial control terms, experts could present their own do-
main knowledge on the spacial combinations of the scenes easily.
For example, the roof of a Southeast Chinese vernacular house may
constitute two components: a roof center and a roof body. The roof
center, shown in Fig. 5, is just on the top of the roof body, then we
can express the roof as follows:

Roof = [1]Tv,

where vy, v, are the components defined in the ontology example in
Fig. 5. In addition, our shape grammar also supports the quantita-
tive control terms which could scale the boundary boxes of the
geometry objects in each axis (X,Y,Z, in Fig. 2) and transform the
coordinate of the objects based on an absolute coordinate or a rel-
ative coordinate. The detailed implementation may refer to our pre-
vious works (Liu, Xu, Pan, & Pan, 2006) and Wonka’s CGA shape
grammar (Miiller, Wonka, Haegler, Ulmer, & Gool, 2006). A more
complex example to express the house w; in Fig. 5 is given as
follows:

w1 =([01]Tw,]T([ws]L{[[va]Tve]T[vav7 va] DIF [vs]R[[[v4] T v6)
x T[vav7v4]D]B|D

In the above example, ‘v4772, means that the three objects are
placed aligning with the X axis.

The essential of our shape grammar is spacial description logic
and obviously the participators cannot enumerate all the possible
combinations in practice. So we use some L-system based grammar
rules to generate the sequences of combination, and those recur-
sive L-system based grammar rules consist of the FOL based
semantic knowledge library U.

An example of U 2is presented as follows:

U = {L1(Vwindow—wail ** Vwindow—watl| V1),
Lo (Vwindow-wait ** Vwindow-wai| V4| V7),
L3 (Wroor 12 01| 02),
L4 ( Uhouse ** Uhouse | yroof | Vwindow—wall ‘ Uy | Vwindow—wall ‘ Vs ) )

-}

Here Vwindow-walls Uhouses Uroof aT€ t€Mporary components in logic,?
after recursive generating, they will generate a final sequence, which
is all constituted by the terminal components vy, ..., vg of wy in
Fig. 5.

2 In this sample, we omit the spacial control terms.
3 Vwindow-walls Vhouser Uroof are corresponding to v, 711, v40 of programmers’ rules in
Fig. 5.
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Fig. 2. The boundary box and coordinate of a spacial object in onto-draw modeling, and it also shows the six spacial control terms in our shape grammar.

The rules include two kinds of terms: the nonterminal compo-
nent (or term) and the terminal component; The nonterminal com-
ponents could be replaced by the components on the right side of
its rule. For example, in r(vo :: vo|v4), the components vg is the
nonterminal component and could be replaced by its right side
(7/9‘ 7/4).

The aforementioned recursive rules are subjectively obtained
from examples by domain experts; As those rules will generate
infinite combinations with random recursing, the knowledge
structures cannot guarantee that their recursive results will all lead
to the desired combination sequences (or the correct scenes with
proper spacial relationship). So in our approach we hybridize both
the FOL based rule system and the DL semantic technique, we iter-
ate FOL rules to generate possible combination sequences and use
DL semantic descriptions to verify those sequences to obtain the
desired scenes automatically. Every participator could present
his/her viewpoint on the correct combinations and characteristics
of their targets with DL based semantic knowledge structure indi-
vidually, e.g. the roof should be under the wall, the wall should be
of white color etc., and then our onto-draw system will auto-
implement those semantic descriptions in the generated
sequences.

2.3. Inconsistency in collaborative designing with multiple
participators

To construct a virtual Jing-Hang Grand Canal that is close to
what it was, we need to combine the domain knowledge from ex-
perts in different domains. These experts have different domain
knowledge for different fields of the Canal and they are collaborat-
ing for a common goal of realistically constructing the virtual Jing-
Hang Grand Canal. We have experts from five different fields in-
volved in the ontology and onto-draw design process. They define
ontologies about the Canal from their own professional viewpoints.
Then our onto-draw system unifies their knowledge together to
generate the final drawing. The roles of the five domains are pre-
sented as follows:

e Architects for ancient China architecture present all the reason-
able construction and combination knowledge for various
houses, towers, bridges,and docks in different cities close to
the Grand Canal.

e Historians define ontologies for all the elements with specific
historical background, for example, realistic scenes of carrying
cargoes into boats in docks in the Qing dynasty. The historical
elements include culture, commerce, history stories and daily
life of the ancient age.

e Rendering artists design drawing styles and drawing details for

the basic elements of the virtual canal including the rendering
of viewpoints of the scene and the painting styles, e.g, the tradi-
tional Chinese paint style shown in Fig. 8 (a) and (b) or the nor-
mal 3D rending style in Fig. 8(c)-(f).

e Programmers/ontology experts present the ontologies for trans-
ferring the canal based domain knowledge into the semantic
descriptions, linking corresponding mapping relationships
among different domains. They implement the onto-draw
engine, which can parse all the concept domains and produce
instances of the virtual Jing-Hang Grand Canal. The ontology
of programmer uses the FOL based grammar presented in the
above section to generate the basic geometrical scenes
automatically.

o User Interface (UI) designers: The virtual canal is part of the Chi-
nese digital heritage project, and it will be deployed in the Jing-
Hang Grand Canal museum and be exhibited to visitors. So we
need Ul designers to present the ontologies for visitors to virtu-
ally explore the Jing-Hang Grand Canal. As the constructed
scenes are semantic, every components may have an annotation
list. A complex scene will attache with huge number of annota-
tions, it is not proper and possible to display all those semantic
annotations to final users. So we need the Ul designers to decide
which components’ annotations should be displayed to the final
users. Moreover, the original annotations that auto-generated
from other domain experts’ ontologies may be fragmentary,
which means they mainly focus on the annotations of basic
components. Sometimes, we may need to annotate a special
scene or combination which is not covered by other domain
experts’ ontology or specified by the users, then the UI design-
ers can specify in which condition the objects may link with a
specific annotation.

