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Abstract—Place classification is a fundamental ability that
a robot should possess to carry out effective human-robot
interactions. In recent years, there is a high exploitation of arti-
ficial intelligence algorithms in robotics applications. Inspired
by the recent successes of deep learning methods, we propose
an end-to-end learning approach for the place classification
problem. With deep architectures, this methodology automat-
ically discovers features and contributes in general to higher
classification accuracies. The pipeline of our approach is com-
posed of three parts. First, we construct multiple layers of laser
range data to represent the environment information in differ-
ent levels of granularity. Second, each layer of data are fed
into a deep neural network for classification, where a graph
regularization is imposed to the deep architecture for keep-
ing local consistency between adjacent samples. Finally, the
predicted labels obtained from all layers are fused based on con-
fidence trees to maximize the overall confidence. Experimental
results validate the effectiveness of our end-to-end place classi-
fication framework in which both the multilayer structure and
the graph regularization promote the classification performance.
Furthermore, results show that the features automatically learned
from the raw input range data can achieve competitive results
to the features constructed based on statistical and geometrical
information.

Index Terms—Deep learning, graph regularization, place
classification.

I. INTRODUCTION

LACE classification is an important problem in human-
Probot interactions and mobile robotics, which aims to
distinguish differences of environmental locations and assign
a label (corridor, office, kitchen, etc.) to each location [1], [2].
It allows robots to achieve spatial awareness through semantic
understanding rather than having to rely on precise coordinates
in communicating with humans. Furthermore, the semantic
labels has the potential to efficiently facilitate other robotic
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functions such as mapping [3], behavior-based navigation [4],
task planning [5], [6], and active object search and rescue [7].
Therefore, the task of place classification has been intensively
explored in the robotics community [8]-[10].

In general, place classification is carried out through envi-
ronment sensing. Laser range finders, cameras and RGB-D
sensors are the mostly used sensing modalities. Location and
topological information can also be informative in place clas-
sification. In this paper, we attempt to exploit both the sensory
data and location information. We assume all the maps in this
paper contain these two parts of information and some of the
maps are labeled with human knowledge. Then the place clas-
sification problem can be stated as predicting the labels of new
environments given the labeled maps.

By analyzing those two forms of data, sensory data and
location information, we can gain insights into the char-
acteristics of the place classification problem. Raw sensory
data encode the environment information at different loca-
tions which can provide discriminative information between
different classes. However, this requires an effective feature
extraction method and most of the previous works tend to
extract hand-engineered features from the raw data [11], [12].
Our opinion is that the handcrafted features may not fully
exploit the potential to achieve higher generalization ability.
On the other hand, locations encode spatial information of
the environment and indicate local consistency of the labels,
which means the positions at spatial proximity have higher
probability of having the same class labels.

It is to be noted that another difficulty in place classifica-
tion is the influence of different field of views (FOVs) of the
sensors used. For example, the data collected by a 180° FOV
laser range finder facing approximately a corner of a corridor
may not contain sufficient information for classification. If the
laser range finder collects 360° FOV data at a door of an office
room, the robot might be confused by mixed information from
two classes.

In order to address these problems, in this paper, we propose
a graph regularized deep learning approach with classification
on multilayer inputs. The pipeline of our system is illustrated
in Fig. 1, which can be split into three parts.

1) Construction of Multilayer Inputs: The environmen-
tal information is represented through the generalized
Voronoi graph (GVG) [13], a topological graph in
which the nodes correspond to the sensory data and
the edges denote the relationships in this paper. By fus-
ing the information and eliminating the end-nodes, we
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Fig. 1.

Pipeline of the semisupervised learning system. Given a training map and a testing map, multilayer inputs are first constructed for both maps to

represent the environmental information with different FOVs. At each layer, end-nodes (denoted as red) in the lower layer are eliminated and the information
carried by them are fused to their parent node (denoted as black). Then, the raw information carried by each node is represented as a feature vector
using the deep architecture, and end-to-end predicted labels are obtained. Finally, a confidence tree is constructed to fuse the predicted labels of different

layers.

implement a recursive algorithm to construct multilayer
inputs with hierarchical GVGs. The inputs of higher lay-
ers contain information of larger FOV, represented by
increasingly succinct GVG. The features are extracted
from each layer of input and classified independently.

2) Graph Regularized Deep Architecture for Feature
Learning and Classification: We adopt the deep architec-
ture that learns features from the raw data automatically.
A graph regularizer is imposed to the deep architecture
to keep the local consistency, where an adjacency graph
is constructed to depict the adjacency and similarity
between the samples. Our training map and testing maps
are fed into the deep architecture for feature learning at
the same time, which forms a semisupervised learning
framework. The output of this step is the predicted labels
of different layers.

3) Confidence Tree for Decision Making: After receiving
the classification results of multilayer inputs, confidence
trees are constructed according to the topological graph,
and a decision making process is carried out to maximize
the overall confidence.

The remainder of this paper is organized as follows.
Section II reviews the related literature. In Section III, we
introduce the construction of our multilayer inputs and the
confidence tree for decision making. The semisupervised clas-
sification with graph regularization is given in Section IV.
Experimental results are presented in Section V to validate
the effectiveness of our end-to-end classification framework.
Then this paper is concluded in Section VI.