Inconsistent knowledge among different participators is one of
most popular problems in collaborative designing. In our case,
most of the conflicts occur between programmers and other do-
main experts. The first typical conflict is combination inconsistency.
As programmers focus on designing the FOL based production rules
to generate the scenes, the recursive generation via those rules
sometimes will produce indeterminable combinations which will
conflict with descriptions presented by architects, e.g. if we pro-
duce the instances only with programmers’ r2(29 :: v9|v4|v7) in
Fig. 5, and may generate a sequence: v4v7v4v7 which means the
combination of “shop-wall,column,shop-wall,column”, however
this may conflict with the architect’s knowledge that the column
(¢7) should not lie on the borderline of the shop-wall-columns
combinations. So the right combinations need to include another
programmers’ rule, r1(29 :: v9|v4), to obtain the sequences, such
as v4v714v7. . .v4.
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Another conflict is attribute inconsistency. The general working
process of programmers is to construct the scenes randomly guid-
ing with those production rules. During the processing, the attri-
butes of each component is either random setting or null, e.g.
programmers may not be concerned about the material of the roof
in ancient Chinese architectures, and then the attribute of material
for roofs in their generating results may be set as null. To generate
varied unrepeatable scenes, the color of the components may be
selected randomly from a valid range, so the conflict may occur
once the stochastic decision is inconsistency with the descriptions
of other domain experts. We call this inconsistency condition as
attribute conflict.

3. Related work: from basic draw to onto-draw

The basic way of drawing should be the manual drawing with
the modeling software such as the Sketchup, AutoCAD. Designers
can draw what they think exactly via this method, however, the
designing process is tedious, non-collaboratively and the results
of drawing strongly depend on the knowledge and ability of
designers.

Physical model based techniques have been developed to draw
scenes controlled by mathematical models, e.g. the physical model
of snow falling (Fearing, 2000). In these methods, users can draw
scenes by simply choosing several model parameters then the sys-
tem automatically generates constructed drawings. The drawback
of these methods is that drawing results of scenes that can be gen-
erated by physical models are quite limited, and some scenes are
very hard or impossible to be built using physical models.

Drawing 3D models from the data collected by capture devices,
such as images (Jiang, Tan, & Cheong, 2009; Quan et al., 2006),
videos (Pollefeys et al., 2004), cloud points (Addison & Gaiani,
2000; Nan, Sharf, Zhang, Cohen-Or, & Chen, 2010), or combinations
of those above data (Fruh & Zakhor, 2001; Vanegas, Aliaga, Benes, &
Waddell, 2009,) could construct the scenes veritably, it is also a
popular research hotspot. However, those approaches may suffer
with either limitation in small scale scenes or huge expensive
costs, and the most important problem is that they all need to scan
or “see” the real scenes, which may be impossible in our Grand
Canal digital heritage project.

Drawing with the control of nature language (Coyne & Sproat,
2001; Johansson, Berglund, Danielsson, & Nugues, 2005) is another
approach. However, these systems are limited in two aspects: it is
hard to guarantee the coherence of logic in natural languages and
ambiguities inherent in languages make it hard to describe some
target scenes.

Drawing with grammar systems (Aliaga, Rosen, & Bekins, 2007,
Miiller et al., 2006; Whiting, Ochsendorf, & Durand, 2009) could be
viewed as an advanced physical modeling technique, e.g. In Emily
Whiting et al.’s approach (Whiting et al., 2009), it allows users to
draw their houses with the grammar system. This method normally
employs FOL based grammar, for example the L-system or CGA
shape grammar system, to control the drawing process and ran-
domly rewrites the nonterminal terms in rules recursively to gener-
ate a lot of drawing results, then manually chooses the right ones as
the output. However, as mentioned in the above section, these sys-
tems usually cannot provide an intuitive to control the generation
process, and thus the sole FOL based rule systems are not proper
for knowledge representation in collaborative design cases.

To overcome the problems of grammar systems, semantic tech-
niques may be the most possible approaches. There are many
works which try to implement semantic techniques into the digital
heritage applications (Isaac et al., 2009; Ruotsalo, Aroyo, & Schrei-
ber, 2009; Tzouveli, Simou, Stamou, & Kollias, 2009). One of the
most used applications is semantic annotation, which employs
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ontology to ease the extraction of structured knowledge from nat-
ural language description (Tzouveli et al., 2009), or generate anno-
tations for complex multimedia, e.g. M30O (Saathoff & Scherp,
2010), COMM (Bocconi, Nack, & Hardman, 2008)*. Since they con-
ceptualize the described domain and so they can offer the eligible
concept to be selected for semantic annotation. However, those tech-
niques can only add semantic annotations on those existing objects,
they also do not support the spacial logic in geometrical construc-
tion, thus cannot be used to “draw” the scenes. Another related
semantic technique is semantic drawing (Farrimond & Hetherington,
2005; Liu & Xu et al., 2006; Liu, Xu, Zhang, & Pan, 2006; Liu, Xu,
Zhang, & Pan, 2008; Luca, Véron, & Florenzano, 2007), in which all
components in the scene are represented with semantic descriptions
and also can be associated with annotations. Although this method
also employs the FOL based grammar to generate the scenes, it fo-
cuses on easing the designing of FOL based generation rules by wrap-
ping basic geometrical elements, e.g. point, line, box etc. into
semantic components, e.g. window, wall, roof etc. Few emphases
are concerned with detecting and reducing of participators’ conflicts
with semantic methods, which are quite important to construct the
scenes with multiple domain experts collaboratively.

There are multiple domain experts involved, then they may use
different terminologies on the same concept. So the ontology align-
ment (Chen, Tan, & Lambrix, 2006; Isaac et al., 2009; Ponzetto &
Navigli, 2009) should be mentioned here, which may be used to
align the concepts presented by different domain experts. Most
of the current works, e.g. Isaac et al. (2009), do not perform well
in specific digital heritage applications, for they may strive for gen-
erality and need an accurate concept database corresponding to
the target digital heritage. In our case, the concept database for cul-
ture of Grand Canal are almost empty, so we have to adopt another
approach to solve the alignment problem.

As mentioned in the previous section, an ideal drawing system
should be capable of (1) incorporating knowledge from different
domains, (2) providing a platform for the collaboration of different
experts and (3) auto-generating drawings using as little user input
as possible. However, none of existing systems meet all the three
requirements. Furthermore, current semantic techniques cannot
solve these problems in our case directly. To achieve the above
goals, we propose an “onto-draw” framework based on a hybrid
of FOL and DL grammar systems.

4. Onto-draw: definition and approach
4.1. Ontology for drawing models

Traditional understanding of ontology (Gruber, 1993; Guarino,
2004) includes a series of categories, components and relations in-
tended as systematic descriptions covering all instances of a spe-
cific concept.

In this article, ontology in “drawing” is used to reconstruct var-
ious 3D objects in the virtual scene. This means drawing virtual
scenes can be regarded as establishing the ontology from the liter-
ature for each scene and generating its instances. For example,
when constructing a virtual Sui dynasty street near the Grand Ca-
nal, models for bridges, houses and towers in the scene may vary,
but all their styles and shapes should be consistent with the histor-
ical background and regional features.

Formally, the ontology for drawing scenes is a four-tuple (Liu
et al.,, xxxx), C= (D,W,R,V), where D represents the domain of ob-
jects, e.g. the southeast Chinese architecture domain, the north
Chinese tower domain. It also implies a classification of objects
in the virtual scene. V is the related entities set (vocabularies) in

4 http://comm.semanticweb.org/
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Ontology of the street block near the canal
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Fig. 3. The hierarchical ontology in Onto-draw.

an object ontology. It should include all the sub-components of the
represented object domain. W is the domain space and it consists
of all the instances covered by the domain, and involves possible
states of affairs (or worlds) corresponding to mutual relations
among entities. R includes two sets, one contains the intrinsic char-
acteristics of the current ontology concept, and the other contains
construction rules for modeling (or drawing) instances of current
ontology domain. The construction rule set can be viewed as the
relation set established between entities and instances of a specific
domain, e.g. in what kind of combination relation R that the entity
set V can constitute the architectures W of the domain D. In our
onto-draw system, the construction rules of R can be approximated
as the FOL based recursive rules and DL based rules, and R can also
be called domain knowledge.

As complex scenes normally consist of multiple hierarchical
concepts, we construct a hierarchical ontology domain by allowing
the elements in the vocabulary set also to be a concept of an ontol-
ogy domain. This is significantly different from previous work (Liu
et al., 2008). For example, Fig. 3 shows several ontologies in the vir-
tual Grand Canal. The vocabulary set of the street ontology in-
cludes the bridge, house, dock, tower etc. All these concepts are
ontology domains, which are represented using their domain iden-
tifier D, vocabulary set V, instance set W and domain knowledge R.
Then a complex ontology can be synthesized by many simple hier-
archical ontology domain concepts.The ontology here may be re-
ferred to as high-level structured semantic annotations of
concepts involving in the Grand Canal. Each concept is organized
as the unified form of four-tuple, which will enable our system
to exchange and share the knowledge extracted from literature
or subject experiences of domain experts.

4.2. Formal Definition of onto-draw

The hierarchical ontology architecture can simplify the design
of complex ontology. However it may introduce inconsistencies
because ontologies created by different domain experts may have
conflicts. The onto-draw should be able to identify and resolve
these inconsistencies. In this section, we introduce several key
operations in onto-draw and the definition of inconsistency.

4.2.1. Mapping

Inconsistencies among ontologies mostly occur in correspond-
ing domains that describe the same concept. We call the relation-
ship between corresponding concept domains “mapping”. If
ontology C; is in mapping relationship with ontology C,, denoted
as maps(Cy,C3), then

maps(C1,C;) — 3IC(D,W.R,V), v=CiuC,veV

This definition states that if C; and C, are in a mapping relation-
ship with each other, the union concept of C; and C, can be viewed
as a vocabulary element in higher level ontology C. For example, in
Fig. 3, house in the ontology of street and the architecture ontology,
roof in the ontology of house and architecture, gate in the ontology
of the house and architecture are in mapping relationship.

If C; is mapping with C;, w is an instance of ontology
Ci(w € W), then we call instance w semantically related to ontol-
ogy Co.

maps(Cy,C,),w € Wy — w is semantically related to C,

4.2.2. Part-of and consistency

When generating ontology instances, the sub-domains (vocabu-
laries) will firstly generate their own instances and then they are
combined into the instance of parent-domain using the domain
knowledge R. Before detecting inconsistencies between ontologies,
we define the operation of decomposing an instance. This is the
Part-of operation.