II. RELATED WORK

There are various sensors that help robots to perceive the
environment, such as cameras and laser range finders. Previous
works have demonstrated the effectiveness of both camera data
and laser range finder data for classifying places. For exam-
ple, Shi and Samarabandu [14] and Liao et al. [10] extracted

features from the vision data, while Mozos et al. [11] and
Sousa et al. [12] classified the places based on laser range data.
In this paper, we focus on the place classification based on
laser range data, however, our approach can be easily extended
to other modality of sensors such as vision data.

Laser range finders provide nonnegative beam sequences
describing range and bearing to existing obstacles within a
specific range. Mozos et al. [11] extracted features from the
360° laser range data and those features were fed into an
Adaboost classifier to label the environment. Sousa et al. [12]
reported superior results on a binary classification task using
a subset of above mentioned features, and the support vector
machine (SVM) as the classifier. In our past work, we imple-
mented a logistic regression-based classifier, as a binary and
multiclass problem contributing to higher accuracies [15], [16].
The work was further extended to address the generalizability
of the solution through a semisupervised place classification
over a generalized Voronoi graph (SPCoGVG) [8]. Recently,
Premebida et al. [17] proposed to combine multiple classi-
fiers using a mixture of probabilistic models, on which a
dynamic Bayesian network was constructed to incorporate the
past inferences. In all of these methods, the features were
extracted from the laser range data based on statistical and geo-
metrical information, or so-called hand-engineered features.
For instance, the average and the standard deviation of the
beam length, the area and perimeter of the polygon specified
by the observed range data and bearing were included in the
feature set.

In the past decade, the unsupervised feature learning has
drawn much attention as the developing of deep learn-
ing methods [18]-[20]. The deep learning methods achieved
remarkable results in many areas, including object recogni-
tion [21], [22], natural language processing [23], [24], speech
recognition [25], and even emotion recognition [26], which
demonstrated that discovering and extracting features auto-
matically can usually achieve better results on representation
learning [27]-[29]. In the robotics community, deep learning
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methods also shown their outstanding performances in a
range of applications [30]-[32]. Inspired by the success of
unsupervised feature learning, in this article we present an end-
to-end framework to solve the place classification task, where
the deep learning method is employed to learn features auto-
matically from the laser range data. A recent approach based
on raw laser range data is proposed by Kaleci ef al. [33], where
the laser range data are normalized and classified based on
clustering method, which can be regarded as learning features
with a shallow neural network.

We also exploit the local consistency of classes with the
assumption that samples located in the same small region are
more likely to have the same labels. Previous research has
included this particular characteristic for performance promo-
tion and many studies were carried out with consideration of
the local consistency [3], [11], [34]-[36].

In this paper, we consider the local consistency during the
feature learning process, where, the features learn to keep the
local invariance with a graph regularization. There is similar
work on implementing the graph regularized deep learning
models [37], [38]. Both [37] and [38] utilized a margin-based
loss function proposed by Hadsell et al. [37]. These works
have demonstrated the effectiveness of the graph embedding
in dimensionality reduction and image classification.

III. MULTILAYER CONSTRUCTION
AND DECISION MAKING

In this paper, we assume a laser range finder with a typi-
cal FOV of 180°. This is a limited FOV which can give rise
to many classification inaccuracies due to the lack of crucial
information. However, the full FOV may also lead to mis-
classifications at the boundaries of the two different classes
of places. Therefore, considering these problems, we propose
to construct multilayer inputs for classification followed by
fusion of the results.

A. Construction of Multilayer Inputs

1) Data Representation on GVG: In this paper, our mul-
tilayer inputs is represented by the hierarchical GVG [13], a
topological graph which has been successfully applied to nav-
igation, localization and mapping. The general representation
of GVG is composed of meet-points (locations of three-way
or more equidistance to obstacles) and edges (feasible paths
between meet-points which are two-way equidistance to obsta-
cles) [39]. GVG can be constructed with different solutions
with respect to the minimum distance between obstacles.
We adopt the finest available resolution (the same as in our
previous work [8]) to construct the first layer GVG, where
the minimum distance between obstacles is 0.075 m. Then
the higher layers of GVGs are constructed to describe the
environment at different levels of granularity.

Let us denote hierarchical GVGs as (G(l), GP, ..., G(L))
with GO = { V(l), E(l)}, where L denotes the number of layer,
V" denotes nodes in layer / and E?) denotes edges in layer L.
For each layer, the independent sensing information is carried
by the nodes in V), and the local connectivity is represented
by the edges in V). More specifically, each node vfl) e vd
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Algorithm 1: Generate Higher Layer of Input From the
Previous Layer

Input: GO = {V(l), E(l)}, the range data rl-(l) on each

node vl(l)

Output: GV = (VD EHD) the range data r{ ™"
(+1)

i

on each node v

1 for vl@ e v do

2 if numel(N(v?l))) > 1 then
U} (+1) 0}

3 Preserve v;”, i.e. v, =’

4 Construct rl.(lH) and ?fl.(lH) from rfl) and all of the
r;l) carried by v;l) eEN (vlgl));

5 end

¢ for v\ e N(v) do

7 if v € M(\") then

8 Eliminate eE/Z) and vj(.l);

9 else

10 Preserve eg), ie. egH) = eg);

11 end

12 end

13 end

(U]

corresponds to a sequence of range data r;”, assigned the

label yl(l) for the training maps, while eg) € EY reveals the

connection between two neighboring nodes vgl) and v;l).