Let C(Dy, Wi, Ry, Vi) be a sub-domain of Ontology C(D,W,R,V),
where w e W, C, ¢V, Part — of(w)ck is defined as

Part — of(w)ck ={v1,v2,...,0i}, view,v;e W,
Here Ci is a sub-domain of the C, so the ; should belong to both
the instance w and the C;’s instance set Wy. If Cy is not a sub-domain

of C,
Part — of ()¢, = {UPart — of (W) |G € V,maps(Cj, i)}

Obviously, if C, is a concept that contains C, or cannot find any
sub-domain mapping with G in V, Part — of (W), = ¢.
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Fig. 4. The general approach for Onto-draw.

We introduce the concept of consistent set and conflict set (Chen,
Chen, & Zhang, 2007) to define the onto-draw.

Let w be an instance of C(D,W,R,V), to an ontology
C(D',W',R,V"), the w’s consistent set with respect to C' is defined as

consistent(w) = {B|p € Part — of (W), ¥r € R, B satisfy r}
And the w’s conflict set with respect to C' is defined as
conflict(w) = {B|B € Part — of ()., Ir € R, B unsatisfy r}

psatisfy r means that the component g can fit the domain knowl-
edge r. And there are two unsatisfied conditions in our onto-draw:

o Attribute inconsistency, which means that the attributes gener-
ated in instances are in conflict with the corresponding knowl-
edge rules, e.g., the rule r(z.Attribute; = S) will be conflict with
the instance z.Attribute; = Q.

e Combination inconsistency, which means that the combination
generated in instances are in conflict with the corresponding
knowledge rules, e.g., the combination rule r(P = vy, 5, v3) will
be conflict with the combination in instance P’ = v3,13,1;. And
more examples are given in Section 5.

If conflict(w)~ = ¢, w is consistent with ontology C, otherwise
we call w inconsistent with ontology C'.

4.2.3. Onto-draw

The onto-draw should support multiple hierarchical ontologies
and avoid inconsistencies among them. Our onto-draw is defined
as follows:

C(D,W,R,V) is the ontology of the scene that we need to draw,
Cy, Gy, ..., G, are the context-sensitive domains with C, the

onto-draw is a special generalized function (Liu et al.,, 2008),
denoted G, w=G,(V), p € R, having.

eweW
o Yw(w = G,(V)), w is consistent with ontology Cy, G, ..., G,

The onto-draw is defined as a function of the ontology of
C(D,W,R,V), it can produce instances of the ontology domain C
and prevent any inconsistencies with ontologies C;, G, ..., G,

In our problem, we aim at reconstructing scenes at a specific
historical time instead of a long period. So we need not model
the evolving behavior of ontologies, nor do we need to model
inconsistencies over time (Haase & Stojanovic, 2005).The concept
alignment may be involved in part of the inconsistency problem
in onto-draw, for the onto-draw should detect the inconsistencies
between the concepts aligning on the same essence instead of the
same concepts in names.

4.3. General approach for onto-draw

The onto-draw can be implemented with an onto-draw engine
shown in Fig. 4. The input to the onto-draw engine includes a series
of ontology descriptions: one set contains the FOL based ontologies
(or rules) to construct the instances and the other one contains DL
based ontologies to summarize the target domain.

The onto-draw engine will first employ the FOL based rules
such as the U in Section 2.3 to generate several instances of the tar-
get domain, that means it rewrites those non-terminal terms in
FOL based rules recursively randomly to construct the basic geo-
metrical combinations of desired scenes, which is similar with
those procedural modeling approaches (Liu et al., 2010; Miiller
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., wg are shown in the left-top figure, and wy is the window wall component, v¢ is the

roof component, vy is the house (which is also mapping with the instances w; and w; in the ontology of architect), v;5 is the urban block. The sample ontology of the architect
presents a southeast Chinese ancient architecture domain with only two rules, which indicate two styles of houses shown in the top of this figure. The hierarchical concept
domains should be established by the participators previously. Then our onto-draw engine could proceed by mapping relationships between the instances and ontologies
automatically, detect and reduce the inconsistencies.

et al., 2006). As those production based rules cannot guarantee the
rightness of instances, the onto-draw engine decomposes compo-
nents of these instances via the Part-of operation and find the

mapping relationships with other input ontologies. Then onto-
draw engine will detect inconsistencies among the
semantically related components and ontologies (including all
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the sub-domains). If there are inconsistencies, it will revise parts of
the instance where inconsistencies occur. The onto-draw engine
will iterate the above process until there are not any inconsistencies
in generated instances. Finally, the engine sends generated in-
stances of target domain to the renderer, and outputs the final
virtual scenes. A sample instance generated by the engine is shown
in Fig. 6, which contains the semantic descriptions (characteristics
or features) of components in scenes, basic geometries and combi-
nations of components. Then renderers could design different draw-
ing styles for the instances, e.g., they can design a toolkit to convert
semantic instances to X3D’ formats and draw scenes with X3D ren-
dering engine or other game engines, such as OGRE.® The instances
generated by onto-draw are semantic, because each part of the in-
stances is produced by well semantic-structured ontologies, i.e. the
four-tuple. Then the instances are naturally semantic annotated, it
will be quite easy to carry out further semantic retrieving, searching
with geometry, manipulating via historical or spacial parameters,
aligning with other heritages, even rendering with different styles.

5. Building virtual canal with onto-draw

5.1. Multiple participators in hierarchical Jing-Hang Grand Canal
ontology design

Our onto-draw system can unify knowledge from five domain
experts to generate the consistent final drawing. In the following,
we briefly describe the processing of integrating the knowledge
of five experts by the sample shown in Fig. 5.

e Ontology of Architects. In the example of Fig. 5, we present a
sample ontology Cu(Dg, W, Vg R,) from architect to define the
vernacular house in Southeast China. The example only contains
two instances of the Southeast vernacular houses (w; and ws).”
and two combination rules for the domain.®

Ontology of Historians. In the example, historians present a rule
that the roof body (7,) in southeast Chinese ancient architec-
ture is gray or black in color, based on the history literature.
When designing the ontology for the scene in the North of
China, they may present the rule that the roof is golden or
red in color.

Ontology of Rendering artists. The ontology of rendering
artists normally presents the basic geometry of components
and some complex components such as the roof body, which
may be represented by the point-mesh files, e.g. the ‘roof.obj’
in example.

Ontology of Programmers. The ontology of programmer uses a
FOL based grammar, which could also support the quantitative
control terms (scaling the boundary box) and spacial control
terms (shape grammar in Section 2). In our approach, the
onto-draw engine employs the ontologies of programmers, ran-
domly selects the rules, e.g. the programmers’ rules in Fig. 5,
and recurs those selected rules to generate semantic scene
instances.

Ontology of Ul designers. As the end users may be varied, the Ul
designers will design the annotations with the different
requests of end users, e.g. the scene for historical users may
focus on the annotation of the typical events and backgrounds,

5 http://www.web3d.org/x3d/.
http://www.ogre3d.org/.

In the real case, there may be many more instances in the instance set W or even
innumerate instances.

8 Both two rules in the example describe the combination of houses, in practice
implementation, it may contain the combination for a group of the components in V
or some attribute description for the components similar with the example of
historian’s ontology.

N o
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while the scene for architectural users may focus on the anno-
tations of the layout and combination of each components. As
shown in Fig. 5, rule one of the Ul designer, all the combinations
of (v1,1,) will be linked with the annotations defined in those
rules automatically, when the huge scene is generated. Then
the onto-draw engine will automatically check the scene and
attach these annotations when outputting the final results.

As there are five kinds of participators involved in the ontology
design, we adopt the multi-level projection ontology design meth-
od (Liu et al., 2008) to build hierarchical Grand Canal ontologies in
collaboration.

In onto-draw engine, we also adopt a category tag method to
annotate the characteristics proposed by the domain experts, that
is we add an additional tag for the characteristics in ontologies, e.g.
Fig. 5 in historians’ ontology, rule ‘zg is white’ is tagged with a
regional tag, for g3 may be red in North of China.

The ontologies designed by these experts are specified with four
kinds of tags, which are regional characteristic, historical character-
istic,architectural characteristic and normal characteristic. Regional
tags identify in which regions the attributes of the tags are valid,
historical tags identify the valid period of the corresponding onto-
logical attributes, architectural tags identify the valid styles or
combinations of architecture, and the normal tags emphasizethat
the ontological attributes are always valid.

5.2. Semantic representation for the scene instance

The onto-draw engine will represent the scene with a semantic
description. Fig. 6 presents a sample of the semantic description.
Obviously, the shape grammar which represents the spacial rela-
tionship of components could be easily implemented by the tree-
structural XML description. And it also supplies the attribute tags
which could represent the values defined in the ontology (such
as “the color is gray” etc.).

5.3. Automatical inconsistency detection and reducing

Before designing their ontologies collaboratively, all the domain
experts should discuss together to confirm the hierarchical ontol-
ogy concepts, e.g. the hierarchical component relationship map
in Fig. 3, involving the desired scene. Then they could design their
domain ontology related with these unified hierarchical concepts
individually. Although the aim of this process may be similar to
the ontology alignment (Chen et al.,, 2006; Ponzetto & Navigli,
2009), it is easier that it only limits structural information concepts
(Euzenat & Shvaiko, 2007).

With the hierarchical ontology concepts (it also refers to the D
in our ontology definition), the onto-draw engine can map the con-
cepts described in ontologies and the corresponding component
instances automatically.

The inconsistency detection in our onto-draw is established on
the automatically “semantically related” relationship detection,
the onto-draw engine will find all the “semantically related” rela-
tionships and match them with the knowledge rules of all the
ontology designers.

As to the inconsistency reducing, there are two conflict (un-sat-
isfy) conditions in the consistency checking process. For the attri-
bute inconsistency, the onto-draw will use the attribute given by
the knowledge rules to replace the instances’ that reduce the
inconsistency, e.g., the conjunct wall in Fig. 6 is red in color, and
it conflicts with the ontology defined by a historian (Fig. 5). When
proceeding the inconsistency detection and reducing, onto-draw
engine will replace it with “white” for the color attribute. The
reducing for combination inconsistency is much more difficult,
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< Block>

<hasCombination>

</Component>

</hasCombination>

</Roof_Center>

<hasBoundary>

</hasBoundary>
<hasColor>

</hasColor>

</Conjunct_wall>
</House>
</Block>
</Urban>

<Urban name = "Southeast_Urban_near_Canal">

<hasTopology rdf:resource = "Topology.owl#block_southeast"/>
<hasRoad rdf:resource = "Road.owl#road_in_block_southeast"/>