The first layer GV = {V(D | E(D} describes the environment
in most detailed level of granularity with the originally adopted
laser range data. As the laser range finder is of 180° FOV with
1° angular resolution, ea%l; node vlfl) e v corresponds to a

sequence of range data r;”’ with 180 dimension.

2) Recursive Higher Layer Construction Algorithm: The
construction of a higher layer GVG is implemented by fusing
the information carried by connected nodes and then elimi-
nating those marginal nodes. Algorithm 1 demonstrates the
process of building higher layer GVG from a given lower layer.
We make some definitions here for better explanation of the
algorithm. N(v;) is defined as the directly connected neigh-
bor set of v;, then v; € N(v;) means there is an edge e;; € E
between v; and v;. In addition, numel(N) is defined as the
number of elements contained in N. Then numel(N(v;)) = 1
means v; is an “end-node,” i.e., the node without children.
Further define M(v;) as the set of end-nodes connected to v;,
which is obviously M(v;) € N(v;). As seen from Algorithm 1,
the construction process fuses the information carried by v;’s
neighbors if v; is not an end-node (detailed fusion process is
given in Section III-A3), otherwise v; is eliminated from the
higher layer.

The L layer of data can be generated by recursively apply-
ing Algorithm 1 for L — 1 times, which means by taking
the output of the /th layer as the input of the (I + 1)th
layer. This process can be illustrated in Fig. 2 with L = 3.
In this example, the end-nodes are denoted as red. It
is to be noted that when moving to higher layers, the
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layer 3

Fig. 2. Example of multilayer GVG. The end-nodes are denoted as red.
M (1), and vél) in layer 1 are fused with their neighbors,

The red nodes Vi v%
) is composed of (vil), v(]),v(l)), w2

layer 1

layer 2

respectively, where, v

of (v%l), vgl), vgl), vf‘l)) and vg) is composed of (vgl), vél), vgl), vél)). Then

all the red nodes are eliminated from layer 1. This process will be performed
recursively on layer 2 to generate layer 3.

is composed

number of nodes in each layer decreases with the elimina-
tion of the end-nodes. More details are given in the caption
of Fig. 2.

An illustration of the different G® = (VD EDY} 1=1,2,3
layers constructed from a specific map is given in Fig. 3. In the
first layer, the nodes are distributed more densely in the map.
When approaching higher layers, the tree structure represents
more and more abstract information. It is to be noted that the
number of the end-nodes (denoted as red asterisks) decreases
as the progression of the layers which is a consideration for
choosing the L = 3 in our experiments.

3) Data Generation: This section describes the details
about the construction of the higher-layer range data rlQH)
and ?;Hl), where the latter is generated from the former with
fixed length. As stated in Algorithm 1, given vl@ satisfying
numel(N(vl(l))) > 1 (ie., vl(l) is not end-node), range data
received at the respective nodes are integrated to achieve a
better perception.

Given each vl(l) with numel(N (vl@)) > 1, first a local map
is generated using occupancy grid mapping [40] based on the
respective range data in /th layer, including r;l) carried by

) ) o o . .
v;© € N(v;") and r;”. This is achieved by transforming all

r;l) to rl(l)’s coordinate frame, which assumes the knowledge

of the global robot poses at all times. In this local map, a

virtual scan r§l+1) is then generated by applying ray casting

at position vl(.l) with 1° angular resolution, which is the same
as the setting of the real laser range finder.

As the dimensions of the fused range data r}lH) could be
different in various nodes, linear interpolation on the data is
then performed to keep same dimension of data throughout the
process. This leads to an sequence ?EZH) with fixed dimension
of 360.

Acknowledging the fact that the interpolated points may
not contain high information, a completeness rate, which is

(b)

(©

Fig. 3. Multilayer of the GVG graph G = (v ED} | = 1,2,3 on
Fr79. The red nodes correspond to the end-nodes, which will be eliminated
in the next layer, and the black nodes will be preserved. The edges reveals
the connection between these nodes. (a) Layer 1. (b) Layer 2. (c¢) Layer 3.

the proportion of the laser measured data (dimension of ,.lﬂl))

to the whole 360° data (dimension of ?fl)) is defined as

()
o length(ri )
4G = 0
length(ri )

where [ = 2 - - - L. This measure is used in the decision making
process which is discussed in the next section, thus we denote
qlgl) = 180/360 = 0.5 for uniformity when / = 1. However,
the linear interpolation is not applied to layer 1 since the initial
laser range data ri(l) always has the same dimension of 180, so
that linear interpolation becomes unnecessary. By applying this
data preprocessing approach, the laser range data in layer 2
to layer L are kept in the fixed length of 360. Note that it
is always rfl) which is employed to construct the next layer,
rather than the preprocessed ?fl).

As an example, Fig. 4 illustrates the construction of a
sequence of input in layer 2 using the corresponding inputs in
layer 1, followed by the result after linear interpolation. The
details are given in the caption of Fig. 4.

ey
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Fig. 4. Example of constructing rl-( ) and r( )

where the black asterisk node denotes the position of v( )

from the real environment. Then the middle figure shows the constructed r( )

the red asterisk nodes denote the position of v;

where the axes are in meters. The left four figures illustrate ri(l) and all of the r;]) carried by v}l) eN (vEl)),

) and the blue nodes denote the range data collected

using ray casting. The 1nterpolated sequence is given on the right, where the

magenta points correspond to the interpolated ones. In this example, we have qu) = 332/360 = 0.9222.