<House name= "Southeast_House_1023">

<!---To identify the combination more clearer,
<!---we use the symbols in the ontology example, --
<!---thatis "[[vl] TVv2]T([v4]F[v5]R[v4v7v4] B[vV5]L]D " -->

<Component Layout="Top">
<Component Layout="Top">Roof_Center_2131</Component>
<Component >Roof_body_3207</Component>

<Component Layout="Left"> Conjunct_wall_1124</Component >
<Component Layout="Right"> Conjunct_wall_1124</Component >

<Roof_Center name="Roof_Center_2131">

<Conjunct_wall name="Conjunct_wall_1124">
<hasRender rdf:resource="Render.owl#cw_southeast"/>

<BoundaryType>Box</BoundaryType>
<BoundaryWidth>3.2</Boundary Width>
<BoundaryHeight>7.5</BoundaryHeight>
<BoundaryThickness>0.3<BoundaryThickness>

<BodyColor>Red</BodyColor>

Fig. 6. A sample semantic description of the scene for instance, here the limited page, we omit the complex control tags for those components.

once the combination inconsistency is detected, e.g. the combina-
tion of component ‘Southeast_House_1023’ is

[[7/1 ]TT/z]THVdF[T/s]R[TA; V7 U4}B[V5]L]D

it is conflict with the r, in architects’ ontology. Our onto-draw will
mark the component with inconsistency in the scene semantic
description, backdate the generation rules (normally defined by
the programmers) for the conflict components, and then choose
other rules or change the random parameters to regenerate the
component. Here for the inconsistency between ‘South-
east_House_1023’ and ry, the onto-draw will backdate the instances
generated by the architects’ rule ry(zy :: v9|24) and then use another
rule ro(vo 1 vo|v4|1y) to re-generate the instances.

5.4. Onto-draw approach in constructing virtual canal without
inconsistency

After collecting ontologies from different experts, we build an
onto-draw system, which is based on the core onto-draw algo-
rithm (see Algorithm 1, onto-draw generation algorithm for Jing-
Hang Grand Canal) to produce instances of the canal. Before exe-
cuting the algorithm, mapping relationships among all the concept
domains are first identified.

In our algorithm, the input ontology C is a canal ontology with
high level semantics, and Cy, G, ..., C, are detailed characteristics
of Jing-Hang Grand Canal. We also use a threshold 0 to control the
number of inconsistencies of the instance our onto-draw system
can tolerate. F,(V) is a function (Liu et al., 2008) to produce an

instance of the ontology C(D,W,R,V) with the vocabulary set V
and knowledge subset p, p C R.

Here we use two counts to record the number of inconsistencies
in generated instances. One is incons_norm, which is the number of
inconsistent attributes whose properties are marked with “nor-
mal”; the other is incons, which is the number of inconsistent attri-
butes with other tags, e.g. “regional characteristic” or “historical
characteristic”. As the normal tags are obligatory in validation, our
algorithm requires incons_norm = 0 as one of the terminating con-
ditions. For simplicity and efficiency concerns,® we slack the con-
straint for other inconsistency (e.g. historical and reginal factors),
so we add a control threshold 0 as the terminating condition (incon-
s < 0). We also add the control parameters max_try to ensure the
algorithm will be terminated after large iterations.

One more thing to clarify is that in step 4, the algorithm does
not always generate a new instance from the ontology C, it may
only regenerate the inconsistent parts to increase the efficiency
of the onto-draw system. When the inconsistency appears, we
adopt a more efficient approach to regenerate only the inconsis-
tent components by function w = adjustment(w,incons, incon-
s_norm). In this function, if incons=0 and incons_norm=0, it
will not make any changes in the input w, otherwise it will iterate
the conflicts in input w, try to regenerate each of the inconsistent
components, then be re-validated, and details are given in

9 If it is enforced that there are not any conflicts in the result instance, the onto-
draw processing may need a huge generation and searching space due to the design of
ontologies.
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Table 1
Score criteria in user study.

Max Criteria Detailed description

score

3 Overall rating (1) Looks like the ancient Chinese scene in Sui Dynasty (0-0.3: completely not; 0.3-0.6: median; 0.6-1:totally yes)
(II) Contains enough details of the ancient Canal scene (0-0.3: few; 0.3-0.6: median; 0.6-1: many).
(IIT) Are there some obvious mistakes breaking the common sense in practice (0-0.3: many; 0.3-06: median; 0.6-1: few)

2 Historical (IV) Contains historical conflicts (0-0.3: many; 0.3-06: median; 0.6-1: few)
(V) Are there abnormal things exceeding the historical backgrounds, e.g new boats could not occur in that age (0-0.3: many; 0.3-
06: median; 0.6-1: few).

2 Architectural (VI) Contains architectural combination errors (0-0.3: many; 0.3-06: median; 0.6-1: few)
(VII) Do the characteristics of architecture belong to the ancient Chinese near the Canal (0-0.3: completely not; 0.3-06: median;
0.6-1: totally yes);

2 Spacial-temporal (VIII) Are there spacial-temporal conflicts, e.g. the wrong combination style or vegetation in current location (0-0.3: many; 0.3-

Consistency 06: median; 0.6-1: few)

(IX) Are the styles of architectures and entities in the scene coherent (0-0.3: not; 0.3-06: median; 0.6-1: yes)

1 Other

(X) Is the same combination or component annotated consistently (0-0.3: completely not; 0.3-06: median; 0.6-1: totally yes)

Algorithm 2. The G, in Algorithm 2 is the ontology of conflict sub-
component wy.