B. Decision on Multilayer Results

1) Construction of the Confidence Tree: With the L layer of
inputs, we can obtain the predicted labels from L independent
classifiers, which can be formed to be confidence trees with
L layers shown in Fig 5(a), where each node denotes the
predicted label j}l@ of v,(. and its corresponding confidence c(l)
By maximizing the overall confidence of each tree structure,
it is intended to obtain higher accuracy in classification.

All of these tree structures are built from the dependencies
in Algorithm 1 except for some minor difference—during the
construction of these tree structures, a parent node vl(l'H) owns
its children v() and v(l) € M(vl(l) ), while the range data of

(l+1) and
(1))

is constructed from the range data carried by vl
) eN (v(l)) The reason is that for those nodes v() e N(v

and v@ ¢ M (vl(l)), they are also reserved in the hlgher layer

(l+ )

as v; and have their own predicted labels, so we do not

consider the influence of vlg“) to them. It is to be noted that
the number of such tree structures is equal to the number of
nodes left in the layer L, where the VEL) are the root nodes of
these trees.

In our framework, two factors are considered when com-
puting the confidence c(.l) one is the probability p,(-l) obtained
from the classifier for labeling y; 5 and the other is the com-
pleteness ratio q() obtained from the input sequence rfl) which

is given in (1). Then the confidence c() is constructed as

(l) U]

)
—p® x g®

xdq; - 2

2) Decision Algorithm: With the confidence trees denotlng
the predicted label y AU) and its corresponding confidence c;
for each given v( ) the aim of decision making is then to search
the optimized confidence c() and assign the optimized label
yf*) to each node, leading to the maximum value of the overall
confidence.

In each tree structure, we make decisions from children to
parents while comparing two consecutive layers based on the
decision Algorithm 2. It is to be noted that for the comparison

Algorithm 2: Decision Making on the Conﬁdence Trees

Input: Confidence trees where each node v ) denotes

the predicted label y(l) and the correspondmg
confidence c(l)

Output: Optlmlzed labels of leaf nodes 95,1).
@) c ) _ oD,

1 Initialize c;, =3y
-L do

2 for [=2-
for v@ e Vv do

) and y(1

3
4 Average the optlmlzed confidence of v( )
-1 46 1 (l D,
chll(liren v(l N (I)Z] ;
5 if =) ¢ 0 > ¢ the(rll y
1 .
6 Denote c;,; = iCix
7 else
8 Denote c(l) c(l)
9 All descendants of v() are assigned the label
N()
yl*
10 end
11 end
12 end

between layer [ and layer [ — 1, the confidence of the parent
vl@ is always compared to the average optimized confidence
of its children v' " and we assume the optimized confidences
in layer 1 are known as the original confidences. As for the
optimized predicted labels, Algorithm 2 tells that they are only
changed to follow their ancestor when this ancestor beats its
children in confidence. In other words, if no ancestor of a
leaf node gain advantages in confidence, then this leaf node
would keep the initial label y(l) as its optimized label )71(:) Note
that although we can obtain the optimized labels for all nodes
from this decision algorithm, only the labels of the leaf nodes
are exported as output since the classification performance is
evaluated based on these leaf nodes. An example is given in
Fig. 5(b) for better clarity.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 24,2021 at 10:18:33 UTC from IEEE Xplore. Restrictions apply.



LIAO et al.: PLACE CLASSIFICATION WITH A GRAPH REGULARIZED DEEP NEURAL NETWORK 309

layer 3 @ @
w2 () () ()
aer1 () () (D@ ODEE@)
(@)
layer 3 @ @
o @0 @
o O OO OO
®)

Fig. 5. Confidence trees built from Fig. 2 and a corresponding example.
(a) Confidence tree: each parent node VEZ_H) has children vl@ and v](.l> €
M(vfl)). (b) Decision example: in this example, let us assume that the con-
fidence of each node is known. By applying the decision method given in
Algorithm 2, first we have the initialization cil = c?l) and &g) = &El). And
then average confidence of the children in bottom most layer are compared
with their corresponding parents in the immediate upper layer. In the left tree,

is larger than the average value of c( , and therefore, ¢ s = 0.8
and both the respective children (v(ll) and vél)) are assigned the label 5)?2)'
The ng) is smaller than the average value of c(21), cgl) , and cf‘l), hence, these
leaf nodes remain their initial label and cgi) =(0.54+0.440.4)/3 =0.4333.

Finally, c§3) = 0.6 is compared with (c(li) +C(2%k))/2 = 0.6167. Since the con-

fidence of layer 3 is smaller than the optimized average confidence combined
from layer 1 and layer 2, the final optimized confidence is c(li) =0.6167 and
the optimized labels do not change. By applying the same decision process

on the right tree in the figure, vél), vgl), and vél) are labeled the same as vg).

and ¢

We can also evaluate the results obtained from those L
independent classifiers separately with the help of these con-
structed trees. To ensure the fairness, results obtained from
different layer of classifiers are all compared on the accu-
racy of bottom layer. Obviously, the results observed from the
input of layer 1 do not need to be modified while the higher
layers should spread their predicted labels to the bottom layer.
Given a specific layer / (I > 1), all of the nodes on the bottom
layer are assigned the same label as their ancestor in layer /.

For example, as shown in Fig. 5(b), the vgl), vg), R vél) will

be labeled by the v§3) ’s predicted label when we evaluate the
results of layer 3.

IV. SEMISUPERVISED LEARNING AND CLASSIFICATION

We have introduced the construction of multilayer inputs
and decision making on the multilayer results in Section III.
In this section, we discuss the classification problem of how
to train on each layer with the input data and obtain the pre-
dicted labels of the testing maps. This is implemented by a
deep learning structure, with the capability to automatically
learn features from the raw input data. The L layer of inputs
are trained through L independent deep learning modes as indi-
cated in Fig. 1, though, these models have the same structure
with raw laser range data being the input and predicted labels

Hidden
representation H, — graph

Hidden
representation H,

Differences between
neighbors X

f

[ Input X

Fig. 6. Model training in semisupervised learning. The second layer has fixed
parameters which computes the consecutive differences of our input (denoted
as red). Then both the input and the output of the second layer will be fed
into the latter process. For the fine-tuning process, the Jigpe is imposed to
the softmax classifier and all of the parameters in the neural network (except
the fixed layer) will be adjusted, while Jgrapp is imposed to the last hidden
layer and will only influence the feature learning process.

being the output as shown in Fig. 6. Thus the discussion below
in this section is not confined to any specific layer and hence
the superscripts are omitted. It is to be noted that our training
process is semisupervised since both the training map and the
testing map are employed for model training, where only the
labels of the training map are available. The semisupervised
learning process has the advantage of gaining richer informa-
tion of data distribution, while keeping the spatial consistency
as we will introduce in this chapter.

A. Semisupervised Learning With Graph Regularization

In the classification problem, we denote the training pairs as
(X; € Rm*ni |y, ¢ R1*MY a5 a convention, where m denotes the
input dimension, n; denotes the number of training samples.
Particularly, each column in X; is a sequence of laser range
data r, i.e., x; = r;. The testing data can be defined in the
same way as X, € R™ where n, denotes the number of
testing samples. Then the task of the classification problem is
to obtain predicted labels of X, given X; and Y;. In addition,
we denote X = [X; X, ] € R™*" as the combination of training
data and testing data with n = n; 4 n,,, since X is fed into the
model as a whole during our semisupervised training process.

As illustrated in Fig. 6, the input is first fed into a set
of fixed parameters (denoted as red) to compute the differ-
ences between the consecutive beams in each raw scan, as
the consecutive differences can also provide rich informa-
tion to the place classification and is often employed for
extracting geometric features in the previous works [11], [12].
In the practical experiments, we sort both of the input and
consecutive differences to guarantee the rotational invariance.

From this point on, both the input and output of this fixed
layer are fed into the stacked auto-encoders for feature learn-
ing. Auto-encoder is the widely used structure for building
deep architectures, which is composed of an encoder and a
decoder. By feeding the representation learned from the pre-
vious encoder as the input into another auto-encoder, we can
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obtain the stacked hidden representations as shown in Fig. 6.
Let us denote sigmoid function as f(x) = 1/(1 + ¢™%), then
the ith layer of encoder and decoder can be represented as
follows:

H; =f(W:Hi—1 + b))
Hiy =f(WIH; + ;) 3)

where H; 1 and ﬁi_l denote the input and its reconstruction,
H; denotes the hidden representation and W;, b;, ¢; denote the
weighted parameters, respectively.! In this paper, the weights
in each pair of encoder and decoder are tied together as shown
in (3).

For each layer of auto-encoder, the unsupervised pretraining
is applied to obtain better parameters than random initializa-
tion [18] by minimizing the reconstruction cost

2
Jpre = lHHi—l _Hi—lH . (€]
m F
Note that the decoder is discarded after pretraining while the
encoder is preserved. The hidden representation learned by the
last auto-encoder can be regarded as the feature for the input
to the classifier.

In this paper reported here, the softmax classifier is applied
to the features learned from stacked auto-encoders for classi-
fication, which is formulated as follow:

T
) )
>iexp (w]Th)

where p; corresponds to the probability that the hidden
representation vector i belongs to the ith class.

After pretraining and classification, back propagation can
be used to fine-tune the whole learning process for further
promotion, which means the parameters of preserved encoders
and softmax are trained together. In order to keep the local
consistency, we add a graph regularization term during fine-
tuning to learned representation. The cost function of the fine-
tuning is given as follow:

Jtine = J1abel +J graph

1 nj ) ) )\‘ n n 2
= 2 a3 37) + = >0 sillhi = il”(©)
i=1

i=1 j=I

where the first term corresponds to the prediction error of the
training data, and the second term is the graph regularization.
Here h; and h; are the outputs of the last hidden layer with
respect to the inputs x; and x; (x; and x; are two arbitrary
columns in X), and s;; is the similarity measurement between
the samples x; and x; that are connected in GVG, which is
an element of the adjacency graph § = [s;j]uxn. Fig. 6 also
illustrates the way our cost function work. The costs caused by
the prediction error is imposed on the softmax classifier and
then our graph regularization is imposed on the last hidden
layer. Therefore during the fine-tuning the Jigpe; influences all
of the parameters, while Jgrpn influences parameters except
for the softmax classifier.

IWhen i=1, H;_1 is the raw input—the combination of X and its consec-
utive differences Xj.