Algorithm 1: Onto-draw Generation Algorithm for Jing-Hang Grand Canal.

Data: Jing-Hang Grand Canal Ontology concept domain C,
related ontology domains C;,Gy, . .. Cy, threshold 0, max_try.

Result: a suitable virtual Jing-Hang Grand Canal scene w with
respect to concept domain C and consistent with Cy, G, ...
C

e
begin

1. incons «+ 0,incons_norm « 0, exe_count « 0

2. w=Fy(V), p C Rin ((D,W,R,V)

3. do

4. w = adjustment(w,incons,incons_norm)

5. exe_count++

6. for each ontology C;in Cy, Gy, ..., Cy

7. Yv=Part - of (W),

8. if v is inconsistent with C;

9. if inconsistency occur in normal tags

10. incons_norm + +

11. else incons + +

12. end if

13. end if

14. end for

15. if maxe_try < exe_count

16. break

17. end if

18. while incons < 0 & & incons_norm =0
19. return w
end

Algorithm 2: adjustment(w,incons,incons_norm)

Data: Scene instance w, count incons and incons_norm.
Result: New scene w after regenerating the inconsistent sub-

components.
begin
1. if incons = 0&&incons_norm =0
2. return w
3. else
4, for each conflict sub-components wy in w
5. Wi =Fp(Vi), p C Ry in G(Dy, Wy, Ri, Vi)
6. end for
7. end if
8. return w
end

Table 2
Results of user study 1.

Input set Average score Standard deviation
IL1=HURUAUN 8.95 1.15
L=HUAUN 5.56 2.38
Ih=HURUN 2.31 1.43
I4=AURUN 4.23 1.77
Table 3

Results of user study 2.

Draw set Average score Standard deviation
0 6.88 1.57
M 5.61 2.11

6. Evaluation
6.1. User study to evaluate the draws

To further evaluate the effectiveness of our approach, we in-
vited 40 Chinese native graduate students from different back-
grounds to evaluate the results generated by our onto-draw
engine with different ontology input. All of whom have visited
the Jing-Hang Grand Canal in Hangzhou, but none of whom had
previous experience doing 3D modeling of ancient Jing-Hang
Grand Canal. Each participator spent twenty minutes following a
tutorial of the historical and architectural backgrounds of the Canal
in the Sui Dynasty, ten minutes for reading some literature about
the scenes in that age, and seeing some illustrations'® about the
architectures and scenes; and another ten minutes for training by
the historians and architects in our team, who try to teach them
some basic professional knowledge about scenes of the Canal.

In our Grand Canal project, we totally used 513 characteristics
in all the ontologies, among them, there are 133 items which are
tagged with historical characteristics, noted as H; 44 items are
tagged with regional characteristics, noted as R; 117 items are
tagged with architectural characteristics, noted as A; 219 items
are tagged with normal characteristics, noted as N;

Then we use four input sets, which is [=HURUAUN,
IL=HUAUN,z=HURUN, I;=AURU N, to generate four catego-
ries of draws via Algorithm 1, and each category generates five
draws.

10 They include draws from ancient literatures and some famous paintings in that
age.
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Fig. 7. A sample temporal comparison between our onto-draw and manual approach to model five sub scenes.

In our user study, the 20 draws are randomly presented to the
testers and the participators grade the quality of the draws using
the following scores: O for totally wrong, 5 for moderate between
wrong and right, 10 for perfect, the value between 0 and 5 for less
correct and the value between 5 and 10 for more correct. And the
detailed score criteria are given in Table 1.

We record the scores of each draw by categories and then
calculate the average scores for each category, the results are
shown in Table 2. The average score for I; is 8.95, which suggests
the onto-draw engine with all the descriptions could generate
the Jing-Hang Grand Canal draws with high satisfaction. While
the other three sets obtain obviously low scores, this suggests that
the regional characteristics, architectural characteristics and his-
torical characteristics are quite necessary in the onto-draw pro-
cessing for Jing-Hang Grand Canal. Considering the scores of I,
I, and I, the score of I3 is much lower than the other two, which
suggests the architectural characteristics may be the most crucial
among Iy, I, I, corresponding with the validness of canal draws,!!
and the score of I; is almost over the medium degree, which suggests
the regional characteristics may not be so noticeable as the regional
diversity is easy to be ignored by the participators.

To evaluate whether the small sample size in our user study will
introduce bias, we also calculate the standard deviation of the
score for each category using the following formula:

where x is the average score of category k, x;; is the score assigned
by participator i for the jth draw in category k, n is the number of
participators and m is the number of draws in category k.

The standard deviation for each category is shown in Table 2.
We also replace the scores with random values from the same dis-
tribution that resulted in a standard deviation of 3.281 on average,
which is much larger than our results in four categories and proves
that the sample for the user study is valid.

We also carried out another user study, which was tested by ex-
perts on the ancient Jing-Hang Grand Canal. In this test, we invited
16 experts, all of whom were familiar with the ancient Jing-Hang
Grand Canal, either the historical backgrounds or the architecture
styles, but none of whom had previously taken part in our onto-
draw project. The second test employed two sets of scenes, O

™ Here we do not include the items tagged with normal characteristics.

and M, O includes five draws generated by our onto-draw system,
and M includes another five draws modeling manually by consult-
ing with the same experts who designed the onto-draw. The pro-
cess of the test is similar to the first user study, and using the
same criteria (Table 1), the results are given in Table 3. The results
show that the draws generated by onto-draw can achieve better
average scores than the manual ones, which indicates that our
onto-draw approach may be superior to the manual approach.
Comparing the average scores of Tables 2 and 3, it also implicates
indirectly that the experts may be more rigorous when comment-
ing on the scenes.