B. Graph Regularization in Place Classification Problem

As shown in (6), the learned features h; and h; with large
weight s;; will be pushed together with the graph regularization
term. In this section, we describe the details about the con-
struction of the adjacency graph S which can be built in two
steps. Firstly we define the connected relationships between
samples and then calculate their weights of the connected
edges.

In the place classification problem, the connected relation-
ships in the topological graph GVG are directly employed to
the adjacency graph. Then the samples with close coordinates
are forced to be represented by the features with close dis-
tances. As for the weights which corresponds to the strength of
the graph regularization, it is inversely associated with two dis-
tances, i.e., the distance between coordinates and the distance
between the input data, which can be formulated as

S = i. +—F 2
G i =]

)

where o and B are constant weights, d;; denotes the Euclidean
distance between the sample coordinates. The second term
defines the Euclidean distance between the input data. This
weighting scheme dose not only evaluate the geometrical
information, but also considers the closeness between inputs.
For example, given an edge that connects two nodes belong-
ing to corridor and office, respectively, although d;; is small,
lx;i — )cj||2 can be large. Therefore, these two nodes are not
forced to be too close in the representation space and the
discriminative information could be preserved.

V. EXPERIMENTS

To validate the effectiveness of our end-to-end multilayer
learning system, we conduct experiments on six data sets
collected from six international university indoor environ-
ments using (including the Centre for Autonomous Systems
at the University of Technology, Sydney, several buildings
in the University of Freiburg, the German Research Centre
for Artificial Intelligence in Saarbruecken, and the Intel
Laboratory in Seattle). On each real grid map, a simulated
robot collected laser range data using a virtual on-board 2-D
laser range finder (with a maximum range of 30 meters and
a horizontal FOV of 180°) at the previous mentioned GVG
nodes.

It is to be noted that the classes defined by humans can
be somewhat vague and plentiful according to the differ-
ent functions of places. However, the 2-D range data do
not contain enough discriminative information to classify all
these human-designed classes. Therefore, we consider three
target classes as: class 1—space designed for a small num-
ber of individuals including cubicle, office, printer room,
kitchen, bathroom, stairwell and elevator; class 2—space for
group activities including meeting room and laboratory; and
class 3—corridor.

Among these six data sets, two of them (Fr79 and Intellab)
contain all of the three classes but the others contain only parts
of these classes. We conduct leave-many-out training, which
means one data set is utilized for training and others are used

Authorized licensed use limited to: Zhejiang University. Downloaded on February 24,2021 at 10:18:33 UTC from IEEE Xplore. Restrictions apply.



LIAO et al.: PLACE CLASSIFICATION WITH A GRAPH REGULARIZED DEEP NEURAL NETWORK 311

TABLE I
MULTILAYER RESULTS TRAINED ON INTELLAB

Map L1(%) L2(%) L3(%)
UTS 85.20 89.49 91.24
SarrB 86.55 87.64 91.32
FrUA 86.23 92.96 91.69
FrUB 90.29 98.87 99.84
Fr79 81.99 85.87 87.90
Average  86.05 90.97 92.40
TABLE II

MULTILAYER RESULTS TRAINED ON FR79

Map L1(%) L2(%) L3(%)
UTS 81.70 85.99 89.93
SarrB 84.16  95.44 90.46
FrUA 90.43 94.70 96.91
FrUB 88.67 98.87 99.51
Intellab ~ 72.55 79.81 82.73
Average  83.50 90.96 91.91

for testing. Therefore, we obtained two groups of results by
training on Fr79 and Intellab, respectively.

The number of layers, L was chosen to be 3 based on the
difference between two consecutive layers, which is measured
by the distance between their mean completeness rates. The
mean completeness of layer / is given as follows:

7" =3 "q )
i

where ql@ is the completeness rate of node i in layer [ as
defined in (1). If the distance between g® and gtV is
infinitesimal, then their corresponding laser measured data in
these two layers are very close. Therefore, it is noninforma-
tive to consider the higher layer [/ + 1. Taking the map Fr79
as an example, it has g = 0.50, g® = 0.91, g® = 0.98
and g = 0.99. Since g™ is very close to g®, we choose
L = 3 in this paper. The dimension of each layer of the deep
architecture in Fig. 6 was set as m —m — 100—24 —3 given the
input X € R™*", The input and the consecutive layer have the
same dimension as the raw input m, where m = 180 for L = 1
and m = 360 for L = 2, 3. For the following hidden layers,
we set the dimension of the hidden representation H; as 100
based on experiments. The dimension of the hidden represen-
tation H; is set to be 24, which is the same as the dimension
of the handcrafted features in [8] for fair comparison. Finally
the output of our model represents a probabilistic measure of
data belonging to each class. Thus the output dimension is the
same as the number of our classes.

A. Multilayer Results Without Graph Regularization

We first conduct experiments to evaluate the performance of
our multilayer inputs. Tables I and II show the leave-many-out
classification results training on Intellab and Fr79, respectively.
It is to be noted that the graph regularization is not considered
here and therefore, i.e., A = 0 in the cost function (6). In
general, results of higher layers are better than that of lower
layers due to the richer information contained in each node on
the higher layers.

TABLE III
MULTILAYER RESULTS TRAINED ON INTELLAB
WITH GRAPH REGULARIZATION

Map L1(%) L2(%) L3(%)
UTS 83.54 87.3 92.29
SarrB 89.59 96.31 90.89
FrUA 91.48 91.77 96.68
FrUB 89.97 99.19 99.84
Fr79 83.96 86.12 88.65
Average  87.71 92.14 93.67
TABLE IV

MULTILAYER RESULTS TRAINED ON FR79
WITH GRAPH REGULARIZATION

Map L1(%) L2(%) L3(%)
UTS 80.47  89.23  90.02
SarrB 8720 96.75  95.23
FrUA 91.06  96.12 9747
FrUB 89.48  98.87  99.51
Intellab ~ 73.00  79.89  82.51
Average  84.24  92.17 92.95

B. Multilayer Results With Graph Regularization

We also carried out experiments to validate the effective-
ness of the graph regularization. The algorithm remains the
same as previous settings, however, we changed the value
of A = 1 to add the graph regularization. In this experi-
ments, we pay more attention to the geometrical neighborhood,
thus we use « = 2/3 and 8 = 1/3 in (7) for the con-
struction of the adjacency graph. The classification results are
shown in Tables III and IV, which are trained on Intellab
and Fr79, respectively. The results have the similar trends
as in Tables I and II, where higher layers give rise to bet-
ter accuracies. Further comparisons of Tables I and III show
that the feature learning with graph regularization performs
better than without it. It reveals that the graph regularization
has the advantage of improving classification performances by
keeping the local consistency.

C. Fusion Results

On top of that, we show the accuracies of the multilayer
graph regularized method with fusion in the second column
of Tables V and VI. When compared with the results of
each single layer as shown in Tables III and IV, the fusion
results achieved better accuracies. For the results trained on
Intellab, the average accuracy of fusion results risen to 94.02%
from L1: 87.71%, L2: 92.14%, and L3: 92.66%, and the
results trained on Fr79 also reached 93.59% from L1: 84.24%,
L2:92.17%, and L3: 92.95%. The fused test results trained on
Intellab are diagrammatically illustrated in Fig. 7. It is to be
noted that confusions between class 1 (office room and other
rooms) and class 2 (meeting room) account for the major mis-
classifications especially in the test map of Fr79. The cause
might be that class 1 is featured with narrow environment
including massive clutters while the class 2 is featured with
relatively larger spaces, therefore the corners of meeting room
are mostly classified as office room and other rooms and some
center positions of office room are assigned as office room.

Through the experiments above, one can see that our
framework is beneficial from the following two aspects.
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TABLE V
GRAPH REGULARIZED FUSION RESULTS TRAINED ON INTELLAB, WITH COMPARISON TO THE STATE-OF-THE-ART

Map Multi-layer fusion(%) SVM(%) SPCoGVG(%) LVQ Mar.(%) DBMM 180°(%) DBMM 360°(%)

UTS 91.24 87.74 90.72 82.75 88.88 88.70

SarrB 96.53 85.68 88.72 75.49 79.83 86.77

FrUA 95.02 96.04 96.52 89.95 94.38 95.89

FrUB 99.84 97.25 98.71 83.33 95.96 97.41

Fr79 89.76 88.34 92.04 77.85 89.88 93.28

Average 94.48 91.01 93.39 81.87 89.79 92.41
TABLE VI

GRAPH REGULARIZED FUSION RESULTS TRAINED ON FR79, WITH COMPARISON TO THE STATE-OF-THE-ART

Map Multi-layer fusion(%) SVM(%) SPCoGVG(%) LVQ Mar.(%) DBMM 180°(%) DBMM 360°(%)

UTS 90.54 83.54 89.84 88.97 87.22 85.46
SarrB 98.27 82.43 93.71 92.84 91.97 86.99
FrUA 97.23 92.72 97.71 96.12 95.97 96.84
FrUB 99.51 80.74 99.19 97.89 96.93 97.09
Intellab 82.40 79.89 86.89 57.19 83.22 85.36
Average 93.59 83.86 93.47 86.60 91.06 90.35

R

L

(a) (b)

(c) @

- Corridor
- Office and Other Rooms
- Meeting Room

Voronoi Edge

)

Fig. 7.  Test results corresponding to Table V, the GVG nodes are labeled with the graph regularized fusion results trained on Intelmap. (a) FrUA,
Acc = 95.02%. (b) FrUB, Acc = 99.84%. (c) SarrB, Acc = 96.53%. (d) UTS, Acc = 91.24%. (e) Fr79, Acc = 89.76%.

1) By regularizing the deep architecture with the adja- relationship between neighboring nodes. The auto-
cency graph, the learned features are expected to matic feature learning also releases the human
be learned with spatial invariance intrinsically, while labor from feature designing, enabling the end-to-end
the hand-crafted features not able to encoding the learning.
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2)

The better discriminative performance is achieved by
fusion on the confidence tree, which comprehensively
considers the results from different layers. The informa-
tion can be insufficient in the lower layer due to narrow
FOV. In addition, in higher layers, as the FOV may cover
more than one place, the multiple labels may confuse the
classifier. The tree decision avoids the two problems to
some extent.

D. Algorithm Comparison

To further validate the effectiveness of the proposed algo-
rithm, it is compared to one baseline method as well as three
state-of-the-art methods, including the followings.