6.2. Cost comparison between onto-draw and manual approach

As those complex models in the scenes are normally con-
structed manually, we carry out an experiment to compare the
workload between the onto-draw approach and the manual mod-
eling approach. Both approaches in the experiment try to generate
five scenes of the urban near the Grand Canal, and we record the
temporal cost of each approach, the results are shown in Fig. 7.
In the manual approach, the scenes are generated one by one, each
scene is first modeled by the experts of 3D model designers, then
the historians and architects will evaluate the models and return
to the designers for revising.

Although the workload of manual hierarchical ontology archi-
tecture design and collaborative ontology design in onto-draw ap-
proach is more than the manual modeling and experts’ evaluation
in the manual approach, the total workload of onto-draw is signif-
icantly less than the manual approach,!? and there are more auto-
matical processes in our onto-draw approach, which may be more
suitable for the modeling of large scale scenes.

7. Results and analysis

Given limited space, we only show a small set of results here.!?
Fig. 8 shows six scenes of the virtual Jing-Hang Grand Canal with two
typical styles: traditional Chinese painting style, Fig. 8(a), (b) and 3D
rending style, Fig. 8(c)-(f). This figure shows highly detailed and

12 The workload of manual approach may be varied based on the skill of designers
and domain experts.

13 More results and demos please refer to http://www.nlict.zju.edu.cn/presentation/
index.htm, http://www.nlict.zju.edu.cn/presentation/display.wmv, http://
www.nlict.zju.edu.cn/presentation/out_gai_02-2.wmuv.
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Fig. 8. Experimental results generated by the Onto-draw engine. (a), (b) are two scenes rendered with traditional Chinese painting style, (c), (d), (e), (f) are four scenes

constructed by the Onto-draw rended with 3D style.

realistic scenes along the Jing-Hang Grand Canal. For example many
porters carry goods into the boats by the riverside, and then boat-
men ferry the goods along the river. There are also some other loco-
motive objects in the river or by the riverside, such as carriages, mill
wheels, pedestrians and other workers as shown in Fig. 8(b) and (f).
Fig. 8(a) also shows daily life scenes of the town near the Jing-Hang
Grand Canal, ancient residents walking through the stone arch
bridge and small boats navigating under the bridge. Fig. 8(c)-(f) ex-
hibit the most important task of the Jing-Hang Grand Canal, official
cargoes transferring from Hangzhou to Beijing, passing through half
of China.

The advantages of using onto-draw to build the complex scenes
such as Jing-Hang Grand Canal are summarized as follows.

o The onto-draw is a novel approach for solving the ontology con-
cerning with spacial topology, which is different from those
multimedia (most video) semantic annotation applications,
e.g. M30 (Saathoff & Scherp, 2010), video (Bocconi et al.,
2008). Instead of generating annotations for existing multime-
dia, onto-draw employs the structured knowledge from differ-
ent domain experts, generates reasonable digital heritages
with annotations automatically. To our knowledge, the onto-
draw approach is the first solution for semantic digital heritages
with spacial combination and topology based ontology.

o The design of ontologies in onto-draw is implemented based on
the modular strategy, starting from small ontologies to combine
them into a bigger one (bottom-up approach). Then compli-
cated hard problems can be solved by solving some simple
sub-problems. In practice, complex ontologies which contain
multiple hierarchical elements are difficult to build. The onto-
draw approach supports decomposing a complex ontology into
several simple hierarchical ontologies and then removing their
inconsistencies to synthesize the target complex ontology.
Designing several simple ontologies is much easier than design-
ing the complete and complex ontology.

e In our framework, the complex ontology is decomposed into
many simple easy sub-domains, this makes it more scalable
and easy to apply to solve other similar complex problems. As
the onto-draw engine reduces the inconsistencies by processing

the sub-ontologies incrementally, it can be easily applied in
other similar concept domains by reusing the knowledge (Liu
et al.,, 2008) and combining different sub-domains.

e With the onto-draw generation algorithm (Algorithm 1), the
onto-draw engine can combine different ontology domains effi-
ciently via the inconsistency detection. And it also provides a
flexible method in processing the combination of ontologies.

o The onto-draw approach is especially suitable for designing com-
plex concept domains in collaboration. The collaboration in onto-
draw can optimize the design resources and minimize the labor
cost in ontology design and integration. In practice, experts in dif-
ferent fields can independently input their own professional
knowledge and concepts as ontologies without the need to con-
sider knowledge from other experts. The onto-draw engine can
automatically remove inconsistencies of different domains from
different experts, finally, obtaining the desired solutions.

8. Conclusion

This paper proposes an onto-draw framework to design ontol-
ogy for complex virtual scene modeling problem. The onto-draw
approach, which has been implemented and successfully applied
to the virtual Jing-Hang Grand Canal construction problem, can
also detect and reduce the inconsistency between the modeling
results and different ontology concept domains for other tasks.

There are a number of future directions for this work that will
allow the system to be applied more broadly. They include: (1)
developing automatic ontology concept matching method for
the potential mapping relationship, (2) studying the condition
of ontology evolvement in inconsistency detection, (3) optimizing
the ontology design via machine learning techniques.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.eswa.2012.04.026.
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