1y

2)

3)

4)

SVM: 1t is employed as a baseline classifier. It is based
on 24-D hand-engineered features as implemented in [8].
Specifically, 21 features are constructed based on statisti-
cal and geometrical information from the 180° FOV raw
range data, which is a subset of the features used in [11].
The other three features are constructed to describe the
time domain information follow [41].

SPCoGVG: SPCoGVG [8], which is composed of SVM
and conditional random field to ensure the generalization
ability. It also uses the 24-D hand-engineered feature the
same as the SVM.

LVQ Mar: This method uses learning vector quanti-
zation (LVQ) for classification and Markov Model to
incorporate the past inference [33]. Similar to this paper,
they take raw laser scans as input, while their input can
only be the calibrated 360° FOV range data. LVQ can
be regarded as a shallow neural network with one hid-
den layer, thus the dimension of the hidden layer is
set to be 24, which is the same as the dimension as
SVM, SPCoGVG, and our method. To build the time
sequence, we generate a moving trajectory based on our
GVG nodes, on which the Markov Model is applied. We
reimplement their method for comparison.

DBMM: Dynamic  bayesian  mixture = mod-
els (DBMM) [17] is a method that combines two
SVM classifiers using a mixture of probabilistic mod-
els, and incorporates past inferences using a dynamic
Bayesian process. It is also based on hand-engineered
features [11], while a larger subset with 50 dimensions
is considered in this paper. The features are extracted
from both 180° FOV and 360° FOV laser scan data for
comparison. A time sequence is also required to build
the dynamic Bayesian network, which is constructed
the same as the moving trajectory in the LVQ Mar. We
implement their method for comparison.

As can be seen from Tables V and VI, our method achieves
superior results compared to the others. Specifically,

1y

Our method and LVQ Mar. both employ the raw data to
learn the features. However, LVQ Mar. is not compara-
ble to SVM while ours outperforms SVM considerably.
Particularly, LVQ performs poor when trained on FR79
and tested on Intellab as shown in Table VI. The main
reason is that the structure of class 1 (corridors) at
Intellab is slightly different than that of the other maps,

and LVQ is not able to capture the variance with its fea-
tures learned from the shallow architecture. As a result,
the average performance of LVQ is even poorer when
trained on Intellab and tested on the others maps in
Table V. The result indicates that our method learns
more generalizable features by owning the deep archi-
tecture and considering the spatial consistency. With the
shallow architecture, LVQ Mar. cannot generate a good
performance even it models the temporal information
(spatial consistency in moving direction).

2) DBMM is expected to outperform SVM as it fuses two
SVMs with two groups of hand-crafted features. Though
it outperforms SVM in Table VI, the DBMM with 180°
FOV achieves low accuracy on SarrB in Table V. In
this case, the relatively poor accuracy is generated since
one group of hand-crafted features in DBMM leads to
severe misclassification between the class 1 (office and
other rooms) and class 3 (corridor) with accuracy of
77.87%, while the other group of features achieves accu-
racy at 85.03%. Note that these two classes are both
considered in their paper [17]. This result validates that
the hand-crafted features should be carefully chosen to
serve different maps. It is also worth to mention that
DMBB with 180° FOV outperforms the DBMM with
360° FOV in Table VI, especially on the test SarrB,
while in Table V the DBMM with 360° FOV generally
performs better. This fact reflects that only consider-
ing the sensor information in one resolution can be
insufficient to make a comprehensive classification.

3) Another possible reason that our method and SPCoGVG
outperform LVQ Mar. and DBMM is that, the completed
spatial consistency modeling by the adjacency graph can
better constrain the classifier than the temporal consis-
tency modeling by moving trajectory. For example, when
the robot moves from classes 1 to 2, LVQ Mar. and
DBMM only consider the past inferences of the nodes
with class 1, while our method and SPCoGVG addition-
ally take the inference of consequent nodes with class 2
into consideration. Besides, our method is slightly better
than SPCoGVG, indicating that considering the con-
straints, e.g., spatial consistency, in feature learning step
may be better than in classification step, as the for-
mer occurred in nonlinear feature space, while the latter
utilizes the simple weighted sum.

In summary, the proposed method achieves state-of-the-
art performance by using the spatial proximity aided feature
learning and confidence tree based multilayer fusion, with-
out referring to the hand-crafted features. Besides, we think
a more valuable insight is that the hierarchical feature learn-
ing and decision with incorporating of prior knowledge can
be leveraged in other robotics applications, as there are
many structured or hierarchical priors in robot cognitive and
decision tasks.

VI. CONCLUSION

In this paper, we presented an end-to-end place classification
framework. We implemented a multilayer learning framework,
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including the construction of multilayer inputs and decision
making on the multilayer results. Each layer of inputs were
fed into a semisupervised model for feature learning and clas-
sification, which guaranteed the local consistency with a graph
regularization.

Experimental results showed that the higher layer input
data led to higher classification accuracy, which validated the
effectiveness of the multilayer structure. By performing the
semisupervised learning with or without graph regularization,
we also showed that graph regularization helps promoting the
classification performance by incorporating the local consis-
tency. Furthermore, the fusion results based on the confidence
tree achieved comparable results to the state-of-the-art method.
In a nutshell, we achieved the generalization ability and
preserved the local consistency in our end-to-end place clas-
sification framework. Future work is to apply our framework
on other type of sensor data, such as RGB-D data, which have
more representative and discriminative ability.
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